src/HOL/ex/Primes.ML
changeset 5069 3ea049f7979d
parent 4884 1ec740e30811
child 5143 b94cd208f073
--- a/src/HOL/ex/Primes.ML	Mon Jun 22 17:13:09 1998 +0200
+++ b/src/HOL/ex/Primes.ML	Mon Jun 22 17:26:46 1998 +0200
@@ -40,25 +40,25 @@
 qed "gcd_induct";
 
 
-goal thy "gcd(m,0) = m";
+Goal "gcd(m,0) = m";
 by (rtac (gcd_eq RS trans) 1);
 by (Simp_tac 1);
 qed "gcd_0";
 Addsimps [gcd_0];
 
-goal thy "!!m. 0<n ==> gcd(m,n) = gcd (n, m mod n)";
+Goal "!!m. 0<n ==> gcd(m,n) = gcd (n, m mod n)";
 by (rtac (gcd_eq RS trans) 1);
 by (Asm_simp_tac 1);
 by (Blast_tac 1);
 qed "gcd_non_0";
 
-goal thy "gcd(m,1) = 1";
+Goal "gcd(m,1) = 1";
 by (simp_tac (simpset() addsimps [gcd_non_0]) 1);
 qed "gcd_1";
 Addsimps [gcd_1];
 
 (*gcd(m,n) divides m and n.  The conjunctions don't seem provable separately*)
-goal thy "(gcd(m,n) dvd m) & (gcd(m,n) dvd n)";
+Goal "(gcd(m,n) dvd m) & (gcd(m,n) dvd n)";
 by (res_inst_tac [("m","m"),("n","n")] gcd_induct 1);
 by (ALLGOALS 
     (asm_full_simp_tac (simpset() addsimps [gcd_non_0, mod_less_divisor])));
@@ -71,7 +71,7 @@
 
 (*Maximality: for all m,n,f naturals, 
                 if f divides m and f divides n then f divides gcd(m,n)*)
-goal thy "!!k. (f dvd m) --> (f dvd n) --> f dvd gcd(m,n)";
+Goal "!!k. (f dvd m) --> (f dvd n) --> f dvd gcd(m,n)";
 by (res_inst_tac [("m","m"),("n","n")] gcd_induct 1);
 by (ALLGOALS
     (asm_full_simp_tac (simpset() addsimps[gcd_non_0, dvd_mod,
@@ -79,34 +79,34 @@
 qed_spec_mp "gcd_greatest";
 
 (*Function gcd yields the Greatest Common Divisor*)
-goalw thy [is_gcd_def] "is_gcd (gcd(m,n)) m n";
+Goalw [is_gcd_def] "is_gcd (gcd(m,n)) m n";
 by (asm_simp_tac (simpset() addsimps [gcd_greatest, gcd_dvd_both]) 1);
 qed "is_gcd";
 
 (*uniqueness of GCDs*)
-goalw thy [is_gcd_def] "!!m n. [| is_gcd m a b; is_gcd n a b |] ==> m=n";
+Goalw [is_gcd_def] "!!m n. [| is_gcd m a b; is_gcd n a b |] ==> m=n";
 by (blast_tac (claset() addIs [dvd_anti_sym]) 1);
 qed "is_gcd_unique";
 
 (*USED??*)
-goalw thy [is_gcd_def]
+Goalw [is_gcd_def]
     "!!m n. [| is_gcd m a b; k dvd a; k dvd b |] ==> k dvd m";
 by (Blast_tac 1);
 qed "is_gcd_dvd";
 
 (** Commutativity **)
 
-goalw thy [is_gcd_def] "is_gcd k m n = is_gcd k n m";
+Goalw [is_gcd_def] "is_gcd k m n = is_gcd k n m";
 by (Blast_tac 1);
 qed "is_gcd_commute";
 
-goal thy "gcd(m,n) = gcd(n,m)";
+Goal "gcd(m,n) = gcd(n,m)";
 by (rtac is_gcd_unique 1);
 by (rtac is_gcd 2);
 by (asm_simp_tac (simpset() addsimps [is_gcd, is_gcd_commute]) 1);
 qed "gcd_commute";
 
-goal thy "gcd(gcd(k,m),n) = gcd(k,gcd(m,n))";
+Goal "gcd(gcd(k,m),n) = gcd(k,gcd(m,n))";
 by (rtac is_gcd_unique 1);
 by (rtac is_gcd 2);
 by (rewtac is_gcd_def);
@@ -114,12 +114,12 @@
    	                addIs  [gcd_greatest, dvd_trans]) 1);
 qed "gcd_assoc";
 
