src/HOL/BNF_GFP.thy
changeset 55058 4e700eb471d4
parent 55024 05cc0dbf3a50
child 55059 ef2e0fb783c6
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/BNF_GFP.thy	Mon Jan 20 18:24:56 2014 +0100
@@ -0,0 +1,356 @@
+(*  Title:      HOL/BNF/BNF_GFP.thy
+    Author:     Dmitriy Traytel, TU Muenchen
+    Copyright   2012
+
+Greatest fixed point operation on bounded natural functors.
+*)
+
+header {* Greatest Fixed Point Operation on Bounded Natural Functors *}
+
+theory BNF_GFP
+imports BNF_FP_Base
+keywords
+  "codatatype" :: thy_decl and
+  "primcorecursive" :: thy_goal and
+  "primcorec" :: thy_decl
+begin
+
+setup {*
+Sign.const_alias @{binding proj} @{const_name Equiv_Relations.proj}
+*}
+
+lemma not_TrueE: "\<not> True \<Longrightarrow> P"
+by (erule notE, rule TrueI)
+
+lemma neq_eq_eq_contradict: "\<lbrakk>t \<noteq> u; s = t; s = u\<rbrakk> \<Longrightarrow> P"
+by fast
+
+lemma sum_case_expand_Inr: "f o Inl = g \<Longrightarrow> f x = sum_case g (f o Inr) x"
+by (auto split: sum.splits)
+
+lemma sum_case_expand_Inr': "f o Inl = g \<Longrightarrow> h = f o Inr \<longleftrightarrow> sum_case g h = f"
+apply rule
+ apply (rule ext, force split: sum.split)
+by (rule ext, metis sum_case_o_inj(2))
+
+lemma converse_Times: "(A \<times> B) ^-1 = B \<times> A"
+by fast
+
+lemma equiv_proj:
+  assumes e: "equiv A R" and "z \<in> R"
+  shows "(proj R o fst) z = (proj R o snd) z"
+proof -
+  from assms(2) have z: "(fst z, snd z) \<in> R" by auto
+  with e have "\<And>x. (fst z, x) \<in> R \<Longrightarrow> (snd z, x) \<in> R" "\<And>x. (snd z, x) \<in> R \<Longrightarrow> (fst z, x) \<in> R"
+    unfolding equiv_def sym_def trans_def by blast+
+  then show ?thesis unfolding proj_def[abs_def] by auto
+qed
+
+(* Operators: *)
+definition image2 where "image2 A f g = {(f a, g a) | a. a \<in> A}"
+
+lemma Id_onD: "(a, b) \<in> Id_on A \<Longrightarrow> a = b"
+unfolding Id_on_def by simp
+
+lemma Id_onD': "x \<in> Id_on A \<Longrightarrow> fst x = snd x"
+unfolding Id_on_def by auto
+
+lemma Id_on_fst: "x \<in> Id_on A \<Longrightarrow> fst x \<in> A"
+unfolding Id_on_def by auto
+
+lemma Id_on_UNIV: "Id_on UNIV = Id"
+unfolding Id_on_def by auto
+
+lemma Id_on_Comp: "Id_on A = Id_on A O Id_on A"
+unfolding Id_on_def by auto
+
+lemma Id_on_Gr: "Id_on A = Gr A id"
+unfolding Id_on_def Gr_def by auto
+
+lemma image2_eqI: "\<lbrakk>b = f x; c = g x; x \<in> A\<rbrakk> \<Longrightarrow> (b, c) \<in> image2 A f g"
+unfolding image2_def by auto
+
+lemma IdD: "(a, b) \<in> Id \<Longrightarrow> a = b"
+by auto
+
+lemma image2_Gr: "image2 A f g = (Gr A f)^-1 O (Gr A g)"
+unfolding image2_def Gr_def by auto
+
+lemma GrD1: "(x, fx) \<in> Gr A f \<Longrightarrow> x \<in> A"
+unfolding Gr_def by simp
+
