src/HOL/Algebra/Complete_Lattice.thy
changeset 65099 30d0b2f1df76
child 66187 85925d4ae93d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Algebra/Complete_Lattice.thy	Thu Mar 02 21:16:02 2017 +0100
@@ -0,0 +1,1191 @@
+(*  Title:      HOL/Algebra/Complete_Lattice.thy
+    Author:     Clemens Ballarin, started 7 November 2003
+    Copyright:  Clemens Ballarin
+
+Most congruence rules by Stephan Hohe.
+With additional contributions from Alasdair Armstrong and Simon Foster.
+*)
+
+theory Complete_Lattice
+imports Lattice
+begin
+
+section \<open>Complete Lattices\<close>
+
+locale weak_complete_lattice = weak_partial_order +
+  assumes sup_exists:
+    "[| A \<subseteq> carrier L |] ==> EX s. least L s (Upper L A)"
+    and inf_exists:
+    "[| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
+
+sublocale weak_complete_lattice \<subseteq> weak_lattice
+proof
+  fix x y
+  assume a: "x \<in> carrier L" "y \<in> carrier L"
+  thus "\<exists>s. is_lub L s {x, y}"
+    by (rule_tac sup_exists[of "{x, y}"], auto)
+  from a show "\<exists>s. is_glb L s {x, y}"
+    by (rule_tac inf_exists[of "{x, y}"], auto)
+qed
+
+text \<open>Introduction rule: the usual definition of complete lattice\<close>
+
+lemma (in weak_partial_order) weak_complete_latticeI:
+  assumes sup_exists:
+    "!!A. [| A \<subseteq> carrier L |] ==> EX s. least L s (Upper L A)"
+    and inf_exists:
+    "!!A. [| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
+  shows "weak_complete_lattice L"
+  by standard (auto intro: sup_exists inf_exists)
+
+lemma (in weak_complete_lattice) dual_weak_complete_lattice:
+  "weak_complete_lattice (inv_gorder L)"
+proof -
+  interpret dual: weak_lattice "inv_gorder L"
+    by (metis dual_weak_lattice)
+
+  show ?thesis
+    apply (unfold_locales)
+    apply (simp_all add:inf_exists sup_exists)
+  done
+qed
+
+lemma (in weak_complete_lattice) supI:
+  "[| !!l. least L l (Upper L A) ==> P l; A \<subseteq> carrier L |]
+  ==> P (\<Squnion>A)"
+proof (unfold sup_def)
+  assume L: "A \<subseteq> carrier L"
+    and P: "!!l. least L l (Upper L A) ==> P l"
+  with sup_exists obtain s where "least L s (Upper L A)" by blast
+  with L show "P (SOME l. least L l (Upper L A))"
+  by (fast intro: someI2 weak_least_unique P)
+qed
+
+lemma (in weak_complete_lattice) sup_closed [simp]:
+  "A \<subseteq> carrier L ==> \<Squnion>A \<in> carrier L"
+  by (rule supI) simp_all
+
+lemma (in weak_complete_lattice) sup_cong:
+  assumes "A \<subseteq> carrier L" "B \<subseteq> carrier L" "A {.=} B"
+  shows "\<Squnion> A .= \<Squnion> B"
+proof -
+  have "\<And> x. is_lub L x A \<longleftrightarrow> is_lub L x B"
+    by (rule least_Upper_cong_r, simp_all add: assms)
+  moreover have "\<Squnion> B \<in> carrier L"
+    by (simp add: assms(2))
+  ultimately show ?thesis
+    by (simp add: sup_def)
+qed
+
+sublocale weak_complete_lattice \<subseteq> weak_bounded_lattice
+  apply (unfold_locales)
+  apply (metis Upper_empty empty_subsetI sup_exists)
+  apply (metis Lower_empty empty_subsetI inf_exists)
+done
+
+lemma (in weak_complete_lattice) infI:
+  "[| !!i. greatest L i (Lower L A) ==> P i; A \<subseteq> carrier L |]
+  ==> P (\<Sqinter>A)"
+proof (unfold inf_def)
+  assume L: "A \<subseteq> carrier L"
+    and P: "!!l. greatest L l (Lower L A) ==> P l"
+  with inf_exists obtain s where "greatest L s (Lower L A)" by blast
+  with L show "P (SOME l. greatest L l (Lower L A))"
+  by (fast intro: someI2 weak_greatest_unique P)
+qed
+
+lemma (in weak_complete_lattice) inf_closed [simp]:
+  "A \<subseteq> carrier L ==> \<Sqinter>A \<in> carrier L"
+  by (rule infI) simp_all
+
+lemma (in weak_complete_lattice) inf_cong:
+  assumes "A \<subseteq> carrier L" "B \<subseteq> carrier L" "A {.=} B"
+  shows "\<Sqinter> A .= \<Sqinter> B"
+proof -
+  have "\<And> x. is_glb L x A \<longleftrightarrow> is_glb L x B"
+    by (rule greatest_Lower_cong_r, simp_all add: assms)
+  moreover have "\<Sqinter> B \<in> carrier L"
+    by (simp add: assms(2))
+  ultimately show ?thesis
+    by (simp add: inf_def)
+qed
+
+theorem (in weak_partial_order) weak_complete_lattice_criterion1:
+  assumes top_exists: "EX g. greatest L g (carrier L)"
+    and inf_exists:
+      "!!A. [| A \<subseteq> carrier L; A ~= {} |] ==> EX i. greatest L i (Lower L A)"
+  shows "weak_complete_lattice L"
+proof (rule weak_complete_latticeI)
+  from top_exists obtain top where top: "greatest L top (carrier L)" ..
+  fix A
+  assume L: "A \<subseteq> carrier L"
+  let ?B = "Upper L A"
+  from L top have "top \<in> ?B" by (fast intro!: Upper_memI intro: greatest_le)
+  then have B_non_empty: "?B ~= {}" by fast
+  have B_L: "?B \<subseteq> carrier L" by simp
+  from inf_exists [OF B_L B_non_empty]
+  obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
+  have "least L b (Upper L A)"
+apply (rule least_UpperI)
+   apply (rule greatest_le [where A = "Lower L ?B"])
+    apply (rule b_inf_B)
+   apply (rule Lower_memI)
+    apply (erule Upper_memD [THEN conjunct1])
+     apply assumption
+    apply (rule L)
+   apply (fast intro: L [THEN subsetD])
+  apply (erule greatest_Lower_below [OF b_inf_B])
+  apply simp
+ apply (rule L)
+apply (rule greatest_closed [OF b_inf_B])
+done
+  then show "EX s. least L s (Upper L A)" ..
+next
+  fix A
+  assume L: "A \<subseteq> carrier L"
+  show "EX i. greatest L i (Lower L A)"
+  proof (cases "A = {}")
+    case True then show ?thesis
+      by (simp add: top_exists)
+  next
+    case False with L show ?thesis
+      by (rule inf_exists)
+  qed
+qed
+
+
+text \<open>Supremum\<close>
+
+declare (in partial_order) weak_sup_of_singleton [simp del]
+
+lemma (in partial_order) sup_of_singleton [simp]:
+  "x \<in> carrier L ==> \<Squnion>{x} = x"
+  using weak_sup_of_singleton unfolding eq_is_equal .
+
+lemma (in upper_semilattice) join_assoc_lemma:
+  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
+  shows "x \<squnion> (y \<squnion> z) = \<Squnion>{x, y, z}"
+  using weak_join_assoc_lemma L unfolding eq_is_equal .
+
+lemma (in upper_semilattice) join_assoc:
+  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
+  shows "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
+  using weak_join_assoc L unfolding eq_is_equal .
+
+
+text \<open>Infimum\<close>
+
+declare (in partial_order) weak_inf_of_singleton [simp del]
+
+lemma (in partial_order) inf_of_singleton [simp]:
+  "x \<in> carrier L ==> \<Sqinter>{x} = x"
+  using weak_inf_of_singleton unfolding eq_is_equal .
