src/HOL/int_arith1.ML
changeset 28994 49f602ae24e5
parent 28993 829e684b02ef
parent 28992 c4ae153d78ab
child 28995 d59b8124f1f5
child 29004 a5a91f387791
child 29010 5cd646abf6bc
child 29018 17538bdef546
child 29676 cfa3378decf7
--- a/src/HOL/int_arith1.ML	Fri Dec 05 11:26:07 2008 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,588 +0,0 @@
-(*  Title:      HOL/int_arith1.ML
-    ID:         $Id$
-    Authors:    Larry Paulson and Tobias Nipkow
-
-Simprocs and decision procedure for linear arithmetic.
-*)
-
-structure Int_Numeral_Base_Simprocs =
-  struct
-  fun prove_conv tacs ctxt (_: thm list) (t, u) =
-    if t aconv u then NONE
-    else
-      let val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (t, u))
-      in SOME (Goal.prove ctxt [] [] eq (K (EVERY tacs))) end
-
-  fun prove_conv_nohyps tacs sg = prove_conv tacs sg [];
-
-  fun prep_simproc (name, pats, proc) =
-    Simplifier.simproc (the_context()) name pats proc;
-
-  fun is_numeral (Const(@{const_name Int.number_of}, _) $ w) = true
-    | is_numeral _ = false
-
-  fun simplify_meta_eq f_number_of_eq f_eq =
-      mk_meta_eq ([f_eq, f_number_of_eq] MRS trans)
-
-  (*reorientation simprules using ==, for the following simproc*)
-  val meta_zero_reorient = @{thm zero_reorient} RS eq_reflection
-  val meta_one_reorient = @{thm one_reorient} RS eq_reflection
-  val meta_number_of_reorient = @{thm number_of_reorient} RS eq_reflection
-
-  (*reorientation simplification procedure: reorients (polymorphic) 
-    0 = x, 1 = x, nnn = x provided x isn't 0, 1 or a Int.*)
-  fun reorient_proc sg _ (_ $ t $ u) =
-    case u of
-        Const(@{const_name HOL.zero}, _) => NONE
-      | Const(@{const_name HOL.one}, _) => NONE
-      | Const(@{const_name Int.number_of}, _) $ _ => NONE
-      | _ => SOME (case t of
-          Const(@{const_name HOL.zero}, _) => meta_zero_reorient
-        | Const(@{const_name HOL.one}, _) => meta_one_reorient
-        | Const(@{const_name Int.number_of}, _) $ _ => meta_number_of_reorient)
-
-  val reorient_simproc = 
-      prep_simproc ("reorient_simproc", ["0=x", "1=x", "number_of w = x"], reorient_proc)
-
-  end;
-
-
-Addsimprocs [Int_Numeral_Base_Simprocs.reorient_simproc];
-
-
-structure Int_Numeral_Simprocs =
-struct
-
-(*Maps 0 to Numeral0 and 1 to Numeral1 so that arithmetic in Int_Numeral_Base_Simprocs
-  isn't complicated by the abstract 0 and 1.*)
-val numeral_syms = [@{thm numeral_0_eq_0} RS sym, @{thm numeral_1_eq_1} RS sym];
-
-(** New term ordering so that AC-rewriting brings numerals to the front **)
-
-(*Order integers by absolute value and then by sign. The standard integer
-  ordering is not well-founded.*)
-fun num_ord (i,j) =
-  (case int_ord (abs i, abs j) of
-    EQUAL => int_ord (Int.sign i, Int.sign j) 
-  | ord => ord);
-
-(*This resembles Term.term_ord, but it puts binary numerals before other
