src/ZF/UNITY/AllocImpl.thy
changeset 14071 373806545656
parent 14061 abcb32a7b212
child 14072 f932be305381
--- a/src/ZF/UNITY/AllocImpl.thy	Tue Jun 24 10:42:34 2003 +0200
+++ b/src/ZF/UNITY/AllocImpl.thy	Tue Jun 24 16:32:59 2003 +0200
@@ -7,21 +7,6 @@
 Charpentier and Chandy, section 7 (page 17).
 *)
 
-(*LOCALE NEEDED FOR PROOF OF GUARANTEES THEOREM*)
-
-(*????FIXME: sort out this mess
-FoldSet.cons_Int_right_lemma1:
-  ?x \<in> ?D \<Longrightarrow> cons(?x, ?C) \<inter> ?D = cons(?x, ?C \<inter> ?D)
-FoldSet.cons_Int_right_lemma2: ?x \<notin> ?D \<Longrightarrow> cons(?x, ?C) \<inter> ?D = ?C \<inter> ?D
-Multiset.cons_Int_right_cases:
-  cons(?x, ?A) \<inter> ?B = (if ?x \<in> ?B then cons(?x, ?A \<inter> ?B) else ?A \<inter> ?B)
-UNITYMisc.Int_cons_right:
-  ?A \<inter> cons(?a, ?B) = (if ?a \<in> ?A then cons(?a, ?A \<inter> ?B) else ?A \<inter> ?B)
-UNITYMisc.Int_succ_right:
-  ?A \<inter> succ(?k) = (if ?k \<in> ?A then cons(?k, ?A \<inter> ?k) else ?A \<inter> ?k)
-*)
-
-
 theory AllocImpl = ClientImpl:
 
 consts
@@ -34,10 +19,10 @@
   "available_tok" == "Var([succ(succ(2))])"
 
 axioms
-  alloc_type_assumes:
+  alloc_type_assumes [simp]:
   "type_of(NbR) = nat & type_of(available_tok)=nat"
 
-  alloc_default_val_assumes:
+  alloc_default_val_assumes [simp]:
   "default_val(NbR)  = 0 & default_val(available_tok)=0"
 
 constdefs
@@ -67,25 +52,20 @@
 		        preserves(lift(giv)). Acts(G))"
 
 
-declare alloc_type_assumes [simp] alloc_default_val_assumes [simp]
-
 lemma available_tok_value_type [simp,TC]: "s\<in>state ==> s`available_tok \<in> nat"
 apply (unfold state_def)
-apply (drule_tac a = "available_tok" in apply_type)
-apply auto
+apply (drule_tac a = available_tok in apply_type, auto)
 done
 
 lemma NbR_value_type [simp,TC]: "s\<in>state ==> s`NbR \<in> nat"
 apply (unfold state_def)
-apply (drule_tac a = "NbR" in apply_type)
-apply auto
+apply (drule_tac a = NbR in apply_type, auto)
 done
 
 (** The Alloc Program **)
 
 lemma alloc_prog_type [simp,TC]: "alloc_prog \<in> program"
-apply (simp add: alloc_prog_def)
-done
+by (simp add: alloc_prog_def)
 
 declare alloc_prog_def [THEN def_prg_Init, simp]
 declare alloc_prog_def [THEN def_prg_AllowedActs, simp]
@@ -107,11 +87,9 @@
 
 lemma alloc_prog_preserves:
     "alloc_prog \<in> (\<Inter>x \<in> var-{giv, available_tok, NbR}. preserves(lift(x)))"
-apply (rule Inter_var_DiffI)
-apply (force );
+apply (rule Inter_var_DiffI, force)
 apply (rule ballI)
-apply (rule preservesI)
-apply (constrains)
+apply (rule preservesI, constrains)
 done
 
 (* As a special case of the rule above *)
@@ -121,10 +99,9 @@
        preserves(lift(rel)) \<inter> preserves(lift(ask)) \<inter> preserves(lift(tok))"
 apply auto
 apply (insert alloc_prog_preserves)
-apply (drule_tac [3] x = "tok" in Inter_var_DiffD)
-apply (drule_tac [2] x = "ask" in Inter_var_DiffD)
-apply (drule_tac x = "rel" in Inter_var_DiffD)
-apply auto
+apply (drule_tac [3] x = tok in Inter_var_DiffD)
+apply (drule_tac [2] x = ask in Inter_var_DiffD)
+apply (drule_tac x = rel in Inter_var_DiffD, auto)
 done
 
 lemma alloc_prog_Allowed:
@@ -152,8 +129,7 @@
 
 (** Safety property: (28) **)
 lemma alloc_prog_Increasing_giv: "alloc_prog \<in> program guarantees Incr(lift(giv))"
-apply (auto intro!: increasing_imp_Increasing simp add: guar_def increasing_def alloc_prog_ok_iff alloc_prog_Allowed)
-apply constrains+
+apply (auto intro!: increasing_imp_Increasing simp add: guar_def increasing_def alloc_prog_ok_iff alloc_prog_Allowed, constrains+)
 apply (auto dest: ActsD)
 apply (drule_tac f = "lift (giv) " in preserves_imp_eq)
 apply auto
@@ -163,7 +139,7 @@
 "alloc_prog \<in> stable({s\<in>state. s`NbR \<le> length(s`rel)} \<inter>
                      {s\<in>state. s`available_tok #+ tokens(s`giv) =
                                  NbT #+ tokens(take(s`NbR, s`rel))})"
-apply (constrains)
+apply constrains
 apply auto
 apply (simp add: diff_add_0 add_commute diff_add_inverse add_assoc add_diff_inverse)
 apply (simp (no_asm_simp) add: take_succ)
@@ -180,13 +156,13 @@
 apply (subgoal_tac "G \<in> preserves (fun_pair (lift (available_tok), fun_pair (lift (NbR), lift (giv))))")
 apply (rotate_tac -1)
 apply (cut_tac A = "nat * nat * list(nat)"
-             and P = "%<m,n,l> y. n \<le> length(y) & 
+             and P = "%<m,n,l> y. n \<le> length(y) &
                                   m #+ tokens(l) = NbT #+ tokens(take(n,y))"
-             and g = "lift(rel)" and F = "alloc_prog"
+             and g = "lift(rel)" and F = alloc_prog
        in stable_Join_Stable)
-prefer 3 apply assumption;
+prefer 3 apply assumption
 apply (auto simp add: Collect_conj_eq)
-apply (frule_tac g = "length" in imp_Increasing_comp)
+apply (frule_tac g = length in imp_Increasing_comp)
 apply (blast intro: mono_length)
 apply (auto simp add: refl_prefix)
 apply (drule_tac a=xa and f = "length comp lift(rel)" in Increasing_imp_Stable)
@@ -200,11 +176,9 @@
 apply (erule_tac V = "alloc_prog \<in> stable (?u)" in thin_rl)
 apply (drule_tac a = "xc`rel" and f = "lift (rel)" in Increasing_imp_Stable)
 apply (auto simp add: Stable_def Constrains_def constrains_def)
-apply (drule bspec)
-apply force
+apply (drule bspec, force)
 apply (drule subsetD)
-apply (rule imageI)
-apply assumption
+apply (rule imageI, assumption)
 apply (auto simp add: prefix_take_iff)
 apply (rotate_tac -1)
 apply (erule ssubst)
@@ -219,9 +193,8 @@
 apply (auto simp add: guar_def)
 apply (rule Always_weaken)
 apply (rule AlwaysI)
-apply (rule_tac [2] giv_Bounded_lemma2)
-apply auto
-apply (rule_tac j = "NbT #+ tokens (take (x` NbR, x`rel))" in le_trans)
+apply (rule_tac [2] giv_Bounded_lemma2, auto)
+apply (rule_tac j = "NbT #+ tokens(take (x` NbR, x`rel))" in le_trans)
 apply (erule subst)
 apply (auto intro!: tokens_mono simp add: prefix_take_iff min_def length_take)
 done
@@ -234,105 +207,96 @@
 apply (auto intro!: AlwaysI simp add: guar_def)
 apply (subgoal_tac "G \<in> preserves (lift (giv))")
  prefer 2 apply (simp add: alloc_prog_ok_iff)
-apply (rule_tac P = "%x y. <x,y>:prefix(tokbag)" and A = "list(nat)" 
+apply (rule_tac P = "%x y. <x,y>:prefix(tokbag)" and A = "list(nat)"
        in stable_Join_Stable)
-apply (constrains)
- prefer 2 apply (simp add: lift_def); 
- apply (clarify ); 
-apply (drule_tac a = "k" in Increasing_imp_Stable)
-apply auto
+apply constrains
+ prefer 2 apply (simp add: lift_def, clarify)
+apply (drule_tac a = k in Increasing_imp_Stable, auto)
 done
 