+
+text \<open>Condition on \<open>A\<close>: infimum exists.\<close>
+
+lemma (in lower_semilattice) meet_assoc_lemma:
+  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
+  shows "x \<sqinter> (y \<sqinter> z) = \<Sqinter>{x, y, z}"
+  using weak_meet_assoc_lemma L unfolding eq_is_equal .
+
+lemma (in lower_semilattice) meet_assoc:
+  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
+  shows "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
+  using weak_meet_assoc L unfolding eq_is_equal .
+
+
+subsection \<open>Infimum Laws\<close>
+
+context weak_complete_lattice
+begin
+
+lemma inf_glb: 
+  assumes "A \<subseteq> carrier L"
+  shows "greatest L (\<Sqinter>A) (Lower L A)"
+proof -
+  obtain i where "greatest L i (Lower L A)"
+    by (metis assms inf_exists)
+
+  thus ?thesis
+    apply (simp add: inf_def)
+    apply (rule someI2[of _ "i"])
+    apply (auto)
+  done
+qed
+
+lemma inf_lower:
+  assumes "A \<subseteq> carrier L" "x \<in> A"
+  shows "\<Sqinter>A \<sqsubseteq> x"
+  by (metis assms greatest_Lower_below inf_glb)
+
+lemma inf_greatest: 
+  assumes "A \<subseteq> carrier L" "z \<in> carrier L" 
+          "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x)"
+  shows "z \<sqsubseteq> \<Sqinter>A"
+  by (metis Lower_memI assms greatest_le inf_glb)
+
+lemma weak_inf_empty [simp]: "\<Sqinter>{} .= \<top>"
+  by (metis Lower_empty empty_subsetI inf_glb top_greatest weak_greatest_unique)
+
+lemma weak_inf_carrier [simp]: "\<Sqinter>carrier L .= \<bottom>"
+  by (metis bottom_weak_eq inf_closed inf_lower subset_refl)
+
+lemma weak_inf_insert [simp]: 
+  "\<lbrakk> a \<in> carrier L; A \<subseteq> carrier L \<rbrakk> \<Longrightarrow> \<Sqinter>insert a A .= a \<sqinter> \<Sqinter>A"
+  apply (rule weak_le_antisym)
+  apply (force intro: meet_le inf_greatest inf_lower inf_closed)
+  apply (rule inf_greatest)
+  apply (force)
+  apply (force intro: inf_closed)
+  apply (auto)
+  apply (metis inf_closed meet_left)
+  apply (force intro: le_trans inf_closed meet_right meet_left inf_lower)
+done
+
+
+subsection \<open>Supremum Laws\<close>
+
+lemma sup_lub: 
+  assumes "A \<subseteq> carrier L"
+  shows "least L (\<Squnion>A) (Upper L A)"
+    by (metis Upper_is_closed assms least_closed least_cong supI sup_closed sup_exists weak_least_unique)
+
+lemma sup_upper: 
+  assumes "A \<subseteq> carrier L" "x \<in> A"
+  shows "x \<sqsubseteq> \<Squnion>A"
+  by (metis assms least_Upper_above supI)
+
+lemma sup_least:
+  assumes "A \<subseteq> carrier L" "z \<in> carrier L" 
+          "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z)" 
+  shows "\<Squnion>A \<sqsubseteq> z"
+  by (metis Upper_memI assms least_le sup_lub)
+
+lemma weak_sup_empty [simp]: "\<Squnion>{} .= \<bottom>"
+  by (metis Upper_empty bottom_least empty_subsetI sup_lub weak_least_unique)
+
+lemma weak_sup_carrier [simp]: "\<Squnion>carrier L .= \<top>"
+  by (metis Lower_closed Lower_empty sup_closed sup_upper top_closed top_higher weak_le_antisym)
+
+lemma weak_sup_insert [simp]: 
+  "\<lbrakk> a \<in> carrier L; A \<subseteq> carrier L \<rbrakk> \<Longrightarrow> \<Squnion>insert a A .= a \<squnion> \<Squnion>A"
+  apply (rule weak_le_antisym)
+  apply (rule sup_least)
+  apply (auto)
+  apply (metis join_left sup_closed)
+  apply (rule le_trans) defer
+  apply (rule join_right)
+  apply (auto)
+  apply (rule join_le)
+  apply (auto intro: sup_upper sup_least sup_closed)
+done
+
+end
+
+
+subsection \<open>Fixed points of a lattice\<close>
+
+definition "fps L f = {x \<in> carrier L. f x .=\<^bsub>L\<^esub> x}"
+
+abbreviation "fpl L f \<equiv> L\<lparr>carrier := fps L f\<rparr>"
+
+lemma (in weak_partial_order) 
+  use_fps: "x \<in> fps L f \<Longrightarrow> f x .= x"
+  by (simp add: fps_def)
+
+lemma fps_carrier [simp]:
+  "fps L f \<subseteq> carrier L"
+  by (auto simp add: fps_def)
+
+lemma (in weak_complete_lattice) fps_sup_image: 
+  assumes "f \<in> carrier L \<rightarrow> carrier L" "A \<subseteq> fps L f" 
+  shows "\<Squnion> (f ` A) .= \<Squnion> A"
+proof -
+  from assms(2) have AL: "A \<subseteq> carrier L"
+    by (auto simp add: fps_def)
+  
+  show ?thesis
+  proof (rule sup_cong, simp_all add: AL)
+    from assms(1) AL show "f ` A \<subseteq> carrier L"
+      by (auto)
+    from assms(2) show "f ` A {.=} A"
+      apply (auto simp add: fps_def)
+      apply (rule set_eqI2)
+      apply blast
+      apply (rename_tac b)
+      apply (rule_tac x="f b" in bexI)
+      apply (metis (mono_tags, lifting) Ball_Collect assms(1) Pi_iff local.sym)
+      apply (auto)
+    done
+  qed
+qed
+
+lemma (in weak_complete_lattice) fps_idem:
+  "\<lbrakk> f \<in> carrier L \<rightarrow> carrier L; Idem f \<rbrakk> \<Longrightarrow> fps L f {.=} f ` carrier L"
+  apply (rule set_eqI2)
+  apply (auto simp add: idempotent_def fps_def)
+  apply (metis Pi_iff local.sym)
+  apply force
+done
+
+context weak_complete_lattice
+begin
+
+lemma weak_sup_pre_fixed_point: 
+  assumes "f \<in> carrier L \<rightarrow> carrier L" "isotone L L f" "A \<subseteq> fps L f"
+  shows "(\<Squnion>\<^bsub>L\<^esub> A) \<sqsubseteq>\<^bsub>L\<^esub> f (\<Squnion>\<^bsub>L\<^esub> A)"
+proof (rule sup_least)
+  from assms(3) show AL: "A \<subseteq> carrier L"
+    by (auto simp add: fps_def)
+  thus fA: "f (\<Squnion>A) \<in> carrier L"
+    by (simp add: assms funcset_carrier[of f L L])
+  fix x
+  assume xA: "x \<in> A"
+  hence "x \<in> fps L f"
+    using assms subsetCE by blast
+  hence "f x .=\<^bsub>L\<^esub> x"
+    by (auto simp add: fps_def)
+  moreover have "f x \<sqsubseteq>\<^bsub>L\<^esub> f (\<Squnion>\<^bsub>L\<^esub>A)"
+    by (meson AL assms(2) subsetCE sup_closed sup_upper use_iso1 xA)
+  ultimately show "x \<sqsubseteq>\<^bsub>L\<^esub> f (\<Squnion>\<^bsub>L\<^esub>A)"
+    by (meson AL fA assms(1) funcset_carrier le_cong local.refl subsetCE xA)
+qed
+
+lemma weak_sup_post_fixed_point: 
+  assumes "f \<in> carrier L \<rightarrow> carrier L" "isotone L L f" "A \<subseteq> fps L f"