+lemma GrD2: "(x, fx) \<in> Gr A f \<Longrightarrow> f x = fx"
+unfolding Gr_def by simp
+
+lemma Gr_incl: "Gr A f \<subseteq> A <*> B \<longleftrightarrow> f ` A \<subseteq> B"
+unfolding Gr_def by auto
+
+lemma subset_Collect_iff: "B \<subseteq> A \<Longrightarrow> (B \<subseteq> {x \<in> A. P x}) = (\<forall>x \<in> B. P x)"
+by blast
+
+lemma subset_CollectI: "B \<subseteq> A \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> Q x \<Longrightarrow> P x) \<Longrightarrow> ({x \<in> B. Q x} \<subseteq> {x \<in> A. P x})"
+by blast
+
+lemma in_rel_Collect_split_eq: "in_rel (Collect (split X)) = X"
+unfolding fun_eq_iff by auto
+
+lemma Collect_split_in_rel_leI: "X \<subseteq> Y \<Longrightarrow> X \<subseteq> Collect (split (in_rel Y))"
+by auto
+
+lemma Collect_split_in_rel_leE: "X \<subseteq> Collect (split (in_rel Y)) \<Longrightarrow> (X \<subseteq> Y \<Longrightarrow> R) \<Longrightarrow> R"
+by force
+
+lemma Collect_split_in_relI: "x \<in> X \<Longrightarrow> x \<in> Collect (split (in_rel X))"
+by auto
+
+lemma conversep_in_rel: "(in_rel R)\<inverse>\<inverse> = in_rel (R\<inverse>)"
+unfolding fun_eq_iff by auto
+
+lemma relcompp_in_rel: "in_rel R OO in_rel S = in_rel (R O S)"
+unfolding fun_eq_iff by auto
+
+lemma in_rel_Gr: "in_rel (Gr A f) = Grp A f"
+unfolding Gr_def Grp_def fun_eq_iff by auto
+
+lemma in_rel_Id_on_UNIV: "in_rel (Id_on UNIV) = op ="
+unfolding fun_eq_iff by auto
+
+definition relImage where
+"relImage R f \<equiv> {(f a1, f a2) | a1 a2. (a1,a2) \<in> R}"
+
+definition relInvImage where
+"relInvImage A R f \<equiv> {(a1, a2) | a1 a2. a1 \<in> A \<and> a2 \<in> A \<and> (f a1, f a2) \<in> R}"
+
+lemma relImage_Gr:
+"\<lbrakk>R \<subseteq> A \<times> A\<rbrakk> \<Longrightarrow> relImage R f = (Gr A f)^-1 O R O Gr A f"
+unfolding relImage_def Gr_def relcomp_def by auto
+
+lemma relInvImage_Gr: "\<lbrakk>R \<subseteq> B \<times> B\<rbrakk> \<Longrightarrow> relInvImage A R f = Gr A f O R O (Gr A f)^-1"
+unfolding Gr_def relcomp_def image_def relInvImage_def by auto
+
+lemma relImage_mono:
+"R1 \<subseteq> R2 \<Longrightarrow> relImage R1 f \<subseteq> relImage R2 f"
+unfolding relImage_def by auto
+
+lemma relInvImage_mono:
+"R1 \<subseteq> R2 \<Longrightarrow> relInvImage A R1 f \<subseteq> relInvImage A R2 f"
+unfolding relInvImage_def by auto
+
+lemma relInvImage_Id_on:
+"(\<And>a1 a2. f a1 = f a2 \<longleftrightarrow> a1 = a2) \<Longrightarrow> relInvImage A (Id_on B) f \<subseteq> Id"
+unfolding relInvImage_def Id_on_def by auto
+
+lemma relInvImage_UNIV_relImage:
+"R \<subseteq> relInvImage UNIV (relImage R f) f"
+unfolding relInvImage_def relImage_def by auto
+
+lemma relImage_proj:
+assumes "equiv A R"
+shows "relImage R (proj R) \<subseteq> Id_on (A//R)"