-(**** Towards proving the liveness property, (31) ****)
+subsection{* Towards proving the liveness property, (31) *}
 
-(*** First, we lead up to a proof of Lemma 49, page 28. ***)
+subsubsection{*First, we lead up to a proof of Lemma 49, page 28.*}
 
 lemma alloc_prog_transient_lemma:
-"G \<in> program ==> \<forall>k\<in>nat. alloc_prog Join G \<in>
-                   transient({s\<in>state. k \<le> length(s`rel)}
-                   \<inter> {s\<in>state. succ(s`NbR) = k})"
+     "[|G \<in> program; k\<in>nat|]
+      ==> alloc_prog Join G \<in>
+             transient({s\<in>state. k \<le> length(s`rel)} \<inter>
+             {s\<in>state. succ(s`NbR) = k})"
 apply auto
 apply (erule_tac V = "G\<notin>?u" in thin_rl)
-apply (rule_tac act = "alloc_rel_act" in transientI)
+apply (rule_tac act = alloc_rel_act in transientI)
 apply (simp (no_asm) add: alloc_prog_def [THEN def_prg_Acts])
 apply (simp (no_asm) add: alloc_rel_act_def [THEN def_act_eq, THEN act_subset])
 apply (auto simp add: alloc_prog_def [THEN def_prg_Acts] domain_def)
 apply (rule ReplaceI)
 apply (rule_tac x = "x (available_tok:= x`available_tok #+ nth (x`NbR, x`rel),
-                        NbR:=succ (x`NbR))" 
+                        NbR:=succ (x`NbR))"
        in exI)
 apply (auto intro!: state_update_type)
 done
 
 lemma alloc_prog_rel_Stable_NbR_lemma:
-"[| G \<in> program; alloc_prog ok G; k\<in>nat |] ==>
-    alloc_prog Join G \<in> Stable({s\<in>state . k \<le> succ(s ` NbR)})"
-apply (auto intro!: stable_imp_Stable simp add: alloc_prog_ok_iff)
-apply constrains
-apply auto
+    "[| G \<in> program; alloc_prog ok G; k\<in>nat |]
+     ==> alloc_prog Join G \<in> Stable({s\<in>state . k \<le> succ(s ` NbR)})"
+apply (auto intro!: stable_imp_Stable simp add: alloc_prog_ok_iff, constrains, auto)
 apply (blast intro: le_trans leI)
-apply (drule_tac f = "lift (NbR)" and A = "nat" in preserves_imp_increasing)
-apply (drule_tac [2] g = "succ" in imp_increasing_comp)
+apply (drule_tac f = "lift (NbR)" and A = nat in preserves_imp_increasing)
+apply (drule_tac [2] g = succ in imp_increasing_comp)
 apply (rule_tac [2] mono_succ)
-apply (drule_tac [4] x = "k" in increasing_imp_stable)
-    prefer 5 apply (simp add: Le_def comp_def) 
-apply auto
+apply (drule_tac [4] x = k in increasing_imp_stable)
+    prefer 5 apply (simp add: Le_def comp_def, auto)
 done
 
-lemma alloc_prog_NbR_LeadsTo_lemma [rule_format (no_asm)]:
-"[| G \<in> program; alloc_prog ok G;
-    alloc_prog Join G \<in> Incr(lift(rel)) |] ==>
-     \<forall>k\<in>nat. alloc_prog Join G \<in>
-       {s\<in>state. k \<le> length(s`rel)} \<inter> {s\<in>state. succ(s`NbR) = k}
-       LeadsTo {s\<in>state. k \<le> s`NbR}"
-apply clarify
-apply (subgoal_tac "alloc_prog Join G \<in> Stable ({s\<in>state. k \<le> length (s`rel) }) ")
-apply (drule_tac [2] a = "k" and g1 = "length" in imp_Increasing_comp [THEN Increasing_imp_Stable])
+lemma alloc_prog_NbR_LeadsTo_lemma:
+     "[| G \<in> program; alloc_prog ok G;
+	 alloc_prog Join G \<in> Incr(lift(rel)); k\<in>nat |]
+      ==> alloc_prog Join G \<in>
+	    {s\<in>state. k \<le> length(s`rel)} \<inter> {s\<in>state. succ(s`NbR) = k}
+	    LeadsTo {s\<in>state. k \<le> s`NbR}"
+apply (subgoal_tac "alloc_prog Join G \<in> Stable ({s\<in>state. k \<le> length (s`rel)})")
+apply (drule_tac [2] a = k and g1 = length in imp_Increasing_comp [THEN Increasing_imp_Stable])
 apply (rule_tac [2] mono_length)
-    prefer 3 apply (simp add: ); 
+    prefer 3 apply simp
 apply (simp_all add: refl_prefix Le_def comp_def length_type)
 apply (rule LeadsTo_weaken)
 apply (rule PSP_Stable)
-prefer 2 apply (assumption)
+prefer 2 apply assumption
 apply (rule PSP_Stable)
 apply (rule_tac [2] alloc_prog_rel_Stable_NbR_lemma)
-apply (rule alloc_prog_transient_lemma [THEN bspec, THEN transient_imp_leadsTo, THEN leadsTo_imp_LeadsTo])
-apply assumption+
+apply (rule alloc_prog_transient_lemma [THEN transient_imp_leadsTo, THEN leadsTo_imp_LeadsTo], assumption+)
 apply (auto dest: not_lt_imp_le elim: lt_asym simp add: le_iff)
 done
 