-  non-atomic terms.*)
-local open Term 
-in 
-fun numterm_ord (Abs (_, T, t), Abs(_, U, u)) =
-      (case numterm_ord (t, u) of EQUAL => typ_ord (T, U) | ord => ord)
-  | numterm_ord
-     (Const(@{const_name Int.number_of}, _) $ v, Const(@{const_name Int.number_of}, _) $ w) =
-     num_ord (HOLogic.dest_numeral v, HOLogic.dest_numeral w)
-  | numterm_ord (Const(@{const_name Int.number_of}, _) $ _, _) = LESS
-  | numterm_ord (_, Const(@{const_name Int.number_of}, _) $ _) = GREATER
-  | numterm_ord (t, u) =
-      (case int_ord (size_of_term t, size_of_term u) of
-        EQUAL =>
-          let val (f, ts) = strip_comb t and (g, us) = strip_comb u in
-            (case hd_ord (f, g) of EQUAL => numterms_ord (ts, us) | ord => ord)
-          end
-      | ord => ord)
-and numterms_ord (ts, us) = list_ord numterm_ord (ts, us)
-end;
-
-fun numtermless tu = (numterm_ord tu = LESS);
-
-(*Defined in this file, but perhaps needed only for Int_Numeral_Base_Simprocs of type nat.*)
-val num_ss = HOL_ss settermless numtermless;
-
-
-(** Utilities **)
-
-fun mk_number T n = HOLogic.number_of_const T $ HOLogic.mk_numeral n;
-
-fun find_first_numeral past (t::terms) =
-        ((snd (HOLogic.dest_number t), rev past @ terms)
-         handle TERM _ => find_first_numeral (t::past) terms)
-  | find_first_numeral past [] = raise TERM("find_first_numeral", []);
-
-val mk_plus = HOLogic.mk_binop @{const_name HOL.plus};
-
-fun mk_minus t = 
-  let val T = Term.fastype_of t
-  in Const (@{const_name HOL.uminus}, T --> T) $ t end;
-
-(*Thus mk_sum[t] yields t+0; longer sums don't have a trailing zero*)
-fun mk_sum T []        = mk_number T 0
-  | mk_sum T [t,u]     = mk_plus (t, u)
-  | mk_sum T (t :: ts) = mk_plus (t, mk_sum T ts);
-
-(*this version ALWAYS includes a trailing zero*)
-fun long_mk_sum T []        = mk_number T 0
-  | long_mk_sum T (t :: ts) = mk_plus (t, mk_sum T ts);
-
-val dest_plus = HOLogic.dest_bin @{const_name HOL.plus} Term.dummyT;
-
-(*decompose additions AND subtractions as a sum*)
-fun dest_summing (pos, Const (@{const_name HOL.plus}, _) $ t $ u, ts) =
-        dest_summing (pos, t, dest_summing (pos, u, ts))
-  | dest_summing (pos, Const (@{const_name HOL.minus}, _) $ t $ u, ts) =
-        dest_summing (pos, t, dest_summing (not pos, u, ts))
-  | dest_summing (pos, t, ts) =
-        if pos then t::ts else mk_minus t :: ts;
-
-fun dest_sum t = dest_summing (true, t, []);
-
-val mk_diff = HOLogic.mk_binop @{const_name HOL.minus};
-val dest_diff = HOLogic.dest_bin @{const_name HOL.minus} Term.dummyT;
-
-val mk_times = HOLogic.mk_binop @{const_name HOL.times};
-
-fun one_of T = Const(@{const_name HOL.one},T);
-
-(* build product with trailing 1 rather than Numeral 1 in order to avoid the
-   unnecessary restriction to type class number_ring
-   which is not required for cancellation of common factors in divisions.