+unfolding relImage_def Id_on_def
+using proj_iff[OF assms] equiv_class_eq_iff[OF assms]
+by (auto simp: proj_preserves)
+
+lemma relImage_relInvImage:
+assumes "R \<subseteq> f ` A <*> f ` A"
+shows "relImage (relInvImage A R f) f = R"
+using assms unfolding relImage_def relInvImage_def by fast
+
+lemma subst_Pair: "P x y \<Longrightarrow> a = (x, y) \<Longrightarrow> P (fst a) (snd a)"
+by simp
+
+lemma fst_diag_id: "(fst \<circ> (%x. (x, x))) z = id z"
+by simp
+
+lemma snd_diag_id: "(snd \<circ> (%x. (x, x))) z = id z"
+by simp
+
+lemma image_convolD: "\<lbrakk>(a, b) \<in> <f, g> ` X\<rbrakk> \<Longrightarrow> \<exists>x. x \<in> X \<and> a = f x \<and> b = g x"
+unfolding convol_def by auto
+
+(*Extended Sublist*)
+
+definition clists where "clists r = |lists (Field r)|"
+
+definition prefCl where
+  "prefCl Kl = (\<forall> kl1 kl2. prefixeq kl1 kl2 \<and> kl2 \<in> Kl \<longrightarrow> kl1 \<in> Kl)"
+definition PrefCl where
+  "PrefCl A n = (\<forall>kl kl'. kl \<in> A n \<and> prefixeq kl' kl \<longrightarrow> (\<exists>m\<le>n. kl' \<in> A m))"
+
+lemma prefCl_UN:
+  "\<lbrakk>\<And>n. PrefCl A n\<rbrakk> \<Longrightarrow> prefCl (\<Union>n. A n)"
+unfolding prefCl_def PrefCl_def by fastforce
+
+definition Succ where "Succ Kl kl = {k . kl @ [k] \<in> Kl}"
+definition Shift where "Shift Kl k = {kl. k # kl \<in> Kl}"
+definition shift where "shift lab k = (\<lambda>kl. lab (k # kl))"
+
+lemma empty_Shift: "\<lbrakk>[] \<in> Kl; k \<in> Succ Kl []\<rbrakk> \<Longrightarrow> [] \<in> Shift Kl k"
+unfolding Shift_def Succ_def by simp
+
+lemma Shift_clists: "Kl \<subseteq> Field (clists r) \<Longrightarrow> Shift Kl k \<subseteq> Field (clists r)"
+unfolding Shift_def clists_def Field_card_of by auto
+
+lemma Shift_prefCl: "prefCl Kl \<Longrightarrow> prefCl (Shift Kl k)"
+unfolding prefCl_def Shift_def
+proof safe
+  fix kl1 kl2
+  assume "\<forall>kl1 kl2. prefixeq kl1 kl2 \<and> kl2 \<in> Kl \<longrightarrow> kl1 \<in> Kl"
+    "prefixeq kl1 kl2" "k # kl2 \<in> Kl"
+  thus "k # kl1 \<in> Kl" using Cons_prefixeq_Cons[of k kl1 k kl2] by blast
+qed
+
+lemma not_in_Shift: "kl \<notin> Shift Kl x \<Longrightarrow> x # kl \<notin> Kl"
+unfolding Shift_def by simp
+
+lemma SuccD: "k \<in> Succ Kl kl \<Longrightarrow> kl @ [k] \<in> Kl"
+unfolding Succ_def by simp
+
+lemmas SuccE = SuccD[elim_format]
+
+lemma SuccI: "kl @ [k] \<in> Kl \<Longrightarrow> k \<in> Succ Kl kl"
+unfolding Succ_def by simp
+
+lemma ShiftD: "kl \<in> Shift Kl k \<Longrightarrow> k # kl \<in> Kl"
+unfolding Shift_def by simp
+
+lemma Succ_Shift: "Succ (Shift Kl k) kl = Succ Kl (k # kl)"
+unfolding Succ_def Shift_def by auto
+
+lemma Nil_clists: "{[]} \<subseteq> Field (clists r)"
