doc-src/IsarImplementation/Thy/document/tactic.tex
changeset 30105 37f47ea6fed1
parent 30104 b094999e1d33
parent 30101 5c6efec476ae
child 30106 351fc2f8493d
--- a/doc-src/IsarImplementation/Thy/document/tactic.tex	Thu Feb 26 06:39:06 2009 -0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,512 +0,0 @@
-%
-\begin{isabellebody}%
-\def\isabellecontext{tactic}%
-%
-\isadelimtheory
-\isanewline
-\isanewline
-\isanewline
-%
-\endisadelimtheory
-%
-\isatagtheory
-\isacommand{theory}\isamarkupfalse%
-\ tactic\ \isakeyword{imports}\ base\ \isakeyword{begin}%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isamarkupchapter{Tactical reasoning%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Tactical reasoning works by refining the initial claim in a
-  backwards fashion, until a solved form is reached.  A \isa{goal}
-  consists of several subgoals that need to be solved in order to
-  achieve the main statement; zero subgoals means that the proof may
-  be finished.  A \isa{tactic} is a refinement operation that maps
-  a goal to a lazy sequence of potential successors.  A \isa{tactical} is a combinator for composing tactics.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsection{Goals \label{sec:tactical-goals}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Isabelle/Pure represents a goal\glossary{Tactical goal}{A theorem of
-  \seeglossary{Horn Clause} form stating that a number of subgoals
-  imply the main conclusion, which is marked as a protected
-  proposition.} as a theorem stating that the subgoals imply the main
-  goal: \isa{A\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ {\isasymLongrightarrow}\ A\isactrlsub n\ {\isasymLongrightarrow}\ C}.  The outermost goal
-  structure is that of a Horn Clause\glossary{Horn Clause}{An iterated
-  implication \isa{A\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ {\isasymLongrightarrow}\ A\isactrlsub n\ {\isasymLongrightarrow}\ C}, without any
-  outermost quantifiers.  Strictly speaking, propositions \isa{A\isactrlsub i} need to be atomic in Horn Clauses, but Isabelle admits
-  arbitrary substructure here (nested \isa{{\isasymLongrightarrow}} and \isa{{\isasymAnd}}
-  connectives).}: i.e.\ an iterated implication without any
-  quantifiers\footnote{Recall that outermost \isa{{\isasymAnd}x{\isachardot}\ {\isasymphi}{\isacharbrackleft}x{\isacharbrackright}} is
-  always represented via schematic variables in the body: \isa{{\isasymphi}{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}}.  These variables may get instantiated during the course of
-  reasoning.}.  For \isa{n\ {\isacharequal}\ {\isadigit{0}}} a goal is called ``solved''.
-
-  The structure of each subgoal \isa{A\isactrlsub i} is that of a general
-  Hereditary Harrop Formula \isa{{\isasymAnd}x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymAnd}x\isactrlsub k{\isachardot}\ H\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ {\isasymLongrightarrow}\ H\isactrlsub m\ {\isasymLongrightarrow}\ B} in
-  normal form.  Here \isa{x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub k} are goal parameters, i.e.\
-  arbitrary-but-fixed entities of certain types, and \isa{H\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ H\isactrlsub m} are goal hypotheses, i.e.\ facts that may be assumed locally.
-  Together, this forms the goal context of the conclusion \isa{B} to
-  be established.  The goal hypotheses may be again arbitrary
-  Hereditary Harrop Formulas, although the level of nesting rarely
-  exceeds 1--2 in practice.
-
-  The main conclusion \isa{C} is internally marked as a protected
-  proposition\glossary{Protected proposition}{An arbitrarily
-  structured proposition \isa{C} which is forced to appear as
-  atomic by wrapping it into a propositional identity operator;
-  notation \isa{{\isacharhash}C}.  Protecting a proposition prevents basic
-  inferences from entering into that structure for the time being.},
-  which is represented explicitly by the notation \isa{{\isacharhash}C}.  This
-  ensures that the decomposition into subgoals and main conclusion is
-  well-defined for arbitrarily structured claims.