-*)
-fun mk_prod T = 
-  let val one = one_of T
-  fun mk [] = one
-    | mk [t] = t
-    | mk (t :: ts) = if t = one then mk ts else mk_times (t, mk ts)
-  in mk end;
-
-(*This version ALWAYS includes a trailing one*)
-fun long_mk_prod T []        = one_of T
-  | long_mk_prod T (t :: ts) = mk_times (t, mk_prod T ts);
-
-val dest_times = HOLogic.dest_bin @{const_name HOL.times} Term.dummyT;
-
-fun dest_prod t =
-      let val (t,u) = dest_times t
-      in dest_prod t @ dest_prod u end
-      handle TERM _ => [t];
-
-(*DON'T do the obvious simplifications; that would create special cases*)
-fun mk_coeff (k, t) = mk_times (mk_number (Term.fastype_of t) k, t);
-
-(*Express t as a product of (possibly) a numeral with other sorted terms*)
-fun dest_coeff sign (Const (@{const_name HOL.uminus}, _) $ t) = dest_coeff (~sign) t
-  | dest_coeff sign t =
-    let val ts = sort Term.term_ord (dest_prod t)
-        val (n, ts') = find_first_numeral [] ts
-                          handle TERM _ => (1, ts)
-    in (sign*n, mk_prod (Term.fastype_of t) ts') end;
-
-(*Find first coefficient-term THAT MATCHES u*)
-fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
-  | find_first_coeff past u (t::terms) =
-        let val (n,u') = dest_coeff 1 t
-        in if u aconv u' then (n, rev past @ terms)
-                         else find_first_coeff (t::past) u terms
-        end
-        handle TERM _ => find_first_coeff (t::past) u terms;
-
-(*Fractions as pairs of ints. Can't use Rat.rat because the representation
-  needs to preserve negative values in the denominator.*)
-fun mk_frac (p, q) = if q = 0 then raise Div else (p, q);
-
-(*Don't reduce fractions; sums must be proved by rule add_frac_eq.
-  Fractions are reduced later by the cancel_numeral_factor simproc.*)
-fun add_frac ((p1, q1), (p2, q2)) = (p1 * q2 + p2 * q1, q1 * q2);
-
-val mk_divide = HOLogic.mk_binop @{const_name HOL.divide};
-
-(*Build term (p / q) * t*)
-fun mk_fcoeff ((p, q), t) =
-  let val T = Term.fastype_of t
-  in mk_times (mk_divide (mk_number T p, mk_number T q), t) end;
-
-(*Express t as a product of a fraction with other sorted terms*)
-fun dest_fcoeff sign (Const (@{const_name HOL.uminus}, _) $ t) = dest_fcoeff (~sign) t
-  | dest_fcoeff sign (Const (@{const_name HOL.divide}, _) $ t $ u) =
-    let val (p, t') = dest_coeff sign t
-        val (q, u') = dest_coeff 1 u
-    in (mk_frac (p, q), mk_divide (t', u')) end
-  | dest_fcoeff sign t =
-    let val (p, t') = dest_coeff sign t
-        val T = Term.fastype_of t
-    in (mk_frac (p, 1), mk_divide (t', one_of T)) end;
-
-
-(*Simplify Numeral0+n, n+Numeral0, Numeral1*n, n*Numeral1, 1*x, x*1, x/1 *)
-val add_0s =  thms "add_0s";
-val mult_1s = thms "mult_1s" @ [thm"mult_1_left", thm"mult_1_right", thm"divide_1"];
-
-(*Simplify inverse Numeral1, a/Numeral1*)
-val inverse_1s = [@{thm inverse_numeral_1}];
-val divide_1s = [@{thm divide_numeral_1}];
-
-(*To perform binary arithmetic.  The "left" rewriting handles patterns
-  created by the Int_Numeral_Base_Simprocs, such as 3 * (5 * x). *)
-val simps = [@{thm numeral_0_eq_0} RS sym, @{thm numeral_1_eq_1} RS sym,
-                 @{thm add_number_of_left}, @{thm mult_number_of_left}] @
-                @{thms arith_simps} @ @{thms rel_simps};
-
-(*Binary arithmetic BUT NOT ADDITION since it may collapse adjacent terms
-  during re-arrangement*)
-val non_add_simps =