 lemma alloc_prog_NbR_LeadsTo_lemma2 [rule_format]:
-    "[| G :program; alloc_prog ok G; alloc_prog Join G \<in> Incr(lift(rel)) |]
-      ==> \<forall>k\<in>nat. \<forall>n \<in> nat. n < k -->
-       alloc_prog Join G \<in>
-       {s\<in>state . k \<le> length(s ` rel)} \<inter> {s\<in>state . s ` NbR = n}
-	  LeadsTo {x \<in> state. k \<le> length(x`rel)} \<inter>
-	    (\<Union>m \<in> greater_than(n). {x \<in> state. x ` NbR=m})"
+    "[| G \<in> program; alloc_prog ok G; alloc_prog Join G \<in> Incr(lift(rel));
+        k\<in>nat; n \<in> nat; n < k |]
+      ==> alloc_prog Join G \<in>
+	    {s\<in>state . k \<le> length(s ` rel)} \<inter> {s\<in>state . s ` NbR = n}
+	       LeadsTo {x \<in> state. k \<le> length(x`rel)} \<inter>
+		 (\<Union>m \<in> greater_than(n). {x \<in> state. x ` NbR=m})"
 apply (unfold greater_than_def)
-apply clarify
-apply (rule_tac A' = "{x \<in> state. k \<le> length (x`rel) } \<inter> {x \<in> state. n < x`NbR}" in LeadsTo_weaken_R)
+apply (rule_tac A' = "{x \<in> state. k \<le> length(x`rel)} \<inter> {x \<in> state. n < x`NbR}"
+       in LeadsTo_weaken_R)
 apply safe
 apply (subgoal_tac "alloc_prog Join G \<in> Stable ({s\<in>state. k \<le> length (s`rel) }) ")
-apply (drule_tac [2] a = "k" and g1 = "length" in imp_Increasing_comp [THEN Increasing_imp_Stable])
+apply (drule_tac [2] a = k and g1 = length in imp_Increasing_comp [THEN Increasing_imp_Stable])
 apply (rule_tac [2] mono_length)
-    prefer 3 apply (simp add: ); 
+    prefer 3 apply simp
 apply (simp_all add: refl_prefix Le_def comp_def length_type)
 apply (subst Int_commute)
 apply (rule_tac A = " ({s \<in> state . k \<le> length (s ` rel) } \<inter> {s\<in>state . s ` NbR = n}) \<inter> {s\<in>state. k \<le> length (s`rel) }" in LeadsTo_weaken_L)
-apply (rule PSP_Stable)
-apply safe
+apply (rule PSP_Stable, safe)
 apply (rule_tac B = "{x \<in> state . n < length (x ` rel) } \<inter> {s\<in>state . s ` NbR = n}" in LeadsTo_Trans)
 apply (rule_tac [2] LeadsTo_weaken)
 apply (rule_tac [2] k = "succ (n)" in alloc_prog_NbR_LeadsTo_lemma)
-apply (simp_all add: ) 
-apply (rule subset_imp_LeadsTo)
-apply auto
+apply simp_all
+apply (rule subset_imp_LeadsTo, auto)
 apply (blast intro: lt_trans2)
 done
 
-lemma Collect_vimage_eq: "u\<in>nat ==> {<s, f(s)>. s \<in> state} -`` u = {s\<in>state. f(s) < u}"
-apply (force simp add: lt_def)
-done
+lemma Collect_vimage_eq: "u\<in>nat ==> {<s,f(s)>. s \<in> A} -`` u = {s\<in>A. f(s) < u}"
+by (force simp add: lt_def)
 
 (* Lemma 49, page 28 *)
 
@@ -343,26 +307,22 @@
            {s\<in>state. k \<le> length(s`rel)} LeadsTo {s\<in>state. k \<le> s`NbR}"
 (* Proof by induction over the difference between k and n *)
 apply (rule_tac f = "\<lambda>s\<in>state. k #- s`NbR" in LessThan_induct)
-apply (simp_all add: lam_def)
-apply auto
-apply (rule single_LeadsTo_I)
-apply auto
+apply (simp_all add: lam_def, auto)
+apply (rule single_LeadsTo_I, auto)
 apply (simp (no_asm_simp) add: Collect_vimage_eq)
 apply (rename_tac "s0")
 apply (case_tac "s0`NbR < k")
-apply (rule_tac [2] subset_imp_LeadsTo)
-apply safe
+apply (rule_tac [2] subset_imp_LeadsTo, safe)
 apply (auto dest!: not_lt_imp_le)
 apply (rule LeadsTo_weaken)
-apply (rule_tac n = "s0`NbR" in alloc_prog_NbR_LeadsTo_lemma2)
-apply safe
-prefer 3 apply (assumption)
+apply (rule_tac n = "s0`NbR" in alloc_prog_NbR_LeadsTo_lemma2, safe)
+prefer 3 apply assumption
 apply (auto split add: nat_diff_split simp add: greater_than_def not_lt_imp_le not_le_iff_lt)
 apply (blast dest: lt_asym)
 apply (force dest: add_lt_elim2)
 done
 
-(** Towards proving lemma 50, page 29 **)
+subsubsection{*Towards proving lemma 50, page 29*}
 