-
-  \medskip Basic goal management is performed via the following
-  Isabelle/Pure rules:
-
-  \[
-  \infer[\isa{{\isacharparenleft}init{\isacharparenright}}]{\isa{C\ {\isasymLongrightarrow}\ {\isacharhash}C}}{} \qquad
-  \infer[\isa{{\isacharparenleft}finish{\isacharparenright}}]{\isa{C}}{\isa{{\isacharhash}C}}
-  \]
-
-  \medskip The following low-level variants admit general reasoning
-  with protected propositions:
-
-  \[
-  \infer[\isa{{\isacharparenleft}protect{\isacharparenright}}]{\isa{{\isacharhash}C}}{\isa{C}} \qquad
-  \infer[\isa{{\isacharparenleft}conclude{\isacharparenright}}]{\isa{A\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ {\isasymLongrightarrow}\ A\isactrlsub n\ {\isasymLongrightarrow}\ C}}{\isa{A\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ {\isasymLongrightarrow}\ A\isactrlsub n\ {\isasymLongrightarrow}\ {\isacharhash}C}}
-  \]%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isatagmlref
-%
-\begin{isamarkuptext}%
-\begin{mldecls}
-  \indexml{Goal.init}\verb|Goal.init: cterm -> thm| \\
-  \indexml{Goal.finish}\verb|Goal.finish: thm -> thm| \\
-  \indexml{Goal.protect}\verb|Goal.protect: thm -> thm| \\
-  \indexml{Goal.conclude}\verb|Goal.conclude: thm -> thm| \\
-  \end{mldecls}
-
-  \begin{description}
-
-  \item \verb|Goal.init|~\isa{C} initializes a tactical goal from
-  the well-formed proposition \isa{C}.
-
-  \item \verb|Goal.finish|~\isa{thm} checks whether theorem
-  \isa{thm} is a solved goal (no subgoals), and concludes the
-  result by removing the goal protection.
-
-  \item \verb|Goal.protect|~\isa{thm} protects the full statement
-  of theorem \isa{thm}.
-
-  \item \verb|Goal.conclude|~\isa{thm} removes the goal
-  protection, even if there are pending subgoals.
-
-  \end{description}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagmlref
-{\isafoldmlref}%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isamarkupsection{Tactics%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-A \isa{tactic} is a function \isa{goal\ {\isasymrightarrow}\ goal\isactrlsup {\isacharasterisk}\isactrlsup {\isacharasterisk}} that
-  maps a given goal state (represented as a theorem, cf.\
-  \secref{sec:tactical-goals}) to a lazy sequence of potential
-  successor states.  The underlying sequence implementation is lazy
-  both in head and tail, and is purely functional in \emph{not}
-  supporting memoing.\footnote{The lack of memoing and the strict
-  nature of SML requires some care when working with low-level
-  sequence operations, to avoid duplicate or premature evaluation of
-  results.}
-
-  An \emph{empty result sequence} means that the tactic has failed: in
-  a compound tactic expressions other tactics might be tried instead,
-  or the whole refinement step might fail outright, producing a
-  toplevel error message.  When implementing tactics from scratch, one
-  should take care to observe the basic protocol of mapping regular
-  error conditions to an empty result; only serious faults should
-  emerge as exceptions.
-
-  By enumerating \emph{multiple results}, a tactic can easily express
-  the potential outcome of an internal search process.  There are also
-  combinators for building proof tools that involve search
-  systematically, see also \secref{sec:tacticals}.
-
-  \medskip As explained in \secref{sec:tactical-goals}, a goal state
-  essentially consists of a list of subgoals that imply the main goal
-  (conclusion).  Tactics may operate on all subgoals or on a
-  particularly specified subgoal, but must not change the main
-  conclusion (apart from instantiating schematic goal variables).
-
-  Tactics with explicit \emph{subgoal addressing} are of the form
-  \isa{int\ {\isasymrightarrow}\ tactic} and may be applied to a particular subgoal
-  (counting from 1).  If the subgoal number is out of range, the
-  tactic should fail with an empty result sequence, but must not raise
-  an exception!
-
-  Operating on a particular subgoal means to replace it by an interval
-  of zero or more subgoals in the same place; other subgoals must not
-  be affected, apart from instantiating schematic variables ranging
-  over the whole goal state.
-
-  A common pattern of composing tactics with subgoal addressing is to
-  try the first one, and then the second one only if the subgoal has
-  not been solved yet.  Special care is required here to avoid bumping
-  into unrelated subgoals that happen to come after the original
-  subgoal.  Assuming that there is only a single initial subgoal is a
-  very common error when implementing tactics!
