src/HOL/GCD.thy
changeset 21256 47195501ecf7
parent 21255 617fdb08abe9
child 21257 b7f090c5057d
--- a/src/HOL/GCD.thy	Wed Nov 08 22:24:54 2006 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,210 +0,0 @@
-(*  Title:      HOL/GCD.thy
-    ID:         $Id$
-    Author:     Christophe Tabacznyj and Lawrence C Paulson
-    Copyright   1996  University of Cambridge
-
-Builds on Integ/Parity mainly because that contains recdef, which we
-need, but also because we may want to include gcd on integers in here
-as well in the future.
-*)
-
-header {* The Greatest Common Divisor *}
-
-theory GCD
-imports Parity
-begin
-
-text {*
-  See \cite{davenport92}.
-  \bigskip
-*}
-
-consts
-  gcd  :: "nat \<times> nat => nat"  -- {* Euclid's algorithm *}
-
-recdef gcd  "measure ((\<lambda>(m, n). n) :: nat \<times> nat => nat)"
-  "gcd (m, n) = (if n = 0 then m else gcd (n, m mod n))"
-
-constdefs
-  is_gcd :: "nat => nat => nat => bool"  -- {* @{term gcd} as a relation *}
-  "is_gcd p m n == p dvd m \<and> p dvd n \<and>
-    (\<forall>d. d dvd m \<and> d dvd n --> d dvd p)"
-
-
-lemma gcd_induct:
-  "(!!m. P m 0) ==>
-    (!!m n. 0 < n ==> P n (m mod n) ==> P m n)
-  ==> P (m::nat) (n::nat)"
-  apply (induct m n rule: gcd.induct)
-  apply (case_tac "n = 0")
-   apply simp_all
-  done
-
-
-lemma gcd_0 [simp]: "gcd (m, 0) = m"
-  apply simp
-  done
-
-lemma gcd_non_0: "0 < n ==> gcd (m, n) = gcd (n, m mod n)"
-  apply simp
-  done
-
-declare gcd.simps [simp del]
-
-lemma gcd_1 [simp]: "gcd (m, Suc 0) = 1"
-  apply (simp add: gcd_non_0)
-  done
-
-text {*
-  \medskip @{term "gcd (m, n)"} divides @{text m} and @{text n}.  The
-  conjunctions don't seem provable separately.
-*}
-
-lemma gcd_dvd1 [iff]: "gcd (m, n) dvd m"
-  and gcd_dvd2 [iff]: "gcd (m, n) dvd n"
-  apply (induct m n rule: gcd_induct)
-   apply (simp_all add: gcd_non_0)
-  apply (blast dest: dvd_mod_imp_dvd)
-  done
-
-text {*
-  \medskip Maximality: for all @{term m}, @{term n}, @{term k}
-  naturals, if @{term k} divides @{term m} and @{term k} divides
-  @{term n} then @{term k} divides @{term "gcd (m, n)"}.
-*}
-
-lemma gcd_greatest: "k dvd m ==> k dvd n ==> k dvd gcd (m, n)"
-  apply (induct m n rule: gcd_induct)
-   apply (simp_all add: gcd_non_0 dvd_mod)
-  done
-
-lemma gcd_greatest_iff [iff]: "(k dvd gcd (m, n)) = (k dvd m \<and> k dvd n)"
-  apply (blast intro!: gcd_greatest intro: dvd_trans)
-  done
-
-lemma gcd_zero: "(gcd (m, n) = 0) = (m = 0 \<and> n = 0)"
-  by (simp only: dvd_0_left_iff [THEN sym] gcd_greatest_iff)
-
-
-text {*
-  \medskip Function gcd yields the Greatest Common Divisor.
-*}
-
-lemma is_gcd: "is_gcd (gcd (m, n)) m n"
-  apply (simp add: is_gcd_def gcd_greatest)
-  done
-
-text {*
-  \medskip Uniqueness of GCDs.