-  subtract Thm.eq_thm [@{thm add_number_of_left}, @{thm number_of_add} RS sym] simps;
-
-(*To evaluate binary negations of coefficients*)
-val minus_simps = [@{thm numeral_m1_eq_minus_1} RS sym, @{thm number_of_minus} RS sym] @
-                   @{thms minus_bin_simps} @ @{thms pred_bin_simps};
-
-(*To let us treat subtraction as addition*)
-val diff_simps = [@{thm diff_minus}, @{thm minus_add_distrib}, @{thm minus_minus}];
-
-(*To let us treat division as multiplication*)
-val divide_simps = [@{thm divide_inverse}, @{thm inverse_mult_distrib}, @{thm inverse_inverse_eq}];
-
-(*push the unary minus down: - x * y = x * - y *)
-val minus_mult_eq_1_to_2 =
-    [@{thm minus_mult_left} RS sym, @{thm minus_mult_right}] MRS trans |> standard;
-
-(*to extract again any uncancelled minuses*)
-val minus_from_mult_simps =
-    [@{thm minus_minus}, @{thm minus_mult_left} RS sym, @{thm minus_mult_right} RS sym];
-
-(*combine unary minus with numeric literals, however nested within a product*)
-val mult_minus_simps =
-    [@{thm mult_assoc}, @{thm minus_mult_left}, minus_mult_eq_1_to_2];
-
-(*Apply the given rewrite (if present) just once*)
-fun trans_tac NONE      = all_tac
-  | trans_tac (SOME th) = ALLGOALS (rtac (th RS trans));
-
-fun simplify_meta_eq rules =
-  let val ss0 = HOL_basic_ss addeqcongs [eq_cong2] addsimps rules
-  in fn ss => simplify (Simplifier.inherit_context ss ss0) o mk_meta_eq end
-
-structure CancelNumeralsCommon =
-  struct
-  val mk_sum            = mk_sum
-  val dest_sum          = dest_sum
-  val mk_coeff          = mk_coeff
-  val dest_coeff        = dest_coeff 1
-  val find_first_coeff  = find_first_coeff []
-  val trans_tac         = fn _ => trans_tac
-
-  val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @
-    diff_simps @ minus_simps @ @{thms add_ac}
-  val norm_ss2 = num_ss addsimps non_add_simps @ mult_minus_simps
-  val norm_ss3 = num_ss addsimps minus_from_mult_simps @ @{thms add_ac} @ @{thms mult_ac}
-  fun norm_tac ss =
-    ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
-    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
-    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3))
-
-  val numeral_simp_ss = HOL_ss addsimps add_0s @ simps
-  fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
-  val simplify_meta_eq = simplify_meta_eq (add_0s @ mult_1s)
-  end;
-
-
-structure EqCancelNumerals = CancelNumeralsFun
- (open CancelNumeralsCommon
-  val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
-  val mk_bal   = HOLogic.mk_eq
-  val dest_bal = HOLogic.dest_bin "op =" Term.dummyT
-  val bal_add1 = @{thm eq_add_iff1} RS trans
-  val bal_add2 = @{thm eq_add_iff2} RS trans
-);
-
-structure LessCancelNumerals = CancelNumeralsFun
- (open CancelNumeralsCommon
-  val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
-  val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less}
-  val dest_bal = HOLogic.dest_bin @{const_name HOL.less} Term.dummyT
-  val bal_add1 = @{thm less_add_iff1} RS trans
-  val bal_add2 = @{thm less_add_iff2} RS trans
-);
-
-structure LeCancelNumerals = CancelNumeralsFun
- (open CancelNumeralsCommon
-  val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
-  val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less_eq}
-  val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} Term.dummyT
-  val bal_add1 = @{thm le_add_iff1} RS trans
-  val bal_add2 = @{thm le_add_iff2} RS trans