+  shows "f (\<Sqinter>\<^bsub>L\<^esub> A) \<sqsubseteq>\<^bsub>L\<^esub> (\<Sqinter>\<^bsub>L\<^esub> A)"
+proof (rule inf_greatest)
+  from assms(3) show AL: "A \<subseteq> carrier L"
+    by (auto simp add: fps_def)
+  thus fA: "f (\<Sqinter>A) \<in> carrier L"
+    by (simp add: assms funcset_carrier[of f L L])
+  fix x
+  assume xA: "x \<in> A"
+  hence "x \<in> fps L f"
+    using assms subsetCE by blast
+  hence "f x .=\<^bsub>L\<^esub> x"
+    by (auto simp add: fps_def)
+  moreover have "f (\<Sqinter>\<^bsub>L\<^esub>A) \<sqsubseteq>\<^bsub>L\<^esub> f x"
+    by (meson AL assms(2) inf_closed inf_lower subsetCE use_iso1 xA)   
+  ultimately show "f (\<Sqinter>\<^bsub>L\<^esub>A) \<sqsubseteq>\<^bsub>L\<^esub> x"
+    by (meson AL assms(1) fA funcset_carrier le_cong_r subsetCE xA)
+qed
+
+
+subsubsection \<open>Least fixed points\<close>
+
+lemma LFP_closed [intro, simp]:
+  "\<mu> f \<in> carrier L"
+  by (metis (lifting) LFP_def inf_closed mem_Collect_eq subsetI)
+
+lemma LFP_lowerbound: 
+  assumes "x \<in> carrier L" "f x \<sqsubseteq> x" 
+  shows "\<mu> f \<sqsubseteq> x"
+  by (auto intro:inf_lower assms simp add:LFP_def)
+
+lemma LFP_greatest: 
+  assumes "x \<in> carrier L" 
+          "(\<And>u. \<lbrakk> u \<in> carrier L; f u \<sqsubseteq> u \<rbrakk> \<Longrightarrow> x \<sqsubseteq> u)"
+  shows "x \<sqsubseteq> \<mu> f"
+  by (auto simp add:LFP_def intro:inf_greatest assms)
+
+lemma LFP_lemma2: 
+  assumes "Mono f" "f \<in> carrier L \<rightarrow> carrier L"
+  shows "f (\<mu> f) \<sqsubseteq> \<mu> f"
+  using assms
+  apply (auto simp add:Pi_def)
+  apply (rule LFP_greatest)
+  apply (metis LFP_closed)
+  apply (metis LFP_closed LFP_lowerbound le_trans use_iso1)
+done
+
+lemma LFP_lemma3: 
+  assumes "Mono f" "f \<in> carrier L \<rightarrow> carrier L"
+  shows "\<mu> f \<sqsubseteq> f (\<mu> f)"
+  using assms
+  apply (auto simp add:Pi_def)
+  apply (metis LFP_closed LFP_lemma2 LFP_lowerbound assms(2) use_iso2)
+done
+
+lemma LFP_weak_unfold: 
+  "\<lbrakk> Mono f; f \<in> carrier L \<rightarrow> carrier L \<rbrakk> \<Longrightarrow> \<mu> f .= f (\<mu> f)"
+  by (auto intro: LFP_lemma2 LFP_lemma3 funcset_mem)
+
+lemma LFP_fixed_point [intro]:
+  assumes "Mono f" "f \<in> carrier L \<rightarrow> carrier L"
+  shows "\<mu> f \<in> fps L f"
+proof -
+  have "f (\<mu> f) \<in> carrier L"
+    using assms(2) by blast
+  with assms show ?thesis
+    by (simp add: LFP_weak_unfold fps_def local.sym)
+qed
+
+lemma LFP_least_fixed_point:
+  assumes "Mono f" "f \<in> carrier L \<rightarrow> carrier L" "x \<in> fps L f"
+  shows "\<mu> f \<sqsubseteq> x"
+  using assms by (force intro: LFP_lowerbound simp add: fps_def)
+  
+lemma LFP_idem: 
+  assumes "f \<in> carrier L \<rightarrow> carrier L" "Mono f" "Idem f"
+  shows "\<mu> f .= (f \<bottom>)"
+proof (rule weak_le_antisym)
+  from assms(1) show fb: "f \<bottom> \<in> carrier L"
+    by (rule funcset_mem, simp)
+  from assms show mf: "\<mu> f \<in> carrier L"
+    by blast
+  show "\<mu> f \<sqsubseteq> f \<bottom>"
+  proof -
+    have "f (f \<bottom>) .= f \<bottom>"
+      by (auto simp add: fps_def fb assms(3) idempotent)
+    moreover have "f (f \<bottom>) \<in> carrier L"
+      by (rule funcset_mem[of f "carrier L"], simp_all add: assms fb)
+    ultimately show ?thesis
+      by (auto intro: LFP_lowerbound simp add: fb)
+  qed
+  show "f \<bottom> \<sqsubseteq> \<mu> f"
+  proof -
+    have "f \<bottom> \<sqsubseteq> f (\<mu> f)"
+      by (auto intro: use_iso1[of _ f] simp add: assms)
+    moreover have "... .= \<mu> f"
+      using assms(1) assms(2) fps_def by force
+    moreover from assms(1) have "f (\<mu> f) \<in> carrier L"
+      by (auto)
+    ultimately show ?thesis
+      using fb by blast
+  qed
+qed
+
+
+subsubsection \<open>Greatest fixed points\<close>
+  
+lemma GFP_closed [intro, simp]:
+  "\<nu> f \<in> carrier L"
+  by (auto intro:sup_closed simp add:GFP_def)
+  
+lemma GFP_upperbound:
+  assumes "x \<in> carrier L" "x \<sqsubseteq> f x"
+  shows "x \<sqsubseteq> \<nu> f"
+  by (auto intro:sup_upper assms simp add:GFP_def)
+
+lemma GFP_least: 
+  assumes "x \<in> carrier L" 
+          "(\<And>u. \<lbrakk> u \<in> carrier L; u \<sqsubseteq> f u \<rbrakk> \<Longrightarrow> u \<sqsubseteq> x)"
+  shows "\<nu> f \<sqsubseteq> x"
+  by (auto simp add:GFP_def intro:sup_least assms)
+
+lemma GFP_lemma2:
+  assumes "Mono f" "f \<in> carrier L \<rightarrow> carrier L"
+  shows "\<nu> f \<sqsubseteq> f (\<nu> f)"
+  using assms
+  apply (auto simp add:Pi_def)
+  apply (rule GFP_least)
+  apply (metis GFP_closed)
+  apply (metis GFP_closed GFP_upperbound le_trans use_iso2)
+done
+
+lemma GFP_lemma3:
+  assumes "Mono f" "f \<in> carrier L \<rightarrow> carrier L"
+  shows "f (\<nu> f) \<sqsubseteq> \<nu> f"
+  by (metis GFP_closed GFP_lemma2 GFP_upperbound assms funcset_mem use_iso2)
+  
+lemma GFP_weak_unfold: 
+  "\<lbrakk> Mono f; f \<in> carrier L \<rightarrow> carrier L \<rbrakk> \<Longrightarrow> \<nu> f .= f (\<nu> f)"
+  by (auto intro: GFP_lemma2 GFP_lemma3 funcset_mem)
+
+lemma (in weak_complete_lattice) GFP_fixed_point [intro]:
+  assumes "Mono f" "f \<in> carrier L \<rightarrow> carrier L"
+  shows "\<nu> f \<in> fps L f"
+  using assms
+proof -
+  have "f (\<nu> f) \<in> carrier L"
+    using assms(2) by blast
+  with assms show ?thesis
+    by (simp add: GFP_weak_unfold fps_def local.sym)
+qed
+
+lemma GFP_greatest_fixed_point:
+  assumes "Mono f" "f \<in> carrier L \<rightarrow> carrier L" "x \<in> fps L f"
+  shows "x \<sqsubseteq> \<nu> f"
+  using assms 
+  by (rule_tac GFP_upperbound, auto simp add: fps_def, meson PiE local.sym weak_refl)
+    
+lemma GFP_idem: 
+  assumes "f \<in> carrier L \<rightarrow> carrier L" "Mono f" "Idem f"
+  shows "\<nu> f .= (f \<top>)"
+proof (rule weak_le_antisym)
+  from assms(1) show fb: "f \<top> \<in> carrier L"
+    by (rule funcset_mem, simp)
+  from assms show mf: "\<nu> f \<in> carrier L"