 lemma alloc_prog_giv_Ensures_lemma:
 "[| G \<in> program; k\<in>nat; alloc_prog ok G;
@@ -371,27 +331,23 @@
   {s\<in>state. nth(length(s`giv), s`ask) \<le> s`available_tok} \<inter>
   {s\<in>state.  k < length(s`ask)} \<inter> {s\<in>state. length(s`giv)=k}
   Ensures {s\<in>state. ~ k <length(s`ask)} Un {s\<in>state. length(s`giv) \<noteq> k}"
-apply (rule EnsuresI)
-apply auto
+apply (rule EnsuresI, auto)
 apply (erule_tac [2] V = "G\<notin>?u" in thin_rl)
-apply (rule_tac [2] act = "alloc_giv_act" in transientI)
+apply (rule_tac [2] act = alloc_giv_act in transientI)
  prefer 2
  apply (simp add: alloc_prog_def [THEN def_prg_Acts])
  apply (simp add: alloc_giv_act_def [THEN def_act_eq, THEN act_subset])
 apply (auto simp add: alloc_prog_def [THEN def_prg_Acts] domain_def)
 apply (erule_tac [2] swap)
 apply (rule_tac [2] ReplaceI)
-apply (rule_tac [2] x = "x (giv := x ` giv @ [nth (length(x`giv), x ` ask) ], available_tok := x ` available_tok #- nth (length (x`giv), x ` ask))" in exI)
+apply (rule_tac [2] x = "x (giv := x ` giv @ [nth (length(x`giv), x ` ask) ], available_tok := x ` available_tok #- nth (length(x`giv), x ` ask))" in exI)
 apply (auto intro!: state_update_type simp add: app_type)
-apply (rule_tac A = "{s\<in>state . nth (length (s ` giv), s ` ask) \<le> s ` available_tok} \<inter> {s\<in>state . k < length (s ` ask) } \<inter> {s\<in>state. length (s`giv) =k}" and A' = "{s\<in>state . nth (length (s ` giv), s ` ask) \<le> s ` available_tok} Un {s\<in>state. ~ k < length (s`ask) } Un {s\<in>state . length (s ` giv) \<noteq> k}" in Constrains_weaken)
-apply safe
-apply (auto dest: ActsD simp add: Constrains_def constrains_def length_app alloc_prog_def [THEN def_prg_Acts] alloc_prog_ok_iff)
-apply (subgoal_tac "length (xa ` giv @ [nth (length (xa ` giv), xa ` ask) ]) = length (xa ` giv) #+ 1")
+apply (rule_tac A = "{s\<in>state . nth (length(s ` giv), s ` ask) \<le> s ` available_tok} \<inter> {s\<in>state . k < length(s ` ask) } \<inter> {s\<in>state. length(s`giv) =k}" and A' = "{s\<in>state . nth (length(s ` giv), s ` ask) \<le> s ` available_tok} Un {s\<in>state. ~ k < length(s`ask) } Un {s\<in>state . length(s ` giv) \<noteq> k}" in Constrains_weaken)
+apply (auto dest: ActsD simp add: Constrains_def constrains_def alloc_prog_def [THEN def_prg_Acts] alloc_prog_ok_iff)
+apply (subgoal_tac "length(xa ` giv @ [nth (length(xa ` giv), xa ` ask) ]) = length(xa ` giv) #+ 1")
 apply (rule_tac [2] trans)
-apply (rule_tac [2] length_app)
-apply auto
-apply (rule_tac j = "xa ` available_tok" in le_trans)
-apply auto
+apply (rule_tac [2] length_app, auto)
+apply (rule_tac j = "xa ` available_tok" in le_trans, auto)
 apply (drule_tac f = "lift (available_tok)" in preserves_imp_eq)
 apply assumption+
 apply auto
@@ -399,19 +355,17 @@
        in Increasing_imp_Stable)
 apply (auto simp add: prefix_iff)
 apply (drule StableD)
-apply (auto simp add: Constrains_def constrains_def)
-apply force
+apply (auto simp add: Constrains_def constrains_def, force)
 done
 
 lemma alloc_prog_giv_Stable_lemma:
 "[| G \<in> program; alloc_prog ok G; k\<in>nat |]
   ==> alloc_prog Join G \<in> Stable({s\<in>state . k \<le> length(s`giv)})"
-apply (auto intro!: stable_imp_Stable simp add: alloc_prog_ok_iff)
-apply (constrains)
-apply (auto intro: leI simp add: length_app)
-apply (drule_tac f = "lift (giv)" and g = "length" in imp_preserves_comp)
-apply (drule_tac f = "length comp lift (giv)" and A = "nat" and r = "Le" in preserves_imp_increasing)
-apply (drule_tac [2] x = "k" in increasing_imp_stable)
+apply (auto intro!: stable_imp_Stable simp add: alloc_prog_ok_iff, constrains)
+apply (auto intro: leI)
+apply (drule_tac f = "lift (giv)" and g = length in imp_preserves_comp)
+apply (drule_tac f = "length comp lift (giv)" and A = nat and r = Le in preserves_imp_increasing)
+apply (drule_tac [2] x = k in increasing_imp_stable)
  prefer 3 apply (simp add: Le_def comp_def)
 apply (auto simp add: length_type)
 done
@@ -420,24 +374,23 @@
 
 lemma alloc_prog_giv_LeadsTo_lemma:
 "[| G \<in> program; alloc_prog ok G;
-    alloc_prog Join G \<in> Incr(lift(ask)); k\<in>nat |] ==>
-  alloc_prog Join G \<in>
-    {s\<in>state. nth(length(s`giv), s`ask) \<le> s`available_tok} \<inter>
-    {s\<in>state.  k < length(s`ask)} \<inter>
-    {s\<in>state. length(s`giv) = k}
-    LeadsTo {s\<in>state. k < length(s`giv)}"
-apply (subgoal_tac "alloc_prog Join G \<in> {s\<in>state. nth (length (s`giv), s`ask) \<le> s`available_tok} \<inter> {s\<in>state. k < length (s`ask) } \<inter> {s\<in>state. length (s`giv) = k} LeadsTo {s\<in>state. ~ k <length (s`ask) } Un {s\<in>state. length (s`giv) \<noteq> k}")
+    alloc_prog Join G \<in> Incr(lift(ask)); k\<in>nat |]
+ ==> alloc_prog Join G \<in>
+	{s\<in>state. nth(length(s`giv), s`ask) \<le> s`available_tok} \<inter>
+	{s\<in>state.  k < length(s`ask)} \<inter>
+	{s\<in>state. length(s`giv) = k}
+	LeadsTo {s\<in>state. k < length(s`giv)}"
+apply (subgoal_tac "alloc_prog Join G \<in> {s\<in>state. nth (length(s`giv), s`ask) \<le> s`available_tok} \<inter> {s\<in>state. k < length(s`ask) } \<inter> {s\<in>state. length(s`giv) = k} LeadsTo {s\<in>state. ~ k <length(s`ask) } Un {s\<in>state. length(s`giv) \<noteq> k}")
 prefer 2 apply (blast intro: alloc_prog_giv_Ensures_lemma [THEN LeadsTo_Basis])
-apply (subgoal_tac "alloc_prog Join G \<in> Stable ({s\<in>state. k < length (s`ask) }) ")
-apply (drule PSP_Stable)
-apply assumption
+apply (subgoal_tac "alloc_prog Join G \<in> Stable ({s\<in>state. k < length(s`ask) }) ")
+apply (drule PSP_Stable, assumption)
 apply (rule LeadsTo_weaken)
 apply (rule PSP_Stable)
-apply (rule_tac [2] k = "k" in alloc_prog_giv_Stable_lemma)
+apply (rule_tac [2] k = k in alloc_prog_giv_Stable_lemma)
 apply (auto simp add: le_iff)
-apply (drule_tac a = "succ (k)" and g1 = "length" in imp_Increasing_comp [THEN Increasing_imp_Stable])
+apply (drule_tac a = "succ (k)" and g1 = length in imp_Increasing_comp [THEN Increasing_imp_Stable])
 apply (rule mono_length)
- prefer 2 apply (simp add: ); 
+ prefer 2 apply simp
 apply (simp_all add: refl_prefix Le_def comp_def length_type)
 done
 