-);
-
-val cancel_numerals =
-  map Int_Numeral_Base_Simprocs.prep_simproc
-   [("inteq_cancel_numerals",
-     ["(l::'a::number_ring) + m = n",
-      "(l::'a::number_ring) = m + n",
-      "(l::'a::number_ring) - m = n",
-      "(l::'a::number_ring) = m - n",
-      "(l::'a::number_ring) * m = n",
-      "(l::'a::number_ring) = m * n"],
-     K EqCancelNumerals.proc),
-    ("intless_cancel_numerals",
-     ["(l::'a::{ordered_idom,number_ring}) + m < n",
-      "(l::'a::{ordered_idom,number_ring}) < m + n",
-      "(l::'a::{ordered_idom,number_ring}) - m < n",
-      "(l::'a::{ordered_idom,number_ring}) < m - n",
-      "(l::'a::{ordered_idom,number_ring}) * m < n",
-      "(l::'a::{ordered_idom,number_ring}) < m * n"],
-     K LessCancelNumerals.proc),
-    ("intle_cancel_numerals",
-     ["(l::'a::{ordered_idom,number_ring}) + m <= n",
-      "(l::'a::{ordered_idom,number_ring}) <= m + n",
-      "(l::'a::{ordered_idom,number_ring}) - m <= n",
-      "(l::'a::{ordered_idom,number_ring}) <= m - n",
-      "(l::'a::{ordered_idom,number_ring}) * m <= n",
-      "(l::'a::{ordered_idom,number_ring}) <= m * n"],
-     K LeCancelNumerals.proc)];
-
-
-structure CombineNumeralsData =
-  struct
-  type coeff            = int
-  val iszero            = (fn x => x = 0)
-  val add               = op +
-  val mk_sum            = long_mk_sum    (*to work for e.g. 2*x + 3*x *)
-  val dest_sum          = dest_sum
-  val mk_coeff          = mk_coeff
-  val dest_coeff        = dest_coeff 1
-  val left_distrib      = @{thm combine_common_factor} RS trans
-  val prove_conv        = Int_Numeral_Base_Simprocs.prove_conv_nohyps
-  val trans_tac         = fn _ => trans_tac
-
-  val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @
-    diff_simps @ minus_simps @ @{thms add_ac}
-  val norm_ss2 = num_ss addsimps non_add_simps @ mult_minus_simps
-  val norm_ss3 = num_ss addsimps minus_from_mult_simps @ @{thms add_ac} @ @{thms mult_ac}
-  fun norm_tac ss =
-    ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
-    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
-    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3))
-
-  val numeral_simp_ss = HOL_ss addsimps add_0s @ simps
-  fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
-  val simplify_meta_eq = simplify_meta_eq (add_0s @ mult_1s)
-  end;
-
-structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData);
-
-(*Version for fields, where coefficients can be fractions*)
-structure FieldCombineNumeralsData =
-  struct
-  type coeff            = int * int
-  val iszero            = (fn (p, q) => p = 0)
-  val add               = add_frac
-  val mk_sum            = long_mk_sum
-  val dest_sum          = dest_sum
-  val mk_coeff          = mk_fcoeff
-  val dest_coeff        = dest_fcoeff 1
-  val left_distrib      = @{thm combine_common_factor} RS trans
-  val prove_conv        = Int_Numeral_Base_Simprocs.prove_conv_nohyps
-  val trans_tac         = fn _ => trans_tac
-
-  val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @
-    inverse_1s @ divide_simps @ diff_simps @ minus_simps @ @{thms add_ac}
-  val norm_ss2 = num_ss addsimps non_add_simps @ mult_minus_simps
-  val norm_ss3 = num_ss addsimps minus_from_mult_simps @ @{thms add_ac} @ @{thms mult_ac}
-  fun norm_tac ss =
-    ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
-    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