+    by blast
+  show "f \<top> \<sqsubseteq> \<nu> f"
+  proof -
+    have "f (f \<top>) .= f \<top>"
+      by (auto simp add: fps_def fb assms(3) idempotent)
+    moreover have "f (f \<top>) \<in> carrier L"
+      by (rule funcset_mem[of f "carrier L"], simp_all add: assms fb)
+    ultimately show ?thesis
+      by (rule_tac GFP_upperbound, simp_all add: fb local.sym)
+  qed
+  show "\<nu> f \<sqsubseteq> f \<top>"
+  proof -
+    have "\<nu> f \<sqsubseteq> f (\<nu> f)"
+      by (simp add: GFP_lemma2 assms(1) assms(2))
+    moreover have "... \<sqsubseteq> f \<top>"
+      by (auto intro: use_iso1[of _ f] simp add: assms)
+    moreover from assms(1) have "f (\<nu> f) \<in> carrier L"
+      by (auto)
+    ultimately show ?thesis
+      using fb local.le_trans by blast
+  qed
+qed
+
+end
+
+
+subsection \<open>Complete lattices where @{text eq} is the Equality\<close>
+
+locale complete_lattice = partial_order +
+  assumes sup_exists:
+    "[| A \<subseteq> carrier L |] ==> EX s. least L s (Upper L A)"
+    and inf_exists:
+    "[| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
+
+sublocale complete_lattice \<subseteq> lattice
+proof
+  fix x y
+  assume a: "x \<in> carrier L" "y \<in> carrier L"
+  thus "\<exists>s. is_lub L s {x, y}"
+    by (rule_tac sup_exists[of "{x, y}"], auto)
+  from a show "\<exists>s. is_glb L s {x, y}"
+    by (rule_tac inf_exists[of "{x, y}"], auto)
+qed
+
+sublocale complete_lattice \<subseteq> weak?: weak_complete_lattice
+  by standard (auto intro: sup_exists inf_exists)
+
+lemma complete_lattice_lattice [simp]: 
+  assumes "complete_lattice X"
+  shows "lattice X"
+proof -
+  interpret c: complete_lattice X
+    by (simp add: assms)
+  show ?thesis
+    by (unfold_locales)
+qed
+
+text \<open>Introduction rule: the usual definition of complete lattice\<close>
+
+lemma (in partial_order) complete_latticeI:
+  assumes sup_exists:
+    "!!A. [| A \<subseteq> carrier L |] ==> EX s. least L s (Upper L A)"
+    and inf_exists:
+    "!!A. [| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
+  shows "complete_lattice L"
+  by standard (auto intro: sup_exists inf_exists)
+
+theorem (in partial_order) complete_lattice_criterion1:
+  assumes top_exists: "EX g. greatest L g (carrier L)"
+    and inf_exists:
+      "!!A. [| A \<subseteq> carrier L; A ~= {} |] ==> EX i. greatest L i (Lower L A)"
+  shows "complete_lattice L"
+proof (rule complete_latticeI)
+  from top_exists obtain top where top: "greatest L top (carrier L)" ..
+  fix A
+  assume L: "A \<subseteq> carrier L"
+  let ?B = "Upper L A"
+  from L top have "top \<in> ?B" by (fast intro!: Upper_memI intro: greatest_le)
+  then have B_non_empty: "?B ~= {}" by fast
+  have B_L: "?B \<subseteq> carrier L" by simp
+  from inf_exists [OF B_L B_non_empty]
+  obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
+  have "least L b (Upper L A)"
+apply (rule least_UpperI)
+   apply (rule greatest_le [where A = "Lower L ?B"])
+    apply (rule b_inf_B)
+   apply (rule Lower_memI)
+    apply (erule Upper_memD [THEN conjunct1])
+     apply assumption
+    apply (rule L)
+   apply (fast intro: L [THEN subsetD])
+  apply (erule greatest_Lower_below [OF b_inf_B])
+  apply simp
+ apply (rule L)
+apply (rule greatest_closed [OF b_inf_B])
+done
+  then show "EX s. least L s (Upper L A)" ..
+next
+  fix A
+  assume L: "A \<subseteq> carrier L"
+  show "EX i. greatest L i (Lower L A)"
+  proof (cases "A = {}")
+    case True then show ?thesis
+      by (simp add: top_exists)
+  next
+    case False with L show ?thesis
+      by (rule inf_exists)
+  qed
+qed
+
+(* TODO: prove dual version *)
+
+subsection \<open>Fixed points\<close>
+
+context complete_lattice
+begin
+
+lemma LFP_unfold: 
+  "\<lbrakk> Mono f; f \<in> carrier L \<rightarrow> carrier L \<rbrakk> \<Longrightarrow> \<mu> f = f (\<mu> f)"
+  using eq_is_equal weak.LFP_weak_unfold by auto
+
+lemma LFP_const:
+  "t \<in> carrier L \<Longrightarrow> \<mu> (\<lambda> x. t) = t"
+  by (simp add: local.le_antisym weak.LFP_greatest weak.LFP_lowerbound)
+
+lemma LFP_id:
+  "\<mu> id = \<bottom>"
+  by (simp add: local.le_antisym weak.LFP_lowerbound)
+
+lemma GFP_unfold:
+  "\<lbrakk> Mono f; f \<in> carrier L \<rightarrow> carrier L \<rbrakk> \<Longrightarrow> \<nu> f = f (\<nu> f)"
+  using eq_is_equal weak.GFP_weak_unfold by auto
+
+lemma GFP_const:
+  "t \<in> carrier L \<Longrightarrow> \<nu> (\<lambda> x. t) = t"
+  by (simp add: local.le_antisym weak.GFP_least weak.GFP_upperbound)
+
+lemma GFP_id:
+  "\<nu> id = \<top>"
+  using weak.GFP_upperbound by auto
+
+end
+
+
+subsection \<open>Interval complete lattices\<close>
+  
+context weak_complete_lattice
+begin
+
+  lemma at_least_at_most_Sup:
+    "\<lbrakk> a \<in> carrier L; b \<in> carrier L; a \<sqsubseteq> b \<rbrakk> \<Longrightarrow> \<Squnion> \<lbrace>a..b\<rbrace> .= b"
+    apply (rule weak_le_antisym)
+    apply (rule sup_least)
+    apply (auto simp add: at_least_at_most_closed)
+    apply (rule sup_upper)
+    apply (auto simp add: at_least_at_most_closed)
+  done
+
+  lemma at_least_at_most_Inf:
+    "\<lbrakk> a \<in> carrier L; b \<in> carrier L; a \<sqsubseteq> b \<rbrakk> \<Longrightarrow> \<Sqinter> \<lbrace>a..b\<rbrace> .= a"
+    apply (rule weak_le_antisym)
+    apply (rule inf_lower)
+    apply (auto simp add: at_least_at_most_closed)
+    apply (rule inf_greatest)
+    apply (auto simp add: at_least_at_most_closed)
+  done
+
+end
+
+lemma weak_complete_lattice_interval:
+  assumes "weak_complete_lattice L" "a \<in> carrier L" "b \<in> carrier L" "a \<sqsubseteq>\<^bsub>L\<^esub> b"
+  shows "weak_complete_lattice (L \<lparr> carrier := \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub> \<rparr>)"
+proof -
+  interpret L: weak_complete_lattice L
+    by (simp add: assms)
+  interpret weak_partial_order "L \<lparr> carrier := \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub> \<rparr>"
+  proof -
+    have "\<lbrace>a..b\<rbrace>\<^bsub>L\<^esub> \<subseteq> carrier L"