@@ -452,69 +405,72 @@
   ==> alloc_prog Join G \<in>
         Always({s\<in>state. tokens(s`giv) \<le> tokens(take(s`NbR, s`rel)) -->
                 NbT \<le> s`available_tok})"
-apply (subgoal_tac "alloc_prog Join G \<in> Always ({s\<in>state. s`NbR \<le> length (s`rel) } \<inter> {s\<in>state. s`available_tok #+ tokens (s`giv) = NbT #+ tokens (take (s`NbR, s`rel))}) ")
+apply (subgoal_tac "alloc_prog Join G \<in> Always ({s\<in>state. s`NbR \<le> length(s`rel) } \<inter> {s\<in>state. s`available_tok #+ tokens(s`giv) = NbT #+ tokens(take (s`NbR, s`rel))}) ")
 apply (rule_tac [2] AlwaysI)
-apply (rule_tac [3] giv_Bounded_lemma2)
-apply auto
-apply (rule Always_weaken)
-apply assumption
-apply auto
-apply (subgoal_tac "0 \<le> tokens (take (x ` NbR, x ` rel)) #- tokens (x`giv) ")
+apply (rule_tac [3] giv_Bounded_lemma2, auto)
+apply (rule Always_weaken, assumption, auto)
+apply (subgoal_tac "0 \<le> tokens(take (x ` NbR, x ` rel)) #- tokens(x`giv) ")
 apply (rule_tac [2] nat_diff_split [THEN iffD2])
- prefer 2 apply (force ); 
+ prefer 2 apply force
 apply (subgoal_tac "x`available_tok =
-                    NbT #+ (tokens(take(x`NbR,x`rel)) #- tokens (x`giv))")
+                    NbT #+ (tokens(take(x`NbR,x`rel)) #- tokens(x`giv))")
 apply (simp (no_asm_simp))
-apply (rule nat_diff_split [THEN iffD2])
-apply auto
-apply (drule_tac j = "tokens (x ` giv)" in lt_trans2)
+apply (rule nat_diff_split [THEN iffD2], auto)
+apply (drule_tac j = "tokens(x ` giv)" in lt_trans2)
 apply assumption
 apply auto
 done
 
-(* Main lemmas towards proving property (31) *)
+subsubsection{* Main lemmas towards proving property (31)*}
 
 lemma LeadsTo_strength_R:
     "[|  F \<in> C LeadsTo B'; F \<in> A-C LeadsTo B; B'<=B |] ==> F \<in> A LeadsTo  B"
-by (blast intro: LeadsTo_weaken LeadsTo_Un_Un) 
+by (blast intro: LeadsTo_weaken LeadsTo_Un_Un)
 
 lemma PSP_StableI:
 "[| F \<in> Stable(C); F \<in> A - C LeadsTo B;
    F \<in> A \<inter> C LeadsTo B Un (state - C) |] ==> F \<in> A LeadsTo  B"
 apply (rule_tac A = " (A-C) Un (A \<inter> C)" in LeadsTo_weaken_L)
- prefer 2 apply (blast)
-apply (rule LeadsTo_Un)
-apply assumption
-apply (blast intro: LeadsTo_weaken dest: PSP_Stable) 
+ prefer 2 apply blast
+apply (rule LeadsTo_Un, assumption)
+apply (blast intro: LeadsTo_weaken dest: PSP_Stable)
 done
 
 lemma state_compl_eq [simp]: "state - {s\<in>state. P(s)} = {s\<in>state. ~P(s)}"
-apply auto
-done
+by auto
 
 (*needed?*)
 lemma single_state_Diff_eq [simp]: "{s}-{x \<in> state. P(x)} = (if s\<in>state & P(s) then 0 else {s})"
-apply auto
-done
+by auto
+
 
+locale alloc_progress =
+ fixes G
+ assumes Gprog [intro,simp]: "G \<in> program"
+     and okG [iff]:          "alloc_prog ok G"
+     and Incr_rel [intro]:   "alloc_prog Join G \<in> Incr(lift(rel))"
+     and Incr_ask [intro]:   "alloc_prog Join G \<in> Incr(lift(ask))"
+     and safety:   "alloc_prog Join G
+                      \<in> Always(\<Inter>k \<in> nat. {s\<in>state. nth(k, s`ask) \<le> NbT})"
+     and progress: "alloc_prog Join G
+                      \<in> (\<Inter>k\<in>nat. {s\<in>state. k \<le> tokens(s`giv)} LeadsTo
+                        {s\<in>state. k \<le> tokens(s`rel)})"
 
 (*First step in proof of (31) -- the corrected version from Charpentier.
   This lemma implies that if a client releases some tokens then the Allocator
   will eventually recognize that they've been released.*)
-lemma alloc_prog_LeadsTo_tokens_take_NbR_lemma:
-"[| alloc_prog Join G \<in> Incr(lift(rel));
-    G \<in> program; alloc_prog ok G; k \<in> tokbag |]
+lemma (in alloc_progress) tokens_take_NbR_lemma:
+ "k \<in> tokbag
   ==> alloc_prog Join G \<in>
         {s\<in>state. k \<le> tokens(s`rel)}
         LeadsTo {s\<in>state. k \<le> tokens(take(s`NbR, s`rel))}"
-apply (rule single_LeadsTo_I)
-apply safe
+apply (rule single_LeadsTo_I, safe)
 apply (rule_tac a1 = "s`rel" in Increasing_imp_Stable [THEN PSP_StableI])
-apply (rule_tac [4] k1 = "length (s`rel)" in alloc_prog_NbR_LeadsTo_lemma3 [THEN LeadsTo_strength_R])
+apply (rule_tac [4] k1 = "length(s`rel)" in alloc_prog_NbR_LeadsTo_lemma3 [THEN LeadsTo_strength_R])
 apply (rule_tac [8] subset_imp_LeadsTo)
-apply auto
-apply (rule_tac j = "tokens (take (length (s`rel), x`rel))" in le_trans)
-apply (rule_tac j = "tokens (take (length (s`rel), s`rel))" in le_trans)
+apply (auto intro!: Incr_rel)
+apply (rule_tac j = "tokens(take (length(s`rel), x`rel))" in le_trans)
+apply (rule_tac j = "tokens(take (length(s`rel), s`rel))" in le_trans)
 apply (auto intro!: tokens_mono take_mono simp add: prefix_iff)
 done
 