-goal thy "gcd(0,m) = m";
+Goal "gcd(0,m) = m";
 by (stac gcd_commute 1);
 by (rtac gcd_0 1);
 qed "gcd_0_left";
 
-goal thy "gcd(1,m) = 1";
+Goal "gcd(1,m) = 1";
 by (stac gcd_commute 1);
 by (rtac gcd_1 1);
 qed "gcd_1_left";
@@ -129,7 +129,7 @@
 (** Multiplication laws **)
 
 (*Davenport, page 27*)
-goal thy "k * gcd(m,n) = gcd(k*m, k*n)";
+Goal "k * gcd(m,n) = gcd(k*m, k*n)";
 by (res_inst_tac [("m","m"),("n","n")] gcd_induct 1);
 by (Asm_full_simp_tac 1);
 by (case_tac "k=0" 1);
@@ -138,39 +138,39 @@
     (simpset() addsimps [mod_geq, gcd_non_0, mod_mult_distrib2]) 1);
 qed "gcd_mult_distrib2";
 
-goal thy "gcd(m,m) = m";
+Goal "gcd(m,m) = m";
 by (cut_inst_tac [("k","m"),("m","1"),("n","1")] gcd_mult_distrib2 1);
 by (Asm_full_simp_tac 1);
 qed "gcd_self";
 Addsimps [gcd_self];
 
-goal thy "gcd(k, k*n) = k";
+Goal "gcd(k, k*n) = k";
 by (cut_inst_tac [("k","k"),("m","1"),("n","n")] gcd_mult_distrib2 1);
 by (Asm_full_simp_tac 1);
 qed "gcd_mult";
 Addsimps [gcd_mult];
 
-goal thy "!!k. [| gcd(k,n)=1; k dvd (m*n) |] ==> k dvd m";
+Goal "!!k. [| gcd(k,n)=1; k dvd (m*n) |] ==> k dvd m";
 by (subgoal_tac "m = gcd(m*k, m*n)" 1);
 by (etac ssubst 1 THEN rtac gcd_greatest 1);
 by (ALLGOALS (asm_simp_tac (simpset() addsimps [gcd_mult_distrib2 RS sym])));
 qed "relprime_dvd_mult";
 
-goalw thy [prime_def] "!!p. [| p: prime;  ~ p dvd n |] ==> gcd (p, n) = 1";
+Goalw [prime_def] "!!p. [| p: prime;  ~ p dvd n |] ==> gcd (p, n) = 1";
 by (cut_inst_tac [("m","p"),("n","n")] gcd_dvd_both 1);
 by (fast_tac (claset() addss (simpset())) 1);
 qed "prime_imp_relprime";
 
 (*This theorem leads immediately to a proof of the uniqueness of factorization.
   If p divides a product of primes then it is one of those primes.*)
-goal thy "!!p. [| p: prime; p dvd (m*n) |] ==> p dvd m | p dvd n";
+Goal "!!p. [| p: prime; p dvd (m*n) |] ==> p dvd m | p dvd n";
 by (blast_tac (claset() addIs [relprime_dvd_mult, prime_imp_relprime]) 1);
 qed "prime_dvd_mult";
 
 
 (** Addition laws **)
 
-goal thy "gcd(m, m+n) = gcd(m,n)";
+Goal "gcd(m, m+n) = gcd(m,n)";
 by (res_inst_tac [("n1", "m+n")] (gcd_commute RS ssubst) 1);
 by (rtac (gcd_eq RS trans) 1);
 by Auto_tac;
@@ -180,19 +180,19 @@
 by Safe_tac;
 qed "gcd_add";
 
-goal thy "gcd(m, n+m) = gcd(m,n)";
+Goal "gcd(m, n+m) = gcd(m,n)";
 by (asm_simp_tac (simpset() addsimps [add_commute, gcd_add]) 1);
 qed "gcd_add2";
 
 
 (** More multiplication laws **)
 
-goal thy "gcd(m,n) dvd gcd(k*m, n)";
+Goal "gcd(m,n) dvd gcd(k*m, n)";
 by (blast_tac (claset() addIs [gcd_greatest, dvd_trans, 
                                gcd_dvd1, gcd_dvd2]) 1);
 qed "gcd_dvd_gcd_mult";
 
-goal thy "!!n. gcd(k,n) = 1 ==> gcd(k*m, n) = gcd(m,n)";
+Goal "!!n. gcd(k,n) = 1 ==> gcd(k*m, n) = gcd(m,n)";
 by (rtac dvd_anti_sym 1);
 by (rtac gcd_dvd_gcd_mult 2);
 by (rtac ([relprime_dvd_mult, gcd_dvd2] MRS gcd_greatest) 1);