+unfolding clists_def Field_card_of by auto
+
+lemma Cons_clists:
+  "\<lbrakk>x \<in> Field r; xs \<in> Field (clists r)\<rbrakk> \<Longrightarrow> x # xs \<in> Field (clists r)"
+unfolding clists_def Field_card_of by auto
+
+lemma length_Cons: "length (x # xs) = Suc (length xs)"
+by simp
+
+lemma length_append_singleton: "length (xs @ [x]) = Suc (length xs)"
+by simp
+
+(*injection into the field of a cardinal*)
+definition "toCard_pred A r f \<equiv> inj_on f A \<and> f ` A \<subseteq> Field r \<and> Card_order r"
+definition "toCard A r \<equiv> SOME f. toCard_pred A r f"
+
+lemma ex_toCard_pred:
+"\<lbrakk>|A| \<le>o r; Card_order r\<rbrakk> \<Longrightarrow> \<exists> f. toCard_pred A r f"
+unfolding toCard_pred_def
+using card_of_ordLeq[of A "Field r"]
+      ordLeq_ordIso_trans[OF _ card_of_unique[of "Field r" r], of "|A|"]
+by blast
+
+lemma toCard_pred_toCard:
+  "\<lbrakk>|A| \<le>o r; Card_order r\<rbrakk> \<Longrightarrow> toCard_pred A r (toCard A r)"
+unfolding toCard_def using someI_ex[OF ex_toCard_pred] .
+
+lemma toCard_inj: "\<lbrakk>|A| \<le>o r; Card_order r; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow>
+  toCard A r x = toCard A r y \<longleftrightarrow> x = y"
+using toCard_pred_toCard unfolding inj_on_def toCard_pred_def by blast
+
+lemma toCard: "\<lbrakk>|A| \<le>o r; Card_order r; b \<in> A\<rbrakk> \<Longrightarrow> toCard A r b \<in> Field r"
+using toCard_pred_toCard unfolding toCard_pred_def by blast
+
+definition "fromCard A r k \<equiv> SOME b. b \<in> A \<and> toCard A r b = k"
+
+lemma fromCard_toCard:
+"\<lbrakk>|A| \<le>o r; Card_order r; b \<in> A\<rbrakk> \<Longrightarrow> fromCard A r (toCard A r b) = b"
+unfolding fromCard_def by (rule some_equality) (auto simp add: toCard_inj)
+
+lemma Inl_Field_csum: "a \<in> Field r \<Longrightarrow> Inl a \<in> Field (r +c s)"
+unfolding Field_card_of csum_def by auto
+
+lemma Inr_Field_csum: "a \<in> Field s \<Longrightarrow> Inr a \<in> Field (r +c s)"
+unfolding Field_card_of csum_def by auto
+
+lemma nat_rec_0: "f = nat_rec f1 (%n rec. f2 n rec) \<Longrightarrow> f 0 = f1"
+by auto
+
+lemma nat_rec_Suc: "f = nat_rec f1 (%n rec. f2 n rec) \<Longrightarrow> f (Suc n) = f2 n (f n)"
+by auto
+
+lemma list_rec_Nil: "f = list_rec f1 (%x xs rec. f2 x xs rec) \<Longrightarrow> f [] = f1"
+by auto
+
+lemma list_rec_Cons: "f = list_rec f1 (%x xs rec. f2 x xs rec) \<Longrightarrow> f (x # xs) = f2 x xs (f xs)"
+by auto
+
+lemma not_arg_cong_Inr: "x \<noteq> y \<Longrightarrow> Inr x \<noteq> Inr y"
+by simp
+
+lemma Collect_splitD: "x \<in> Collect (split A) \<Longrightarrow> A (fst x) (snd x)"
+by auto
+
+definition image2p where
+  "image2p f g R = (\<lambda>x y. \<exists>x' y'. R x' y' \<and> f x' = x \<and> g y' = y)"