+      by (auto, simp add: at_least_at_most_def)
+    thus "weak_partial_order (L\<lparr>carrier := \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>\<rparr>)"
+      by (simp add: L.weak_partial_order_axioms weak_partial_order_subset)
+  qed
+
+  show ?thesis
+  proof
+    fix A
+    assume a: "A \<subseteq> carrier (L\<lparr>carrier := \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>\<rparr>)"
+    show "\<exists>s. is_lub (L\<lparr>carrier := \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>\<rparr>) s A"
+    proof (cases "A = {}")
+      case True
+      thus ?thesis
+        by (rule_tac x="a" in exI, auto simp add: least_def assms)
+    next
+      case False
+      show ?thesis
+      proof (rule_tac x="\<Squnion>\<^bsub>L\<^esub> A" in exI, rule least_UpperI, simp_all)
+        show b:"\<And> x. x \<in> A \<Longrightarrow> x \<sqsubseteq>\<^bsub>L\<^esub> \<Squnion>\<^bsub>L\<^esub>A"
+          using a by (auto intro: L.sup_upper, meson L.at_least_at_most_closed L.sup_upper subset_trans)
+        show "\<And>y. y \<in> Upper (L\<lparr>carrier := \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>\<rparr>) A \<Longrightarrow> \<Squnion>\<^bsub>L\<^esub>A \<sqsubseteq>\<^bsub>L\<^esub> y"
+          using a L.at_least_at_most_closed by (rule_tac L.sup_least, auto intro: funcset_mem simp add: Upper_def)
+        from a show "A \<subseteq> \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>"
+          by (auto)
+        from a show "\<Squnion>\<^bsub>L\<^esub>A \<in> \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>"
+          apply (rule_tac L.at_least_at_most_member)
+          apply (auto)
+          apply (meson L.at_least_at_most_closed L.sup_closed subset_trans)
+          apply (meson False L.at_least_at_most_closed L.at_least_at_most_lower L.le_trans L.sup_closed b all_not_in_conv assms(2) contra_subsetD subset_trans)
+          apply (rule L.sup_least)
+          apply (auto simp add: assms)
+          using L.at_least_at_most_closed apply blast
+        done
+      qed
+    qed
+    show "\<exists>s. is_glb (L\<lparr>carrier := \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>\<rparr>) s A"
+    proof (cases "A = {}")
+      case True
+      thus ?thesis
+        by (rule_tac x="b" in exI, auto simp add: greatest_def assms)
+    next
+      case False
+      show ?thesis
+      proof (rule_tac x="\<Sqinter>\<^bsub>L\<^esub> A" in exI, rule greatest_LowerI, simp_all)
+        show b:"\<And>x. x \<in> A \<Longrightarrow> \<Sqinter>\<^bsub>L\<^esub>A \<sqsubseteq>\<^bsub>L\<^esub> x"
+          using a L.at_least_at_most_closed by (force intro!: L.inf_lower)
+        show "\<And>y. y \<in> Lower (L\<lparr>carrier := \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>\<rparr>) A \<Longrightarrow> y \<sqsubseteq>\<^bsub>L\<^esub> \<Sqinter>\<^bsub>L\<^esub>A"
+           using a L.at_least_at_most_closed by (rule_tac L.inf_greatest, auto intro: funcset_carrier' simp add: Lower_def)
+        from a show "A \<subseteq> \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>"
+          by (auto)
+        from a show "\<Sqinter>\<^bsub>L\<^esub>A \<in> \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>"
+          apply (rule_tac L.at_least_at_most_member)
+          apply (auto)
+          apply (meson L.at_least_at_most_closed L.inf_closed subset_trans)
+          apply (meson L.at_least_at_most_closed L.at_least_at_most_lower L.inf_greatest assms(2) set_rev_mp subset_trans)
+          apply (meson False L.at_least_at_most_closed L.at_least_at_most_upper L.inf_closed L.le_trans b all_not_in_conv assms(3) contra_subsetD subset_trans)            
+        done
+      qed
+    qed
+  qed
+qed
+
+
+subsection \<open>Knaster-Tarski theorem and variants\<close>
+  
+text \<open>The set of fixed points of a complete lattice is itself a complete lattice\<close>
+
+theorem Knaster_Tarski:
+  assumes "weak_complete_lattice L" "f \<in> carrier L \<rightarrow> carrier L" "isotone L L f"
+  shows "weak_complete_lattice (fpl L f)" (is "weak_complete_lattice ?L'")
+proof -
+  interpret L: weak_complete_lattice L
+    by (simp add: assms)
+  interpret weak_partial_order ?L'
+  proof -
+    have "{x \<in> carrier L. f x .=\<^bsub>L\<^esub> x} \<subseteq> carrier L"
+      by (auto)
+    thus "weak_partial_order ?L'"
+      by (simp add: L.weak_partial_order_axioms weak_partial_order_subset)
+  qed
+  show ?thesis
+  proof (unfold_locales, simp_all)
+    fix A
+    assume A: "A \<subseteq> fps L f"
+    show "\<exists>s. is_lub (fpl L f) s A"
+    proof
+      from A have AL: "A \<subseteq> carrier L"
+        by (meson fps_carrier subset_eq)
+
+      let ?w = "\<Squnion>\<^bsub>L\<^esub> A"
+      have w: "f (\<Squnion>\<^bsub>L\<^esub>A) \<in> carrier L"
+        by (rule funcset_mem[of f "carrier L"], simp_all add: AL assms(2))
+
+      have pf_w: "(\<Squnion>\<^bsub>L\<^esub> A) \<sqsubseteq>\<^bsub>L\<^esub> f (\<Squnion>\<^bsub>L\<^esub> A)"
+        by (simp add: A L.weak_sup_pre_fixed_point assms(2) assms(3))
+
+      have f_top_chain: "f ` \<lbrace>?w..\<top>\<^bsub>L\<^esub>\<rbrace>\<^bsub>L\<^esub> \<subseteq> \<lbrace>?w..\<top>\<^bsub>L\<^esub>\<rbrace>\<^bsub>L\<^esub>"
+      proof (auto simp add: at_least_at_most_def)
+        fix x
+        assume b: "x \<in> carrier L" "\<Squnion>\<^bsub>L\<^esub>A \<sqsubseteq>\<^bsub>L\<^esub> x"
+        from b show fx: "f x \<in> carrier L"
+          using assms(2) by blast
+        show "\<Squnion>\<^bsub>L\<^esub>A \<sqsubseteq>\<^bsub>L\<^esub> f x"
+        proof -
+          have "?w \<sqsubseteq>\<^bsub>L\<^esub> f ?w"
+          proof (rule_tac L.sup_least, simp_all add: AL w)
+            fix y
+            assume c: "y \<in> A" 
+            hence y: "y \<in> fps L f"
+              using A subsetCE by blast
+            with assms have "y .=\<^bsub>L\<^esub> f y"
+            proof -
+              from y have "y \<in> carrier L"