-
-  Tactics with internal subgoal addressing should expose the subgoal
-  index as \isa{int} argument in full generality; a hardwired
-  subgoal 1 inappropriate.
-  
-  \medskip The main well-formedness conditions for proper tactics are
-  summarized as follows.
-
-  \begin{itemize}
-
-  \item General tactic failure is indicated by an empty result, only
-  serious faults may produce an exception.
-
-  \item The main conclusion must not be changed, apart from
-  instantiating schematic variables.
-
-  \item A tactic operates either uniformly on all subgoals, or
-  specifically on a selected subgoal (without bumping into unrelated
-  subgoals).
-
-  \item Range errors in subgoal addressing produce an empty result.
-
-  \end{itemize}
-
-  Some of these conditions are checked by higher-level goal
-  infrastructure (\secref{sec:results}); others are not checked
-  explicitly, and violating them merely results in ill-behaved tactics
-  experienced by the user (e.g.\ tactics that insist in being
-  applicable only to singleton goals, or disallow composition with
-  basic tacticals).%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isatagmlref
-%
-\begin{isamarkuptext}%
-\begin{mldecls}
-  \indexmltype{tactic}\verb|type tactic = thm -> thm Seq.seq| \\
-  \indexml{no\_tac}\verb|no_tac: tactic| \\
-  \indexml{all\_tac}\verb|all_tac: tactic| \\
-  \indexml{print\_tac}\verb|print_tac: string -> tactic| \\[1ex]
-  \indexml{PRIMITIVE}\verb|PRIMITIVE: (thm -> thm) -> tactic| \\[1ex]
-  \indexml{SUBGOAL}\verb|SUBGOAL: (term * int -> tactic) -> int -> tactic| \\
-  \indexml{CSUBGOAL}\verb|CSUBGOAL: (cterm * int -> tactic) -> int -> tactic| \\
-  \end{mldecls}
-
-  \begin{description}
-
-  \item \verb|tactic| represents tactics.  The well-formedness
-  conditions described above need to be observed.  See also \hyperlink{file.~~/src/Pure/General/seq.ML}{\mbox{\isa{\isatt{{\isachartilde}{\isachartilde}{\isacharslash}src{\isacharslash}Pure{\isacharslash}General{\isacharslash}seq{\isachardot}ML}}}} for the underlying implementation of
-  lazy sequences.
-
-  \item \verb|int -> tactic| represents tactics with explicit
-  subgoal addressing, with well-formedness conditions as described
-  above.
-
-  \item \verb|no_tac| is a tactic that always fails, returning the
-  empty sequence.
-
-  \item \verb|all_tac| is a tactic that always succeeds, returning a
-  singleton sequence with unchanged goal state.
-
-  \item \verb|print_tac|~\isa{message} is like \verb|all_tac|, but
-  prints a message together with the goal state on the tracing
-  channel.
-
-  \item \verb|PRIMITIVE|~\isa{rule} turns a primitive inference rule
-  into a tactic with unique result.  Exception \verb|THM| is considered
-  a regular tactic failure and produces an empty result; other
-  exceptions are passed through.
-
-  \item \verb|SUBGOAL|~\isa{{\isacharparenleft}fn\ {\isacharparenleft}subgoal{\isacharcomma}\ i{\isacharparenright}\ {\isacharequal}{\isachargreater}\ tactic{\isacharparenright}} is the
-  most basic form to produce a tactic with subgoal addressing.  The
-  given abstraction over the subgoal term and subgoal number allows to
-  peek at the relevant information of the full goal state.  The
-  subgoal range is checked as required above.
-
-  \item \verb|CSUBGOAL| is similar to \verb|SUBGOAL|, but passes the
-  subgoal as \verb|cterm| instead of raw \verb|term|.  This
-  avoids expensive re-certification in situations where the subgoal is
-  used directly for primitive inferences.
-
-  \end{description}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagmlref
-{\isafoldmlref}%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isamarkupsubsection{Resolution and assumption tactics \label{sec:resolve-assume-tac}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\emph{Resolution} is the most basic mechanism for refining a
-  subgoal using a theorem as object-level rule.
-  \emph{Elim-resolution} is particularly suited for elimination rules:
-  it resolves with a rule, proves its first premise by assumption, and
-  finally deletes that assumption from any new subgoals.