@@ -522,256 +478,184 @@
 
 (*Second step in proof of (31): by LHS of the guarantee and transivity of
   LeadsTo *)
-lemma alloc_prog_LeadsTo_tokens_take_NbR_lemma2:
-"[| alloc_prog Join G \<in> Incr(lift(rel));
-    G \<in> program; alloc_prog ok G; k \<in> tokbag;
-    alloc_prog Join G \<in>
-       (\<Inter>k\<in>nat. {s\<in>state. k \<le> tokens(s`giv)} LeadsTo {s\<in>state. k \<le> tokens(s`rel)}) |]
-  ==> alloc_prog Join G \<in>
-        {s\<in>state. tokens(s`giv) = k}
-        LeadsTo {s\<in>state. k \<le> tokens(take(s`NbR, s`rel))}"
+lemma (in alloc_progress) tokens_take_NbR_lemma2:
+     "k \<in> tokbag
+      ==> alloc_prog Join G \<in>
+	    {s\<in>state. tokens(s`giv) = k}
+	    LeadsTo {s\<in>state. k \<le> tokens(take(s`NbR, s`rel))}"
 apply (rule LeadsTo_Trans)
-apply (rule_tac [2] alloc_prog_LeadsTo_tokens_take_NbR_lemma)
-apply (blast intro: LeadsTo_weaken_L nat_into_Ord)
-apply assumption+
+ apply (rule_tac [2] tokens_take_NbR_lemma)
+ prefer 2 apply assumption
+apply (insert progress) 
+apply (blast intro: LeadsTo_weaken_L progress nat_into_Ord)
 done
 
 (*Third step in proof of (31): by PSP with the fact that giv increases *)
-lemma alloc_prog_LeadsTo_length_giv_disj:
-"[| alloc_prog Join G \<in> Incr(lift(rel));
-    G \<in> program; alloc_prog ok G; k \<in> tokbag; n \<in> nat;
-    alloc_prog Join G \<in>
-       (\<Inter>k\<in>nat. {s\<in>state. k \<le> tokens(s`giv)} LeadsTo {s\<in>state. k \<le> tokens(s`rel)}) |]
-  ==> alloc_prog Join G \<in>
-        {s\<in>state. length(s`giv) = n & tokens(s`giv) = k}
-        LeadsTo
-          {s\<in>state. (length(s`giv) = n & tokens(s`giv) = k &
-                     k \<le> tokens(take(s`NbR, s`rel))) | n < length(s`giv)}"
-apply (rule single_LeadsTo_I)
-apply safe
+lemma (in alloc_progress) length_giv_disj:
+     "[| k \<in> tokbag; n \<in> nat |]
+      ==> alloc_prog Join G \<in>
+	    {s\<in>state. length(s`giv) = n & tokens(s`giv) = k}
+	    LeadsTo
+	      {s\<in>state. (length(s`giv) = n & tokens(s`giv) = k &
+			 k \<le> tokens(take(s`NbR, s`rel))) | n < length(s`giv)}"
+apply (rule single_LeadsTo_I, safe)
 apply (rule_tac a1 = "s`giv" in Increasing_imp_Stable [THEN PSP_StableI])
 apply (rule alloc_prog_Increasing_giv [THEN guaranteesD])
 apply (simp_all add: Int_cons_left)
 apply (rule LeadsTo_weaken)
-apply (rule_tac k = "tokens (s`giv)" in alloc_prog_LeadsTo_tokens_take_NbR_lemma2)
-apply simp_all
-apply safe
-apply (drule prefix_length_le [THEN le_iff [THEN iffD1]]) 
-apply (force simp add:)
+apply (rule_tac k = "tokens(s`giv)" in tokens_take_NbR_lemma2)
+apply auto
+apply (force dest: prefix_length_le [THEN le_iff [THEN iffD1]]) 
 apply (simp add: not_lt_iff_le)
-apply (drule prefix_length_le_equal)
-apply assumption
-apply (simp add:)
+apply (force dest: prefix_length_le_equal) 
 done
 
 (*Fourth step in proof of (31): we apply lemma (51) *)
-lemma alloc_prog_LeadsTo_length_giv_disj2:
-"[| alloc_prog Join G \<in> Incr(lift(rel));
-    alloc_prog Join G \<in> Incr(lift(ask));
-    G \<in> program; alloc_prog ok G; k \<in> tokbag; n \<in> nat;
-    alloc_prog Join G \<in>
-       (\<Inter>k\<in>nat. {s\<in>state. k \<le> tokens(s`giv)} LeadsTo {s\<in>state. k \<le> tokens(s`rel)}) |]
-  ==> alloc_prog Join G \<in>
-        {s\<in>state. length(s`giv) = n & tokens(s`giv) = k}
-        LeadsTo
-          {s\<in>state. (length(s`giv) = n & NbT \<le> s`available_tok) |
-                    n < length(s`giv)}"
+lemma (in alloc_progress) length_giv_disj2:
+     "[|k \<in> tokbag; n \<in> nat|]
+      ==> alloc_prog Join G \<in>
+	    {s\<in>state. length(s`giv) = n & tokens(s`giv) = k}
+	    LeadsTo
+	      {s\<in>state. (length(s`giv) = n & NbT \<le> s`available_tok) |
+			n < length(s`giv)}"
 apply (rule LeadsTo_weaken_R)
-apply (rule Always_LeadsToD [OF alloc_prog_Always_lemma alloc_prog_LeadsTo_length_giv_disj])
-apply auto
+apply (rule Always_LeadsToD [OF alloc_prog_Always_lemma length_giv_disj], auto)
 done
 
 (*Fifth step in proof of (31): from the fourth step, taking the union over all
   k\<in>nat *)
-lemma alloc_prog_LeadsTo_length_giv_disj3:
-"[| alloc_prog Join G \<in> Incr(lift(rel));
-    alloc_prog Join G \<in> Incr(lift(ask));
-    G \<in> program; alloc_prog ok G;  n \<in> nat;
-    alloc_prog Join G \<in>
-       (\<Inter>k\<in>nat. {s\<in>state. k \<le> tokens(s`giv)} LeadsTo {s\<in>state. k \<le> tokens(s`rel)}) |]
-  ==> alloc_prog Join G \<in>
-        {s\<in>state. length(s`giv) = n}
-        LeadsTo
-          {s\<in>state. (length(s`giv) = n & NbT \<le> s`available_tok) |
-                    n < length(s`giv)}"
+lemma (in alloc_progress) length_giv_disj3:
+     "n \<in> nat
+      ==> alloc_prog Join G \<in>
+	    {s\<in>state. length(s`giv) = n}
+	    LeadsTo
+	      {s\<in>state. (length(s`giv) = n & NbT \<le> s`available_tok) |
+			n < length(s`giv)}"
 apply (rule LeadsTo_weaken_L)
-apply (rule_tac I = "nat" in LeadsTo_UN)
-apply (rule_tac k = "i" in alloc_prog_LeadsTo_length_giv_disj2)
+apply (rule_tac I = nat in LeadsTo_UN)
+apply (rule_tac k = i in length_giv_disj2)
 apply (simp_all add: UN_conj_eq)
 done
 