+                by (simp add: fps_def)
+              moreover hence "f y \<in> carrier L"
+                by (rule_tac funcset_mem[of f "carrier L"], simp_all add: assms)
+              ultimately show ?thesis using y
+                by (rule_tac L.sym, simp_all add: L.use_fps)
+            qed              
+            moreover have "y \<sqsubseteq>\<^bsub>L\<^esub> \<Squnion>\<^bsub>L\<^esub>A"
+              by (simp add: AL L.sup_upper c(1))
+            ultimately show "y \<sqsubseteq>\<^bsub>L\<^esub> f (\<Squnion>\<^bsub>L\<^esub>A)"
+              by (meson fps_def AL funcset_mem L.refl L.weak_complete_lattice_axioms assms(2) assms(3) c(1) isotone_def rev_subsetD weak_complete_lattice.sup_closed weak_partial_order.le_cong)
+          qed
+          thus ?thesis
+            by (meson AL funcset_mem L.le_trans L.sup_closed assms(2) assms(3) b(1) b(2) use_iso2)
+        qed
+   
+        show "f x \<sqsubseteq>\<^bsub>L\<^esub> \<top>\<^bsub>L\<^esub>"
+          by (simp add: fx)
+      qed
+  
+      let ?L' = "L\<lparr> carrier := \<lbrace>?w..\<top>\<^bsub>L\<^esub>\<rbrace>\<^bsub>L\<^esub> \<rparr>"
+
+      interpret L': weak_complete_lattice ?L'
+        by (auto intro: weak_complete_lattice_interval simp add: L.weak_complete_lattice_axioms AL)
+
+      let ?L'' = "L\<lparr> carrier := fps L f \<rparr>"
+
+      show "is_lub ?L'' (\<mu>\<^bsub>?L'\<^esub> f) A"
+      proof (rule least_UpperI, simp_all)
+        fix x
+        assume "x \<in> Upper ?L'' A"
+        hence "\<mu>\<^bsub>?L'\<^esub> f \<sqsubseteq>\<^bsub>?L'\<^esub> x"
+          apply (rule_tac L'.LFP_lowerbound)
+          apply (auto simp add: Upper_def)
+          apply (simp add: A AL L.at_least_at_most_member L.sup_least set_rev_mp)          
+          apply (simp add: Pi_iff assms(2) fps_def, rule_tac L.weak_refl)
+          apply (auto)
+          apply (rule funcset_mem[of f "carrier L"], simp_all add: assms(2))
+        done
+        thus " \<mu>\<^bsub>?L'\<^esub> f \<sqsubseteq>\<^bsub>L\<^esub> x"
+          by (simp)
+      next
+        fix x
+        assume xA: "x \<in> A"
+        show "x \<sqsubseteq>\<^bsub>L\<^esub> \<mu>\<^bsub>?L'\<^esub> f"
+        proof -
+          have "\<mu>\<^bsub>?L'\<^esub> f \<in> carrier ?L'"
+            by blast
+          thus ?thesis
+            by (simp, meson AL L.at_least_at_most_closed L.at_least_at_most_lower L.le_trans L.sup_closed L.sup_upper xA subsetCE)
+        qed
+      next
+        show "A \<subseteq> fps L f"
+          by (simp add: A)
+      next
+        show "\<mu>\<^bsub>?L'\<^esub> f \<in> fps L f"
+        proof (auto simp add: fps_def)
+          have "\<mu>\<^bsub>?L'\<^esub> f \<in> carrier ?L'"
+            by (rule L'.LFP_closed)
+          thus c:"\<mu>\<^bsub>?L'\<^esub> f \<in> carrier L"
+             by (auto simp add: at_least_at_most_def)
+          have "\<mu>\<^bsub>?L'\<^esub> f .=\<^bsub>?L'\<^esub> f (\<mu>\<^bsub>?L'\<^esub> f)"
+          proof (rule "L'.LFP_weak_unfold", simp_all)
+            show "f \<in> \<lbrace>\<Squnion>\<^bsub>L\<^esub>A..\<top>\<^bsub>L\<^esub>\<rbrace>\<^bsub>L\<^esub> \<rightarrow> \<lbrace>\<Squnion>\<^bsub>L\<^esub>A..\<top>\<^bsub>L\<^esub>\<rbrace>\<^bsub>L\<^esub>"
+              apply (auto simp add: Pi_def at_least_at_most_def)
+              using assms(2) apply blast
+              apply (meson AL funcset_mem L.le_trans L.sup_closed assms(2) assms(3) pf_w use_iso2)
+              using assms(2) apply blast
+            done
+            from assms(3) show "Mono\<^bsub>L\<lparr>carrier := \<lbrace>\<Squnion>\<^bsub>L\<^esub>A..\<top>\<^bsub>L\<^esub>\<rbrace>\<^bsub>L\<^esub>\<rparr>\<^esub> f"
+              apply (auto simp add: isotone_def)
+              using L'.weak_partial_order_axioms apply blast
+              apply (meson L.at_least_at_most_closed subsetCE)
+            done
+          qed
+          thus "f (\<mu>\<^bsub>?L'\<^esub> f) .=\<^bsub>L\<^esub> \<mu>\<^bsub>?L'\<^esub> f"
+            by (simp add: L.equivalence_axioms funcset_carrier' c assms(2) equivalence.sym) 
+        qed
+      qed
+    qed
+    show "\<exists>i. is_glb (L\<lparr>carrier := fps L f\<rparr>) i A"
+    proof
+      from A have AL: "A \<subseteq> carrier L"
+        by (meson fps_carrier subset_eq)
+
+      let ?w = "\<Sqinter>\<^bsub>L\<^esub> A"
+      have w: "f (\<Sqinter>\<^bsub>L\<^esub>A) \<in> carrier L"
+        by (simp add: AL funcset_carrier' assms(2))
+
+      have pf_w: "f (\<Sqinter>\<^bsub>L\<^esub> A) \<sqsubseteq>\<^bsub>L\<^esub> (\<Sqinter>\<^bsub>L\<^esub> A)"
+        by (simp add: A L.weak_sup_post_fixed_point assms(2) assms(3))
+
+      have f_bot_chain: "f ` \<lbrace>\<bottom>\<^bsub>L\<^esub>..?w\<rbrace>\<^bsub>L\<^esub> \<subseteq> \<lbrace>\<bottom>\<^bsub>L\<^esub>..?w\<rbrace>\<^bsub>L\<^esub>"
+      proof (auto simp add: at_least_at_most_def)
+        fix x
+        assume b: "x \<in> carrier L" "x \<sqsubseteq>\<^bsub>L\<^esub> \<Sqinter>\<^bsub>L\<^esub>A"
+        from b show fx: "f x \<in> carrier L"
+          using assms(2) by blast
+        show "f x \<sqsubseteq>\<^bsub>L\<^esub> \<Sqinter>\<^bsub>L\<^esub>A"
+        proof -
+          have "f ?w \<sqsubseteq>\<^bsub>L\<^esub> ?w"
+          proof (rule_tac L.inf_greatest, simp_all add: AL w)
+            fix y
+            assume c: "y \<in> A" 
+            with assms have "y .=\<^bsub>L\<^esub> f y"
+              by (metis (no_types, lifting) A funcset_carrier'[OF assms(2)] L.sym fps_def mem_Collect_eq subset_eq)
+            moreover have "\<Sqinter>\<^bsub>L\<^esub>A \<sqsubseteq>\<^bsub>L\<^esub> y"
+              by (simp add: AL L.inf_lower c)
+            ultimately show "f (\<Sqinter>\<^bsub>L\<^esub>A) \<sqsubseteq>\<^bsub>L\<^esub> y"
+              by (meson AL L.inf_closed L.le_trans c pf_w set_rev_mp w)
+          qed
+          thus ?thesis
+            by (meson AL L.inf_closed L.le_trans assms(3) b(1) b(2) fx use_iso2 w)