-    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3))
-
-  val numeral_simp_ss = HOL_ss addsimps add_0s @ simps @ [@{thm add_frac_eq}]
-  fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
-  val simplify_meta_eq = simplify_meta_eq (add_0s @ mult_1s @ divide_1s)
-  end;
-
-structure FieldCombineNumerals = CombineNumeralsFun(FieldCombineNumeralsData);
-
-val combine_numerals =
-  Int_Numeral_Base_Simprocs.prep_simproc
-    ("int_combine_numerals", 
-     ["(i::'a::number_ring) + j", "(i::'a::number_ring) - j"], 
-     K CombineNumerals.proc);
-
-val field_combine_numerals =
-  Int_Numeral_Base_Simprocs.prep_simproc
-    ("field_combine_numerals", 
-     ["(i::'a::{number_ring,field,division_by_zero}) + j",
-      "(i::'a::{number_ring,field,division_by_zero}) - j"], 
-     K FieldCombineNumerals.proc);
-
-end;
-
-Addsimprocs Int_Numeral_Simprocs.cancel_numerals;
-Addsimprocs [Int_Numeral_Simprocs.combine_numerals];
-Addsimprocs [Int_Numeral_Simprocs.field_combine_numerals];
-
-(*examples:
-print_depth 22;
-set timing;
-set trace_simp;
-fun test s = (Goal s, by (Simp_tac 1));
-
-test "l + 2 + 2 + 2 + (l + 2) + (oo + 2) = (uu::int)";
-
-test "2*u = (u::int)";
-test "(i + j + 12 + (k::int)) - 15 = y";
-test "(i + j + 12 + (k::int)) - 5 = y";
-
-test "y - b < (b::int)";
-test "y - (3*b + c) < (b::int) - 2*c";
-
-test "(2*x - (u*v) + y) - v*3*u = (w::int)";
-test "(2*x*u*v + (u*v)*4 + y) - v*u*4 = (w::int)";
-test "(2*x*u*v + (u*v)*4 + y) - v*u = (w::int)";
-test "u*v - (x*u*v + (u*v)*4 + y) = (w::int)";
-
-test "(i + j + 12 + (k::int)) = u + 15 + y";
-test "(i + j*2 + 12 + (k::int)) = j + 5 + y";
-
-test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = 2*y' + 3*z' + 6*w' + 2*y' + 3*z' + u + (vv::int)";
-
-test "a + -(b+c) + b = (d::int)";
-test "a + -(b+c) - b = (d::int)";
-
-(*negative numerals*)
-test "(i + j + -2 + (k::int)) - (u + 5 + y) = zz";
-test "(i + j + -3 + (k::int)) < u + 5 + y";
-test "(i + j + 3 + (k::int)) < u + -6 + y";
-test "(i + j + -12 + (k::int)) - 15 = y";
-test "(i + j + 12 + (k::int)) - -15 = y";
-test "(i + j + -12 + (k::int)) - -15 = y";
-*)
-
-
-(** Constant folding for multiplication in semirings **)
-
-(*We do not need folding for addition: combine_numerals does the same thing*)
-
-structure Semiring_Times_Assoc_Data : ASSOC_FOLD_DATA =
-struct
-  val assoc_ss = HOL_ss addsimps @{thms mult_ac}
-  val eq_reflection = eq_reflection
-end;
-
-structure Semiring_Times_Assoc = Assoc_Fold (Semiring_Times_Assoc_Data);
-
-val assoc_fold_simproc =
-  Int_Numeral_Base_Simprocs.prep_simproc
-   ("semiring_assoc_fold", ["(a::'a::comm_semiring_1_cancel) * b"],
-    K Semiring_Times_Assoc.proc);
-
-Addsimprocs [assoc_fold_simproc];
-
-
-
-
-(*** decision procedure for linear arithmetic ***)
-
-(*---------------------------------------------------------------------------*)
-(* Linear arithmetic                                                         *)
-(*---------------------------------------------------------------------------*)
-
-(*
-Instantiation of the generic linear arithmetic package for int.
-*)
-
-(* Update parameters of arithmetic prover *)
-local
-
-(* reduce contradictory =/</<= to False *)
-
-(* Evaluation of terms of the form "m R n" where R is one of "=", "<=" or "<",
-   and m and n are ground terms over rings (roughly speaking).
-   That is, m and n consist only of 1s combined with "+", "-" and "*".