-  \emph{Destruct-resolution} is like elim-resolution, but the given
-  destruction rules are first turned into canonical elimination
-  format.  \emph{Forward-resolution} is like destruct-resolution, but
-  without deleting the selected assumption.  The \isa{r{\isacharslash}e{\isacharslash}d{\isacharslash}f}
-  naming convention is maintained for several different kinds of
-  resolution rules and tactics.
-
-  Assumption tactics close a subgoal by unifying some of its premises
-  against its conclusion.
-
-  \medskip All the tactics in this section operate on a subgoal
-  designated by a positive integer.  Other subgoals might be affected
-  indirectly, due to instantiation of schematic variables.
-
-  There are various sources of non-determinism, the tactic result
-  sequence enumerates all possibilities of the following choices (if
-  applicable):
-
-  \begin{enumerate}
-
-  \item selecting one of the rules given as argument to the tactic;
-
-  \item selecting a subgoal premise to eliminate, unifying it against
-  the first premise of the rule;
-
-  \item unifying the conclusion of the subgoal to the conclusion of
-  the rule.
-
-  \end{enumerate}
-
-  Recall that higher-order unification may produce multiple results
-  that are enumerated here.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isatagmlref
-%
-\begin{isamarkuptext}%
-\begin{mldecls}
-  \indexml{resolve\_tac}\verb|resolve_tac: thm list -> int -> tactic| \\
-  \indexml{eresolve\_tac}\verb|eresolve_tac: thm list -> int -> tactic| \\
-  \indexml{dresolve\_tac}\verb|dresolve_tac: thm list -> int -> tactic| \\
-  \indexml{forward\_tac}\verb|forward_tac: thm list -> int -> tactic| \\[1ex]
-  \indexml{assume\_tac}\verb|assume_tac: int -> tactic| \\
-  \indexml{eq\_assume\_tac}\verb|eq_assume_tac: int -> tactic| \\[1ex]
-  \indexml{match\_tac}\verb|match_tac: thm list -> int -> tactic| \\
-  \indexml{ematch\_tac}\verb|ematch_tac: thm list -> int -> tactic| \\
-  \indexml{dmatch\_tac}\verb|dmatch_tac: thm list -> int -> tactic| \\
-  \end{mldecls}
-
-  \begin{description}
-
-  \item \verb|resolve_tac|~\isa{thms\ i} refines the goal state
-  using the given theorems, which should normally be introduction
-  rules.  The tactic resolves a rule's conclusion with subgoal \isa{i}, replacing it by the corresponding versions of the rule's
-  premises.
-
-  \item \verb|eresolve_tac|~\isa{thms\ i} performs elim-resolution
-  with the given theorems, which should normally be elimination rules.
-
-  \item \verb|dresolve_tac|~\isa{thms\ i} performs
-  destruct-resolution with the given theorems, which should normally
-  be destruction rules.  This replaces an assumption by the result of
-  applying one of the rules.
-
-  \item \verb|forward_tac| is like \verb|dresolve_tac| except that the
-  selected assumption is not deleted.  It applies a rule to an
-  assumption, adding the result as a new assumption.
-
-  \item \verb|assume_tac|~\isa{i} attempts to solve subgoal \isa{i}
-  by assumption (modulo higher-order unification).
-
-  \item \verb|eq_assume_tac| is similar to \verb|assume_tac|, but checks
-  only for immediate \isa{{\isasymalpha}}-convertibility instead of using
-  unification.  It succeeds (with a unique next state) if one of the
-  assumptions is equal to the subgoal's conclusion.  Since it does not
-  instantiate variables, it cannot make other subgoals unprovable.
-
-  \item \verb|match_tac|, \verb|ematch_tac|, and \verb|dmatch_tac| are
-  similar to \verb|resolve_tac|, \verb|eresolve_tac|, and \verb|dresolve_tac|, respectively, but do not instantiate schematic
-  variables in the goal state.
-
-  Flexible subgoals are not updated at will, but are left alone.
-  Strictly speaking, matching means to treat the unknowns in the goal
-  state as constants; these tactics merely discard unifiers that would
-  update the goal state.
-
-  \end{description}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagmlref
-{\isafoldmlref}%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isamarkupsubsection{Explicit instantiation within a subgoal context%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-The main resolution tactics (\secref{sec:resolve-assume-tac})
-  use higher-order unification, which works well in many practical
-  situations despite its daunting theoretical properties.