+        qed
+   
+        show "\<bottom>\<^bsub>L\<^esub> \<sqsubseteq>\<^bsub>L\<^esub> f x"
+          by (simp add: fx)
+      qed
+  
+      let ?L' = "L\<lparr> carrier := \<lbrace>\<bottom>\<^bsub>L\<^esub>..?w\<rbrace>\<^bsub>L\<^esub> \<rparr>"
+
+      interpret L': weak_complete_lattice ?L'
+        by (auto intro!: weak_complete_lattice_interval simp add: L.weak_complete_lattice_axioms AL)
+
+      let ?L'' = "L\<lparr> carrier := fps L f \<rparr>"
+
+      show "is_glb ?L'' (\<nu>\<^bsub>?L'\<^esub> f) A"
+      proof (rule greatest_LowerI, simp_all)
+        fix x
+        assume "x \<in> Lower ?L'' A"
+        hence "x \<sqsubseteq>\<^bsub>?L'\<^esub> \<nu>\<^bsub>?L'\<^esub> f"
+          apply (rule_tac L'.GFP_upperbound)
+          apply (auto simp add: Lower_def)
+          apply (meson A AL L.at_least_at_most_member L.bottom_lower L.weak_complete_lattice_axioms fps_carrier subsetCE weak_complete_lattice.inf_greatest)
+          apply (simp add: funcset_carrier' L.sym assms(2) fps_def)          
+        done
+        thus "x \<sqsubseteq>\<^bsub>L\<^esub> \<nu>\<^bsub>?L'\<^esub> f"
+          by (simp)
+      next
+        fix x
+        assume xA: "x \<in> A"
+        show "\<nu>\<^bsub>?L'\<^esub> f \<sqsubseteq>\<^bsub>L\<^esub> x"
+        proof -
+          have "\<nu>\<^bsub>?L'\<^esub> f \<in> carrier ?L'"
+            by blast
+          thus ?thesis
+            by (simp, meson AL L.at_least_at_most_closed L.at_least_at_most_upper L.inf_closed L.inf_lower L.le_trans subsetCE xA)     
+        qed
+      next
+        show "A \<subseteq> fps L f"
+          by (simp add: A)
+      next
+        show "\<nu>\<^bsub>?L'\<^esub> f \<in> fps L f"
+        proof (auto simp add: fps_def)
+          have "\<nu>\<^bsub>?L'\<^esub> f \<in> carrier ?L'"
+            by (rule L'.GFP_closed)
+          thus c:"\<nu>\<^bsub>?L'\<^esub> f \<in> carrier L"
+             by (auto simp add: at_least_at_most_def)
+          have "\<nu>\<^bsub>?L'\<^esub> f .=\<^bsub>?L'\<^esub> f (\<nu>\<^bsub>?L'\<^esub> f)"
+          proof (rule "L'.GFP_weak_unfold", simp_all)
+            show "f \<in> \<lbrace>\<bottom>\<^bsub>L\<^esub>..?w\<rbrace>\<^bsub>L\<^esub> \<rightarrow> \<lbrace>\<bottom>\<^bsub>L\<^esub>..?w\<rbrace>\<^bsub>L\<^esub>"
+              apply (auto simp add: Pi_def at_least_at_most_def)
+              using assms(2) apply blast
+              apply (simp add: funcset_carrier' assms(2))
+              apply (meson AL funcset_carrier L.inf_closed L.le_trans assms(2) assms(3) pf_w use_iso2)
+            done
+            from assms(3) show "Mono\<^bsub>L\<lparr>carrier := \<lbrace>\<bottom>\<^bsub>L\<^esub>..?w\<rbrace>\<^bsub>L\<^esub>\<rparr>\<^esub> f"
+              apply (auto simp add: isotone_def)
+              using L'.weak_partial_order_axioms apply blast
+              using L.at_least_at_most_closed apply (blast intro: funcset_carrier')
+            done
+          qed
+          thus "f (\<nu>\<^bsub>?L'\<^esub> f) .=\<^bsub>L\<^esub> \<nu>\<^bsub>?L'\<^esub> f"
+            by (simp add: L.equivalence_axioms funcset_carrier' c assms(2) equivalence.sym) 
+        qed
+      qed
+    qed
+  qed
+qed
+
+theorem Knaster_Tarski_top:
+  assumes "weak_complete_lattice L" "isotone L L f" "f \<in> carrier L \<rightarrow> carrier L"
+  shows "\<top>\<^bsub>fpl L f\<^esub> .=\<^bsub>L\<^esub> \<nu>\<^bsub>L\<^esub> f"
+proof -
+  interpret L: weak_complete_lattice L
+    by (simp add: assms)
+  interpret L': weak_complete_lattice "fpl L f"
+    by (rule Knaster_Tarski, simp_all add: assms)
+  show ?thesis
+  proof (rule L.weak_le_antisym, simp_all)
+    show "\<top>\<^bsub>fpl L f\<^esub> \<sqsubseteq>\<^bsub>L\<^esub> \<nu>\<^bsub>L\<^esub> f"
+      by (rule L.GFP_greatest_fixed_point, simp_all add: assms L'.top_closed[simplified])
+    show "\<nu>\<^bsub>L\<^esub> f \<sqsubseteq>\<^bsub>L\<^esub> \<top>\<^bsub>fpl L f\<^esub>"
+    proof -
+      have "\<nu>\<^bsub>L\<^esub> f \<in> fps L f"
+        by (rule L.GFP_fixed_point, simp_all add: assms)
+      hence "\<nu>\<^bsub>L\<^esub> f \<in> carrier (fpl L f)"
+        by simp
+      hence "\<nu>\<^bsub>L\<^esub> f \<sqsubseteq>\<^bsub>fpl L f\<^esub> \<top>\<^bsub>fpl L f\<^esub>"
+        by (rule L'.top_higher)
+      thus ?thesis
+        by simp
+    qed
+    show "\<top>\<^bsub>fpl L f\<^esub> \<in> carrier L"
+    proof -
+      have "carrier (fpl L f) \<subseteq> carrier L"
+        by (auto simp add: fps_def)
+      with L'.top_closed show ?thesis
+        by blast
+    qed
+  qed
+qed
+
+theorem Knaster_Tarski_bottom:
+  assumes "weak_complete_lattice L" "isotone L L f" "f \<in> carrier L \<rightarrow> carrier L"
+  shows "\<bottom>\<^bsub>fpl L f\<^esub> .=\<^bsub>L\<^esub> \<mu>\<^bsub>L\<^esub> f"
+proof -
+  interpret L: weak_complete_lattice L
+    by (simp add: assms)
+  interpret L': weak_complete_lattice "fpl L f"
+    by (rule Knaster_Tarski, simp_all add: assms)
+  show ?thesis
+  proof (rule L.weak_le_antisym, simp_all)
+    show "\<mu>\<^bsub>L\<^esub> f \<sqsubseteq>\<^bsub>L\<^esub> \<bottom>\<^bsub>fpl L f\<^esub>"
+      by (rule L.LFP_least_fixed_point, simp_all add: assms L'.bottom_closed[simplified])
+    show "\<bottom>\<^bsub>fpl L f\<^esub> \<sqsubseteq>\<^bsub>L\<^esub> \<mu>\<^bsub>L\<^esub> f"
+    proof -
+      have "\<mu>\<^bsub>L\<^esub> f \<in> fps L f"
+        by (rule L.LFP_fixed_point, simp_all add: assms)
+      hence "\<mu>\<^bsub>L\<^esub> f \<in> carrier (fpl L f)"
+        by simp
+      hence "\<bottom>\<^bsub>fpl L f\<^esub> \<sqsubseteq>\<^bsub>fpl L f\<^esub> \<mu>\<^bsub>L\<^esub> f"
+        by (rule L'.bottom_lower)
+      thus ?thesis
+        by simp
+    qed
+    show "\<bottom>\<^bsub>fpl L f\<^esub> \<in> carrier L"
+    proof -
+      have "carrier (fpl L f) \<subseteq> carrier L"
+        by (auto simp add: fps_def)
+      with L'.bottom_closed show ?thesis
+        by blast
+    qed
+  qed
+qed
+