 (*Sixth step in proof of (31): from the fifth step, by PSP with the
   assumption that ask increases *)
-lemma alloc_prog_LeadsTo_length_ask_giv:
-"[| alloc_prog Join G \<in> Incr(lift(rel));
-    alloc_prog Join G \<in> Incr(lift(ask));
-    G \<in> program; alloc_prog ok G;  k \<in> nat;  n < k;
-    alloc_prog Join G \<in>
-       (\<Inter>k\<in>nat. {s\<in>state. k \<le> tokens(s`giv)} LeadsTo {s\<in>state. k \<le> tokens(s`rel)}) |]
+lemma (in alloc_progress) length_ask_giv:
+ "[|k \<in> nat;  n < k|]
   ==> alloc_prog Join G \<in>
         {s\<in>state. length(s`ask) = k & length(s`giv) = n}
         LeadsTo
           {s\<in>state. (NbT \<le> s`available_tok & length(s`giv) < length(s`ask) &
                      length(s`giv) = n) |
                     n < length(s`giv)}"
-apply (rule single_LeadsTo_I)
-apply safe
-apply (rule_tac a1 = "s`ask" and f1 = "lift (ask)" in Increasing_imp_Stable [THEN PSP_StableI])
-apply assumption
-apply simp_all
+apply (rule single_LeadsTo_I, safe)
+apply (rule_tac a1 = "s`ask" and f1 = "lift(ask)" 
+       in Increasing_imp_Stable [THEN PSP_StableI])
+apply (rule Incr_ask, simp_all)
 apply (rule LeadsTo_weaken)
-apply (rule_tac n = "length (s ` giv)" in alloc_prog_LeadsTo_length_giv_disj3)
+apply (rule_tac n = "length(s ` giv)" in length_giv_disj3)
 apply simp_all
-apply (blast intro:)
+apply blast
 apply clarify
-apply (simp add:)
+apply simp
 apply (blast dest!: prefix_length_le intro: lt_trans2)
 done
 
 
 (*Seventh step in proof of (31): no request (ask[k]) exceeds NbT *)
-lemma alloc_prog_LeadsTo_length_ask_giv2:
-"[| alloc_prog Join G \<in> Incr(lift(rel));
-    alloc_prog Join G \<in> Incr(lift(ask));
-    G \<in> program; alloc_prog ok G;  k \<in> nat;  n < k;
-    alloc_prog Join G \<in>
-      Always(\<Inter>k \<in> nat. {s\<in>state. nth(k, s`ask) \<le> NbT});
-    alloc_prog Join G \<in>
-       (\<Inter>k\<in>nat. {s\<in>state. k \<le> tokens(s`giv)} LeadsTo {s\<in>state. k \<le> tokens(s`rel)}) |]
-  ==> alloc_prog Join G \<in>
-        {s\<in>state. length(s`ask) = k & length(s`giv) = n}
-        LeadsTo
-          {s\<in>state. (nth(length(s`giv), s`ask) \<le> s`available_tok &
-                     length(s`giv) < length(s`ask) & length(s`giv) = n) |
-                    n < length(s`giv)}"
+lemma (in alloc_progress) length_ask_giv2:
+     "[|k \<in> nat;  n < k|]
+      ==> alloc_prog Join G \<in>
+	    {s\<in>state. length(s`ask) = k & length(s`giv) = n}
+	    LeadsTo
+	      {s\<in>state. (nth(length(s`giv), s`ask) \<le> s`available_tok &
+			 length(s`giv) < length(s`ask) & length(s`giv) = n) |
+			n < length(s`giv)}"
 apply (rule LeadsTo_weaken_R)
-apply (erule Always_LeadsToD [OF asm_rl alloc_prog_LeadsTo_length_ask_giv])
-apply assumption+
-apply clarify
-apply (simp add: INT_iff)
-apply clarify
-apply (drule_tac x = "length (x ` giv)" and P = "%x. ?f (x) \<le> NbT" in bspec)
-apply (simp add:)
+apply (rule Always_LeadsToD [OF safety length_ask_giv], assumption+, clarify)
+apply (simp add: INT_iff, clarify)
+apply (drule_tac x = "length(x ` giv)" and P = "%x. ?f (x) \<le> NbT" in bspec)
+apply simp
 apply (blast intro: le_trans)
 done
 
-(*Eighth step in proof of (31): by (50), we get |giv| > n. *)
-lemma alloc_prog_LeadsTo_extend_giv:
-"[| alloc_prog Join G \<in> Incr(lift(rel));
-    alloc_prog Join G \<in> Incr(lift(ask));
-    G \<in> program; alloc_prog ok G;  k \<in> nat;  n < k;
-    alloc_prog Join G \<in>
-      Always(\<Inter>k \<in> nat. {s\<in>state. nth(k, s`ask) \<le> NbT});
-    alloc_prog Join G \<in>
-       (\<Inter>k\<in>nat. {s\<in>state. k \<le> tokens(s`giv)} LeadsTo {s\<in>state. k \<le> tokens(s`rel)}) |]
-  ==> alloc_prog Join G \<in>
-        {s\<in>state. length(s`ask) = k & length(s`giv) = n}
-        LeadsTo {s\<in>state. n < length(s`giv)}"
+(*Eighth step in proof of (31): by 50, we get |giv| > n. *)
+lemma (in alloc_progress) extend_giv:
+     "[| k \<in> nat;  n < k|]
+      ==> alloc_prog Join G \<in>
+	    {s\<in>state. length(s`ask) = k & length(s`giv) = n}
+	    LeadsTo {s\<in>state. n < length(s`giv)}"
 apply (rule LeadsTo_Un_duplicate)
 apply (rule LeadsTo_cancel1)
 apply (rule_tac [2] alloc_prog_giv_LeadsTo_lemma)
-apply safe;
- prefer 2 apply (simp add: lt_nat_in_nat)
+apply (simp_all add: Incr_ask lt_nat_in_nat)
 apply (rule LeadsTo_weaken_R)
-apply (rule alloc_prog_LeadsTo_length_ask_giv2)
-apply auto
+apply (rule length_ask_giv2, auto)
 done
 