-*}
-
-lemma is_gcd_unique: "is_gcd m a b ==> is_gcd n a b ==> m = n"
-  apply (simp add: is_gcd_def)
-  apply (blast intro: dvd_anti_sym)
-  done
-
-lemma is_gcd_dvd: "is_gcd m a b ==> k dvd a ==> k dvd b ==> k dvd m"
-  apply (auto simp add: is_gcd_def)
-  done
-
-
-text {*
-  \medskip Commutativity
-*}
-
-lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
-  apply (auto simp add: is_gcd_def)
-  done
-
-lemma gcd_commute: "gcd (m, n) = gcd (n, m)"
-  apply (rule is_gcd_unique)
-   apply (rule is_gcd)
-  apply (subst is_gcd_commute)
-  apply (simp add: is_gcd)
-  done
-
-lemma gcd_assoc: "gcd (gcd (k, m), n) = gcd (k, gcd (m, n))"
-  apply (rule is_gcd_unique)
-   apply (rule is_gcd)
-  apply (simp add: is_gcd_def)
-  apply (blast intro: dvd_trans)
-  done
-
-lemma gcd_0_left [simp]: "gcd (0, m) = m"
-  apply (simp add: gcd_commute [of 0])
-  done
-
-lemma gcd_1_left [simp]: "gcd (Suc 0, m) = 1"
-  apply (simp add: gcd_commute [of "Suc 0"])
-  done
-
-
-text {*
-  \medskip Multiplication laws
-*}
-
-lemma gcd_mult_distrib2: "k * gcd (m, n) = gcd (k * m, k * n)"
-    -- {* \cite[page 27]{davenport92} *}
-  apply (induct m n rule: gcd_induct)
-   apply simp
-  apply (case_tac "k = 0")
-   apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
-  done
-
-lemma gcd_mult [simp]: "gcd (k, k * n) = k"
-  apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric])
-  done
-
-lemma gcd_self [simp]: "gcd (k, k) = k"
-  apply (rule gcd_mult [of k 1, simplified])
-  done
-
-lemma relprime_dvd_mult: "gcd (k, n) = 1 ==> k dvd m * n ==> k dvd m"
-  apply (insert gcd_mult_distrib2 [of m k n])
-  apply simp
-  apply (erule_tac t = m in ssubst)
-  apply simp
-  done
-
-lemma relprime_dvd_mult_iff: "gcd (k, n) = 1 ==> (k dvd m * n) = (k dvd m)"
-  apply (blast intro: relprime_dvd_mult dvd_trans)
-  done
-
-lemma gcd_mult_cancel: "gcd (k, n) = 1 ==> gcd (k * m, n) = gcd (m, n)"
-  apply (rule dvd_anti_sym)
-   apply (rule gcd_greatest)
-    apply (rule_tac n = k in relprime_dvd_mult)
-     apply (simp add: gcd_assoc)
-     apply (simp add: gcd_commute)
-    apply (simp_all add: mult_commute)
-  apply (blast intro: dvd_trans)
-  done
-
-
-text {* \medskip Addition laws *}
-
-lemma gcd_add1 [simp]: "gcd (m + n, n) = gcd (m, n)"
-  apply (case_tac "n = 0")
-   apply (simp_all add: gcd_non_0)
-  done
-
-lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)"
-proof -
-  have "gcd (m, m + n) = gcd (m + n, m)" by (rule gcd_commute) 
-  also have "... = gcd (n + m, m)" by (simp add: add_commute)
-  also have "... = gcd (n, m)" by simp
-  also have  "... = gcd (m, n)" by (rule gcd_commute) 
-  finally show ?thesis .
-qed
-
-lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)"
-  apply (subst add_commute)
-  apply (rule gcd_add2)
-  done
-
-lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)"
-  apply (induct k)
-   apply (simp_all add: add_assoc)
-  done
-
-end