-*)
-local
-val zeroth = (symmetric o mk_meta_eq) @{thm of_int_0};
-val lhss0 = [@{cpat "0::?'a::ring"}];
-fun proc0 phi ss ct =
-  let val T = ctyp_of_term ct
-  in if typ_of T = @{typ int} then NONE else
-     SOME (instantiate' [SOME T] [] zeroth)
-  end;
-val zero_to_of_int_zero_simproc =
-  make_simproc {lhss = lhss0, name = "zero_to_of_int_zero_simproc",
-  proc = proc0, identifier = []};
-
-val oneth = (symmetric o mk_meta_eq) @{thm of_int_1};
-val lhss1 = [@{cpat "1::?'a::ring_1"}];
-fun proc1 phi ss ct =
-  let val T = ctyp_of_term ct
-  in if typ_of T = @{typ int} then NONE else
-     SOME (instantiate' [SOME T] [] oneth)
-  end;
-val one_to_of_int_one_simproc =
-  make_simproc {lhss = lhss1, name = "one_to_of_int_one_simproc",
-  proc = proc1, identifier = []};
-
-val allowed_consts =
-  [@{const_name "op ="}, @{const_name "HOL.times"}, @{const_name "HOL.uminus"},
-   @{const_name "HOL.minus"}, @{const_name "HOL.plus"},
-   @{const_name "HOL.zero"}, @{const_name "HOL.one"}, @{const_name "HOL.less"},
-   @{const_name "HOL.less_eq"}];
-
-fun check t = case t of
-   Const(s,t) => if s = @{const_name "HOL.one"} then not (t = @{typ int})
-                else s mem_string allowed_consts
- | a$b => check a andalso check b
- | _ => false;
-
-val conv =
-  Simplifier.rewrite
-   (HOL_basic_ss addsimps
-     ((map (fn th => th RS sym) [@{thm of_int_add}, @{thm of_int_mult},
-             @{thm of_int_diff},  @{thm of_int_minus}])@
-      [@{thm of_int_less_iff}, @{thm of_int_le_iff}, @{thm of_int_eq_iff}])
-     addsimprocs [zero_to_of_int_zero_simproc,one_to_of_int_one_simproc]);
-
-fun sproc phi ss ct = if check (term_of ct) then SOME (conv ct) else NONE
-val lhss' =
-  [@{cpat "(?x::?'a::ring_char_0) = (?y::?'a)"},
-   @{cpat "(?x::?'a::ordered_idom) < (?y::?'a)"},
-   @{cpat "(?x::?'a::ordered_idom) <= (?y::?'a)"}]
-in
-val zero_one_idom_simproc =
-  make_simproc {lhss = lhss' , name = "zero_one_idom_simproc",
-  proc = sproc, identifier = []}
-end;
-
-val add_rules =
-    simp_thms @ @{thms arith_simps} @ @{thms rel_simps} @ @{thms arith_special} @
-    [@{thm neg_le_iff_le}, @{thm numeral_0_eq_0}, @{thm numeral_1_eq_1},
-     @{thm minus_zero}, @{thm diff_minus}, @{thm left_minus}, @{thm right_minus},
-     @{thm mult_zero_left}, @{thm mult_zero_right}, @{thm mult_Bit1}, @{thm mult_1_right},
-     @{thm minus_mult_left} RS sym, @{thm minus_mult_right} RS sym,
-     @{thm minus_add_distrib}, @{thm minus_minus}, @{thm mult_assoc},
-     @{thm of_nat_0}, @{thm of_nat_1}, @{thm of_nat_Suc}, @{thm of_nat_add},
-     @{thm of_nat_mult}, @{thm of_int_0}, @{thm of_int_1}, @{thm of_int_add},
-     @{thm of_int_mult}]
-
-val nat_inj_thms = [@{thm zle_int} RS iffD2, @{thm int_int_eq} RS iffD2]
-
-val Int_Numeral_Base_Simprocs = assoc_fold_simproc :: zero_one_idom_simproc
-  :: Int_Numeral_Simprocs.combine_numerals
-  :: Int_Numeral_Simprocs.cancel_numerals;
-
-in
-
-val int_arith_setup =
-  LinArith.map_data (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, neqE, simpset} =>
-   {add_mono_thms = add_mono_thms,
-    mult_mono_thms = @{thm mult_strict_left_mono} :: @{thm mult_left_mono} :: mult_mono_thms,
-    inj_thms = nat_inj_thms @ inj_thms,
-    lessD = lessD @ [@{thm zless_imp_add1_zle}],
-    neqE = neqE,
-    simpset = simpset addsimps add_rules
-                      addsimprocs Int_Numeral_Base_Simprocs
-                      addcongs [if_weak_cong]}) #>
-  arith_inj_const (@{const_name of_nat}, HOLogic.natT --> HOLogic.intT) #>
-  arith_discrete @{type_name Int.int}
-
-end;
-
-val fast_int_arith_simproc =
-  Simplifier.simproc (the_context ())
-  "fast_int_arith" 
-     ["(m::'a::{ordered_idom,number_ring}) < n",
-      "(m::'a::{ordered_idom,number_ring}) <= n",
-      "(m::'a::{ordered_idom,number_ring}) = n"] (K LinArith.lin_arith_simproc);
-
-Addsimprocs [fast_int_arith_simproc];