+
+lemma image2pI: "R x y \<Longrightarrow> (image2p f g R) (f x) (g y)"
+  unfolding image2p_def by blast
+
+lemma image2pE: "\<lbrakk>(image2p f g R) fx gy; (\<And>x y. fx = f x \<Longrightarrow> gy = g y \<Longrightarrow> R x y \<Longrightarrow> P)\<rbrakk> \<Longrightarrow> P"
+  unfolding image2p_def by blast
+
+lemma fun_rel_iff_geq_image2p: "(fun_rel R S) f g = (image2p f g R \<le> S)"
+  unfolding fun_rel_def image2p_def by auto
+
+lemma fun_rel_image2p: "(fun_rel R (image2p f g R)) f g"
+  unfolding fun_rel_def image2p_def by auto
+
+
+subsection {* Equivalence relations, quotients, and Hilbert's choice *}
+
+lemma equiv_Eps_in:
+"\<lbrakk>equiv A r; X \<in> A//r\<rbrakk> \<Longrightarrow> Eps (%x. x \<in> X) \<in> X"
+apply (rule someI2_ex)
+using in_quotient_imp_non_empty by blast
+
+lemma equiv_Eps_preserves:
+assumes ECH: "equiv A r" and X: "X \<in> A//r"
+shows "Eps (%x. x \<in> X) \<in> A"
+apply (rule in_mono[rule_format])
+ using assms apply (rule in_quotient_imp_subset)
+by (rule equiv_Eps_in) (rule assms)+
+
+lemma proj_Eps:
+assumes "equiv A r" and "X \<in> A//r"
+shows "proj r (Eps (%x. x \<in> X)) = X"
+unfolding proj_def proof auto
+  fix x assume x: "x \<in> X"
+  thus "(Eps (%x. x \<in> X), x) \<in> r" using assms equiv_Eps_in in_quotient_imp_in_rel by fast
+next
+  fix x assume "(Eps (%x. x \<in> X),x) \<in> r"
+  thus "x \<in> X" using in_quotient_imp_closed[OF assms equiv_Eps_in[OF assms]] by fast
+qed
+
+definition univ where "univ f X == f (Eps (%x. x \<in> X))"
+
+lemma univ_commute:
+assumes ECH: "equiv A r" and RES: "f respects r" and x: "x \<in> A"
+shows "(univ f) (proj r x) = f x"
+unfolding univ_def proof -
+  have prj: "proj r x \<in> A//r" using x proj_preserves by fast
+  hence "Eps (%y. y \<in> proj r x) \<in> A" using ECH equiv_Eps_preserves by fast
+  moreover have "proj r (Eps (%y. y \<in> proj r x)) = proj r x" using ECH prj proj_Eps by fast
+  ultimately have "(x, Eps (%y. y \<in> proj r x)) \<in> r" using x ECH proj_iff by fast
+  thus "f (Eps (%y. y \<in> proj r x)) = f x" using RES unfolding congruent_def by fastforce
+qed
+
+lemma univ_preserves:
+assumes ECH: "equiv A r" and RES: "f respects r" and
+        PRES: "\<forall> x \<in> A. f x \<in> B"
+shows "\<forall> X \<in> A//r. univ f X \<in> B"
+proof
+  fix X assume "X \<in> A//r"
+  then obtain x where x: "x \<in> A" and X: "X = proj r x" using ECH proj_image[of r A] by blast
+  hence "univ f X = f x" using assms univ_commute by fastforce
+  thus "univ f X \<in> B" using x PRES by simp
+qed
+
+ML_file "Tools/bnf_gfp_rec_sugar_tactics.ML"
+ML_file "Tools/bnf_gfp_rec_sugar.ML"
+ML_file "Tools/bnf_gfp_util.ML"
+ML_file "Tools/bnf_gfp_tactics.ML"
+ML_file "Tools/bnf_gfp.ML"
+
+end