+text \<open>If a function is both idempotent and isotone then the image of the function forms a complete lattice\<close>
+  
+theorem Knaster_Tarski_idem:
+  assumes "complete_lattice L" "f \<in> carrier L \<rightarrow> carrier L" "isotone L L f" "idempotent L f"
+  shows "complete_lattice (L\<lparr>carrier := f ` carrier L\<rparr>)"
+proof -
+  interpret L: complete_lattice L
+    by (simp add: assms)
+  have "fps L f = f ` carrier L"
+    using L.weak.fps_idem[OF assms(2) assms(4)]
+    by (simp add: L.set_eq_is_eq)
+  then interpret L': weak_complete_lattice "(L\<lparr>carrier := f ` carrier L\<rparr>)"
+    by (metis Knaster_Tarski L.weak.weak_complete_lattice_axioms assms(2) assms(3))
+  show ?thesis
+    using L'.sup_exists L'.inf_exists
+    by (unfold_locales, auto simp add: L.eq_is_equal)
+qed
+
+theorem Knaster_Tarski_idem_extremes:
+  assumes "weak_complete_lattice L" "isotone L L f" "idempotent L f" "f \<in> carrier L \<rightarrow> carrier L"
+  shows "\<top>\<^bsub>fpl L f\<^esub> .=\<^bsub>L\<^esub> f (\<top>\<^bsub>L\<^esub>)" "\<bottom>\<^bsub>fpl L f\<^esub> .=\<^bsub>L\<^esub> f (\<bottom>\<^bsub>L\<^esub>)"
+proof -
+  interpret L: weak_complete_lattice "L"
+    by (simp_all add: assms)
+  interpret L': weak_complete_lattice "fpl L f"
+    by (rule Knaster_Tarski, simp_all add: assms)
+  have FA: "fps L f \<subseteq> carrier L"
+    by (auto simp add: fps_def)
+  show "\<top>\<^bsub>fpl L f\<^esub> .=\<^bsub>L\<^esub> f (\<top>\<^bsub>L\<^esub>)"
+  proof -
+    from FA have "\<top>\<^bsub>fpl L f\<^esub> \<in> carrier L"
+    proof -
+      have "\<top>\<^bsub>fpl L f\<^esub> \<in> fps L f"
+        using L'.top_closed by auto
+      thus ?thesis
+        using FA by blast
+    qed
+    moreover with assms have "f \<top>\<^bsub>L\<^esub> \<in> carrier L"
+      by (auto)
+
+    ultimately show ?thesis
+      using L.trans[OF Knaster_Tarski_top[of L f] L.GFP_idem[of f]]
+      by (simp_all add: assms)
+  qed
+  show "\<bottom>\<^bsub>fpl L f\<^esub> .=\<^bsub>L\<^esub> f (\<bottom>\<^bsub>L\<^esub>)"
+  proof -
+    from FA have "\<bottom>\<^bsub>fpl L f\<^esub> \<in> carrier L"
+    proof -
+      have "\<bottom>\<^bsub>fpl L f\<^esub> \<in> fps L f"
+        using L'.bottom_closed by auto
+      thus ?thesis
+        using FA by blast
+    qed
+    moreover with assms have "f \<bottom>\<^bsub>L\<^esub> \<in> carrier L"
+      by (auto)
+
+    ultimately show ?thesis
+      using L.trans[OF Knaster_Tarski_bottom[of L f] L.LFP_idem[of f]]
+      by (simp_all add: assms)
+  qed
+qed
+
+
+subsection \<open>Examples\<close>
+
+subsubsection \<open>The Powerset of a Set is a Complete Lattice\<close>
+
+theorem powerset_is_complete_lattice:
+  "complete_lattice \<lparr>carrier = Pow A, eq = op =, le = op \<subseteq>\<rparr>"
+  (is "complete_lattice ?L")
+proof (rule partial_order.complete_latticeI)
+  show "partial_order ?L"
+    by standard auto
+next
+  fix B
+  assume "B \<subseteq> carrier ?L"
+  then have "least ?L (\<Union> B) (Upper ?L B)"
+    by (fastforce intro!: least_UpperI simp: Upper_def)
+  then show "EX s. least ?L s (Upper ?L B)" ..
+next
+  fix B
+  assume "B \<subseteq> carrier ?L"
+  then have "greatest ?L (\<Inter> B \<inter> A) (Lower ?L B)"
+    txt \<open>@{term "\<Inter> B"} is not the infimum of @{term B}:
+      @{term "\<Inter> {} = UNIV"} which is in general bigger than @{term "A"}! \<close>
+    by (fastforce intro!: greatest_LowerI simp: Lower_def)
+  then show "EX i. greatest ?L i (Lower ?L B)" ..
+qed
+
+text \<open>Another example, that of the lattice of subgroups of a group,
+  can be found in Group theory (Section~\ref{sec:subgroup-lattice}).\<close>
+
+
+subsection \<open>Limit preserving functions\<close>
+
+definition weak_sup_pres :: "('a, 'c) gorder_scheme \<Rightarrow> ('b, 'd) gorder_scheme \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool" where
+"weak_sup_pres X Y f \<equiv> complete_lattice X \<and> complete_lattice Y \<and> (\<forall> A \<subseteq> carrier X. A \<noteq> {} \<longrightarrow> f (\<Squnion>\<^bsub>X\<^esub> A) = (\<Squnion>\<^bsub>Y\<^esub> (f ` A)))"
+
+definition sup_pres :: "('a, 'c) gorder_scheme \<Rightarrow> ('b, 'd) gorder_scheme \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool" where
+"sup_pres X Y f \<equiv> complete_lattice X \<and> complete_lattice Y \<and> (\<forall> A \<subseteq> carrier X. f (\<Squnion>\<^bsub>X\<^esub> A) = (\<Squnion>\<^bsub>Y\<^esub> (f ` A)))"
+
+definition weak_inf_pres :: "('a, 'c) gorder_scheme \<Rightarrow> ('b, 'd) gorder_scheme \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool" where
+"weak_inf_pres X Y f \<equiv> complete_lattice X \<and> complete_lattice Y \<and> (\<forall> A \<subseteq> carrier X. A \<noteq> {} \<longrightarrow> f (\<Sqinter>\<^bsub>X\<^esub> A) = (\<Sqinter>\<^bsub>Y\<^esub> (f ` A)))"
+
+definition inf_pres :: "('a, 'c) gorder_scheme \<Rightarrow> ('b, 'd) gorder_scheme \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool" where
+"inf_pres X Y f \<equiv> complete_lattice X \<and> complete_lattice Y \<and> (\<forall> A \<subseteq> carrier X. f (\<Sqinter>\<^bsub>X\<^esub> A) = (\<Sqinter>\<^bsub>Y\<^esub> (f ` A)))"
+
+lemma weak_sup_pres:
+  "sup_pres X Y f \<Longrightarrow> weak_sup_pres X Y f"
+  by (simp add: sup_pres_def weak_sup_pres_def)
+
+lemma weak_inf_pres:
+  "inf_pres X Y f \<Longrightarrow> weak_inf_pres X Y f"
+  by (simp add: inf_pres_def weak_inf_pres_def)
+
+lemma sup_pres_is_join_pres:
+  assumes "weak_sup_pres X Y f"
+  shows "join_pres X Y f"
+  using assms
+  apply (simp add: join_pres_def weak_sup_pres_def, safe)
+  apply (rename_tac x y)
+  apply (drule_tac x="{x, y}" in spec)
+  apply (auto simp add: join_def)
+done
+
+lemma inf_pres_is_meet_pres:
+  assumes "weak_inf_pres X Y f"
+  shows "meet_pres X Y f"
+  using assms
+  apply (simp add: meet_pres_def weak_inf_pres_def, safe)
+  apply (rename_tac x y)
+  apply (drule_tac x="{x, y}" in spec)
+  apply (auto simp add: meet_def)
+done
+
+end