-(*Ninth and tenth steps in proof of (31): by (50), we get |giv| > n.
+(*Ninth and tenth steps in proof of (31): by 50, we get |giv| > n.
   The report has an error: putting |ask|=k for the precondition fails because
   we can't expect |ask| to remain fixed until |giv| increases.*)
-lemma alloc_prog_ask_LeadsTo_giv:
-"[| alloc_prog Join G \<in> Incr(lift(rel));
-    alloc_prog Join G \<in> Incr(lift(ask));
-    G \<in> program; alloc_prog ok G;  k \<in> nat;
-    alloc_prog Join G \<in>
-      Always(\<Inter>k \<in> nat. {s\<in>state. nth(k, s`ask) \<le> NbT});
-    alloc_prog Join G \<in>
-       (\<Inter>k\<in>nat. {s\<in>state. k \<le> tokens(s`giv)} LeadsTo {s\<in>state. k \<le> tokens(s`rel)}) |]
+lemma (in alloc_progress) alloc_prog_ask_LeadsTo_giv:
+ "k \<in> nat
   ==> alloc_prog Join G \<in>
         {s\<in>state. k \<le> length(s`ask)} LeadsTo {s\<in>state. k \<le> length(s`giv)}"
 (* Proof by induction over the difference between k and n *)
-apply (rule_tac f = "\<lambda>s\<in>state. k #- length (s`giv)" in LessThan_induct)
-apply (simp_all add: lam_def)
- prefer 2 apply (force)
-apply clarify
-apply (simp add: Collect_vimage_eq)
-apply (rule single_LeadsTo_I)
-apply safe
-apply simp
+apply (rule_tac f = "\<lambda>s\<in>state. k #- length(s`giv)" in LessThan_induct)
+apply (auto simp add: lam_def Collect_vimage_eq)
+apply (rule single_LeadsTo_I, auto)
 apply (rename_tac "s0")
-apply (case_tac "length (s0 ` giv) < length (s0 ` ask) ")
+apply (case_tac "length(s0 ` giv) < length(s0 ` ask) ")
  apply (rule_tac [2] subset_imp_LeadsTo)
-  apply safe
- prefer 2 
- apply (simp add: not_lt_iff_le)
- apply (blast dest: le_imp_not_lt intro: lt_trans2)
-apply (rule_tac a1 = "s0`ask" and f1 = "lift (ask)" 
+  apply (auto simp add: not_lt_iff_le)
+ prefer 2 apply (blast dest: le_imp_not_lt intro: lt_trans2)
+apply (rule_tac a1 = "s0`ask" and f1 = "lift (ask)"
        in Increasing_imp_Stable [THEN PSP_StableI])
-apply assumption
-apply (simp add:)
-apply (force simp add:)
+apply (rule Incr_ask, simp)
+apply (force)
 apply (rule LeadsTo_weaken)
-apply (rule_tac n = "length (s0 ` giv)" and k = "length (s0 ` ask)" 
-       in alloc_prog_LeadsTo_extend_giv)
-apply simp_all
- apply (force simp add:)
-apply clarify
-apply (simp add:)
-apply (erule disjE)
- apply (blast dest!: prefix_length_le intro: lt_trans2)
-apply (rule not_lt_imp_le)
-apply clarify
-apply (simp_all add: leI diff_lt_iff_lt)
+apply (rule_tac n = "length(s0 ` giv)" and k = "length(s0 ` ask)"
+       in extend_giv) 
+apply (auto dest: not_lt_imp_le simp add: leI diff_lt_iff_lt) 
+apply (blast dest!: prefix_length_le intro: lt_trans2)
 done
 
 (*Final lemma: combine previous result with lemma (30)*)
-lemma alloc_prog_progress_lemma:
-"[| alloc_prog Join G \<in> Incr(lift(rel));
-    alloc_prog Join G \<in> Incr(lift(ask));
-    G \<in> program; alloc_prog ok G;  h \<in> list(tokbag);
-    alloc_prog Join G \<in> Always(\<Inter>k \<in> nat. {s\<in>state. nth(k, s`ask) \<le> NbT});
-    alloc_prog Join G \<in>
-       (\<Inter>k\<in>nat. {s\<in>state. k \<le> tokens(s`giv)} LeadsTo 
-                 {s\<in>state. k \<le> tokens(s`rel)}) |]
-  ==> alloc_prog Join G \<in>
-        {s\<in>state. <h, s`ask> \<in> prefix(tokbag)} LeadsTo
-        {s\<in>state. <h, s`giv> \<in> prefix(tokbag)}"
+lemma (in alloc_progress) final:
+     "h \<in> list(tokbag)
+      ==> alloc_prog Join G \<in>
+	    {s\<in>state. <h, s`ask> \<in> prefix(tokbag)} LeadsTo
+	    {s\<in>state. <h, s`giv> \<in> prefix(tokbag)}"
 apply (rule single_LeadsTo_I)
- prefer 2 apply (simp)
+ prefer 2 apply simp
 apply (rename_tac s0)
-apply (rule_tac a1 = "s0`ask" and f1 = "lift (ask)" 
+apply (rule_tac a1 = "s0`ask" and f1 = "lift (ask)"
        in Increasing_imp_Stable [THEN PSP_StableI])
-   apply assumption
-  prefer 2 apply (force simp add:)
-apply (simp_all add: Int_cons_left)
+   apply (rule Incr_ask)
+  apply (simp_all add: Int_cons_left)
 apply (rule LeadsTo_weaken)
-apply (rule_tac k1 = "length (s0 ` ask)" 
+apply (rule_tac k1 = "length(s0 ` ask)"
        in Always_LeadsToD [OF alloc_prog_ask_prefix_giv [THEN guaranteesD]
                               alloc_prog_ask_LeadsTo_giv])
-apply simp_all
-apply (force simp add:)
-apply (force simp add:)
-apply (blast intro: length_le_prefix_imp_prefix prefix_trans prefix_length_le lt_trans2)
+apply (auto simp add: Incr_ask)
+apply (blast intro: length_le_prefix_imp_prefix prefix_trans prefix_length_le 
+                    lt_trans2)
 done
 
 (** alloc_prog liveness property (31), page 18 **)
 
-(*missing the LeadsTo assumption on the lhs!?!?!*)
-lemma alloc_prog_progress:
+theorem alloc_prog_progress:
 "alloc_prog \<in>
     Incr(lift(ask)) \<inter> Incr(lift(rel)) \<inter>
     Always(\<Inter>k \<in> nat. {s\<in>state. nth(k, s`ask) \<le> NbT}) \<inter>
-    (\<Inter>k\<in>nat. {s\<in>state. k \<le> tokens(s`giv)} LeadsTo 
+    (\<Inter>k\<in>nat. {s\<in>state. k \<le> tokens(s`giv)} LeadsTo
               {s\<in>state. k \<le> tokens(s`rel)})
   guarantees (\<Inter>h \<in> list(tokbag).
               {s\<in>state. <h, s`ask> \<in> prefix(tokbag)} LeadsTo
               {s\<in>state. <h, s`giv> \<in> prefix(tokbag)})"
 apply (rule guaranteesI)
-apply (rule INT_I)
-apply (rule alloc_prog_progress_lemma)
-apply simp_all
-apply (blast intro:)
+apply (rule INT_I [OF _ list.Nil])
+apply (rule alloc_progress.final)
+apply (simp_all add: alloc_progress_def)
 done