src/HOL/Tools/SMT2/z3_new_replay_util.ML
changeset 58061 3d060f43accb
parent 58060 835b5443b978
child 58062 f4d8987656b9
--- a/src/HOL/Tools/SMT2/z3_new_replay_util.ML	Thu Aug 28 00:40:38 2014 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,150 +0,0 @@
-(*  Title:      HOL/Tools/SMT2/z3_new_replay_util.ML
-    Author:     Sascha Boehme, TU Muenchen
-
-Helper functions required for Z3 proof replay.
-*)
-
-signature Z3_NEW_REPLAY_UTIL =
-sig
-  (*theorem nets*)
-  val thm_net_of: ('a -> thm) -> 'a list -> 'a Net.net
-  val net_instances: (int * thm) Net.net -> cterm -> (int * thm) list
-
-  (*proof combinators*)
-  val under_assumption: (thm -> thm) -> cterm -> thm
-  val discharge: thm -> thm -> thm
-
-  (*a faster COMP*)
-  type compose_data
-  val precompose: (cterm -> cterm list) -> thm -> compose_data
-  val precompose2: (cterm -> cterm * cterm) -> thm -> compose_data
-  val compose: compose_data -> thm -> thm
-
-  (*simpset*)
-  val add_simproc: Simplifier.simproc -> Context.generic -> Context.generic
-  val make_simpset: Proof.context -> thm list -> simpset
-end;
-
-structure Z3_New_Replay_Util: Z3_NEW_REPLAY_UTIL =
-struct
-
-(* theorem nets *)
-
-fun thm_net_of f xthms =
-  let fun insert xthm = Net.insert_term (K false) (Thm.prop_of (f xthm), xthm)
-  in fold insert xthms Net.empty end
-
-fun maybe_instantiate ct thm =
-  try Thm.first_order_match (Thm.cprop_of thm, ct)
-  |> Option.map (fn inst => Thm.instantiate inst thm)
-
-local
-  fun instances_from_net match f net ct =
-    let
-      val lookup = if match then Net.match_term else Net.unify_term
-      val xthms = lookup net (Thm.term_of ct)
-      fun select ct = map_filter (f (maybe_instantiate ct)) xthms
-      fun select' ct =
-        let val thm = Thm.trivial ct
-        in map_filter (f (try (fn rule => rule COMP thm))) xthms end
-    in (case select ct of [] => select' ct | xthms' => xthms') end
-in
-
-fun net_instances net =
-  instances_from_net false (fn f => fn (i, thm) => Option.map (pair i) (f thm))
-    net
-
-end
-
-
-(* proof combinators *)
-
-fun under_assumption f ct =
-  let val ct' = SMT2_Util.mk_cprop ct in Thm.implies_intr ct' (f (Thm.assume ct')) end
-
-fun discharge p pq = Thm.implies_elim pq p
-
-
-(* a faster COMP *)
-
-type compose_data = cterm list * (cterm -> cterm list) * thm
-
-fun list2 (x, y) = [x, y]
-
-fun precompose f rule = (f (Thm.cprem_of rule 1), f, rule)
-fun precompose2 f rule = precompose (list2 o f) rule
-
-fun compose (cvs, f, rule) thm =
-  discharge thm (Thm.instantiate ([], cvs ~~ f (Thm.cprop_of thm)) rule)
-
-
-(* simpset *)
-
-local
-  val antisym_le1 = mk_meta_eq @{thm order_class.antisym_conv}
-  val antisym_le2 = mk_meta_eq @{thm linorder_class.antisym_conv2}
-  val antisym_less1 = mk_meta_eq @{thm linorder_class.antisym_conv1}
-  val antisym_less2 = mk_meta_eq @{thm linorder_class.antisym_conv3}
-
-  fun eq_prop t thm = HOLogic.mk_Trueprop t aconv Thm.prop_of thm
-  fun dest_binop ((c as Const _) $ t $ u) = (c, t, u)
-    | dest_binop t = raise TERM ("dest_binop", [t])
-
-  fun prove_antisym_le ctxt t =
-    let
-      val (le, r, s) = dest_binop t
-      val less = Const (@{const_name less}, Term.fastype_of le)
-      val prems = Simplifier.prems_of ctxt
-    in
-      (case find_first (eq_prop (le $ s $ r)) prems of
-        NONE =>
-          find_first (eq_prop (HOLogic.mk_not (less $ r $ s))) prems
-          |> Option.map (fn thm => thm RS antisym_less1)
-      | SOME thm => SOME (thm RS antisym_le1))
-    end
-    handle THM _ => NONE
-
-  fun prove_antisym_less ctxt t =
-    let
-      val (less, r, s) = dest_binop (HOLogic.dest_not t)
-      val le = Const (@{const_name less_eq}, Term.fastype_of less)
-      val prems = Simplifier.prems_of ctxt
-    in
-      (case find_first (eq_prop (le $ r $ s)) prems of
-        NONE =>
-          find_first (eq_prop (HOLogic.mk_not (less $ s $ r))) prems
-          |> Option.map (fn thm => thm RS antisym_less2)
-      | SOME thm => SOME (thm RS antisym_le2))
-  end
-  handle THM _ => NONE
-
-  val basic_simpset =
-    simpset_of (put_simpset HOL_ss @{context}
-      addsimps @{thms field_simps times_divide_eq_right times_divide_eq_left arith_special
-        arith_simps rel_simps array_rules z3div_def z3mod_def}
-      addsimprocs [@{simproc binary_int_div}, @{simproc binary_int_mod},
-        Simplifier.simproc_global @{theory} "fast_int_arith" [
-          "(m::int) < n", "(m::int) <= n", "(m::int) = n"] Lin_Arith.simproc,
-        Simplifier.simproc_global @{theory} "antisym_le" ["(x::'a::order) <= y"] prove_antisym_le,
-        Simplifier.simproc_global @{theory} "antisym_less" ["~ (x::'a::linorder) < y"]
-          prove_antisym_less])
-
-  structure Simpset = Generic_Data
-  (
-    type T = simpset
-    val empty = basic_simpset
-    val extend = I
-    val merge = Simplifier.merge_ss
-  )
-in
-
-fun add_simproc simproc context =
-  Simpset.map (simpset_map (Context.proof_of context)
-    (fn ctxt => ctxt addsimprocs [simproc])) context
-
-fun make_simpset ctxt rules =
-  simpset_of (put_simpset (Simpset.get (Context.Proof ctxt)) ctxt addsimps rules)
-
-end
-
-end;