-  Nonetheless, there are important problem classes where unguided
-  higher-order unification is not so useful.  This typically involves
-  rules like universal elimination, existential introduction, or
-  equational substitution.  Here the unification problem involves
-  fully flexible \isa{{\isacharquery}P\ {\isacharquery}x} schemes, which are hard to manage
-  without further hints.
-
-  By providing a (small) rigid term for \isa{{\isacharquery}x} explicitly, the
-  remaining unification problem is to assign a (large) term to \isa{{\isacharquery}P}, according to the shape of the given subgoal.  This is
-  sufficiently well-behaved in most practical situations.
-
-  \medskip Isabelle provides separate versions of the standard \isa{r{\isacharslash}e{\isacharslash}d{\isacharslash}f} resolution tactics that allow to provide explicit
-  instantiations of unknowns of the given rule, wrt.\ terms that refer
-  to the implicit context of the selected subgoal.
-
-  An instantiation consists of a list of pairs of the form \isa{{\isacharparenleft}{\isacharquery}x{\isacharcomma}\ t{\isacharparenright}}, where \isa{{\isacharquery}x} is a schematic variable occurring in
-  the given rule, and \isa{t} is a term from the current proof
-  context, augmented by the local goal parameters of the selected
-  subgoal; cf.\ the \isa{focus} operation described in
-  \secref{sec:variables}.
-
-  Entering the syntactic context of a subgoal is a brittle operation,
-  because its exact form is somewhat accidental, and the choice of
-  bound variable names depends on the presence of other local and
-  global names.  Explicit renaming of subgoal parameters prior to
-  explicit instantiation might help to achieve a bit more robustness.
-
-  Type instantiations may be given as well, via pairs like \isa{{\isacharparenleft}{\isacharquery}{\isacharprime}a{\isacharcomma}\ {\isasymtau}{\isacharparenright}}.  Type instantiations are distinguished from term
-  instantiations by the syntactic form of the schematic variable.
-  Types are instantiated before terms are.  Since term instantiation
-  already performs type-inference as expected, explicit type
-  instantiations are seldom necessary.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isatagmlref
-%
-\begin{isamarkuptext}%
-\begin{mldecls}
-  \indexml{res\_inst\_tac}\verb|res_inst_tac: Proof.context -> (indexname * string) list -> thm -> int -> tactic| \\
-  \indexml{eres\_inst\_tac}\verb|eres_inst_tac: Proof.context -> (indexname * string) list -> thm -> int -> tactic| \\
-  \indexml{dres\_inst\_tac}\verb|dres_inst_tac: Proof.context -> (indexname * string) list -> thm -> int -> tactic| \\
-  \indexml{forw\_inst\_tac}\verb|forw_inst_tac: Proof.context -> (indexname * string) list -> thm -> int -> tactic| \\[1ex]
-  \indexml{rename\_tac}\verb|rename_tac: string list -> int -> tactic| \\
-  \end{mldecls}
-
-  \begin{description}
-
-  \item \verb|res_inst_tac|~\isa{ctxt\ insts\ thm\ i} instantiates the
-  rule \isa{thm} with the instantiations \isa{insts}, as described
-  above, and then performs resolution on subgoal \isa{i}.
-  
-  \item \verb|eres_inst_tac| is like \verb|res_inst_tac|, but performs
-  elim-resolution.
-
-  \item \verb|dres_inst_tac| is like \verb|res_inst_tac|, but performs
-  destruct-resolution.
-
-  \item \verb|forw_inst_tac| is like \verb|dres_inst_tac| except that
-  the selected assumption is not deleted.
-
-  \item \verb|rename_tac|~\isa{names\ i} renames the innermost
-  parameters of subgoal \isa{i} according to the provided \isa{names} (which need to be distinct indentifiers).
-
-  \end{description}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagmlref
-{\isafoldmlref}%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isamarkupsection{Tacticals \label{sec:tacticals}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-FIXME
-
-\glossary{Tactical}{A functional combinator for building up complex
-tactics from simpler ones.  Typical tactical perform sequential
-composition, disjunction (choice), iteration, or goal addressing.
-Various search strategies may be expressed via tacticals.}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-\isacommand{end}\isamarkupfalse%
-%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-\isanewline
-\isanewline
-\end{isabellebody}%
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "root"
-%%% End: