src/HOL/BNF_LFP.thy
changeset 55058 4e700eb471d4
parent 55023 38db7814481d
child 55059 ef2e0fb783c6
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/BNF_LFP.thy	Mon Jan 20 18:24:56 2014 +0100
@@ -0,0 +1,243 @@
+(*  Title:      HOL/BNF/BNF_LFP.thy
+    Author:     Dmitriy Traytel, TU Muenchen
+    Author:     Lorenz Panny, TU Muenchen
+    Author:     Jasmin Blanchette, TU Muenchen
+    Copyright   2012, 2013
+
+Least fixed point operation on bounded natural functors.
+*)
+
+header {* Least Fixed Point Operation on Bounded Natural Functors *}
+
+theory BNF_LFP
+imports BNF_FP_Base
+keywords
+  "datatype_new" :: thy_decl and
+  "datatype_new_compat" :: thy_decl and
+  "primrec_new" :: thy_decl
+begin
+
+lemma subset_emptyI: "(\<And>x. x \<in> A \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> {}"
+by blast
+
+lemma image_Collect_subsetI:
+  "(\<And>x. P x \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` {x. P x} \<subseteq> B"
+by blast
+
+lemma Collect_restrict: "{x. x \<in> X \<and> P x} \<subseteq> X"
+by auto
+
+lemma prop_restrict: "\<lbrakk>x \<in> Z; Z \<subseteq> {x. x \<in> X \<and> P x}\<rbrakk> \<Longrightarrow> P x"
+by auto
+
+lemma underS_I: "\<lbrakk>i \<noteq> j; (i, j) \<in> R\<rbrakk> \<Longrightarrow> i \<in> underS R j"
+unfolding underS_def by simp
+
+lemma underS_E: "i \<in> underS R j \<Longrightarrow> i \<noteq> j \<and> (i, j) \<in> R"
+unfolding underS_def by simp
+
+lemma underS_Field: "i \<in> underS R j \<Longrightarrow> i \<in> Field R"
+unfolding underS_def Field_def by auto
+
+lemma FieldI2: "(i, j) \<in> R \<Longrightarrow> j \<in> Field R"
+unfolding Field_def by auto
+
+lemma fst_convol': "fst (<f, g> x) = f x"
+using fst_convol unfolding convol_def by simp
+
+lemma snd_convol': "snd (<f, g> x) = g x"
+using snd_convol unfolding convol_def by simp
+
+lemma convol_expand_snd: "fst o f = g \<Longrightarrow>  <g, snd o f> = f"
+unfolding convol_def by auto
+
+lemma convol_expand_snd': "(fst o f = g) \<Longrightarrow> (h = snd o f) \<longleftrightarrow> (<g, h> = f)"
+  by (metis convol_expand_snd snd_convol)
+
+definition inver where
+  "inver g f A = (ALL a : A. g (f a) = a)"
+
+lemma bij_betw_iff_ex:
+  "bij_betw f A B = (EX g. g ` B = A \<and> inver g f A \<and> inver f g B)" (is "?L = ?R")
+proof (rule iffI)
+  assume ?L
+  hence f: "f ` A = B" and inj_f: "inj_on f A" unfolding bij_betw_def by auto
+  let ?phi = "% b a. a : A \<and> f a = b"
+  have "ALL b : B. EX a. ?phi b a" using f by blast
+  then obtain g where g: "ALL b : B. g b : A \<and> f (g b) = b"
+    using bchoice[of B ?phi] by blast
+  hence gg: "ALL b : f ` A. g b : A \<and> f (g b) = b" using f by blast
+  have gf: "inver g f A" unfolding inver_def
+    by (metis (no_types) gg imageI[of _ A f] the_inv_into_f_f[OF inj_f])
+  moreover have "g ` B \<le> A \<and> inver f g B" using g unfolding inver_def by blast
+  moreover have "A \<le> g ` B"
+  proof safe
+    fix a assume a: "a : A"
+    hence "f a : B" using f by auto
+    moreover have "a = g (f a)" using a gf unfolding inver_def by auto
+    ultimately show "a : g ` B" by blast
+  qed
+  ultimately show ?R by blast
+next
+  assume ?R
+  then obtain g where g: "g ` B = A \<and> inver g f A \<and> inver f g B" by blast
+  show ?L unfolding bij_betw_def
+  proof safe
+    show "inj_on f A" unfolding inj_on_def
+    proof safe
+      fix a1 a2 assume a: "a1 : A"  "a2 : A" and "f a1 = f a2"
+      hence "g (f a1) = g (f a2)" by simp
+      thus "a1 = a2" using a g unfolding inver_def by simp
+    qed
+  next
+    fix a assume "a : A"
+    then obtain b where b: "b : B" and a: "a = g b" using g by blast
+    hence "b = f (g b)" using g unfolding inver_def by auto
+    thus "f a : B" unfolding a using b by simp
+  next
+    fix b assume "b : B"
+    hence "g b : A \<and> b = f (g b)" using g unfolding inver_def by auto
+    thus "b : f ` A" by auto
+  qed
+qed
+
+lemma bij_betw_ex_weakE:
+  "\<lbrakk>bij_betw f A B\<rbrakk> \<Longrightarrow> \<exists>g. g ` B \<subseteq> A \<and> inver g f A \<and> inver f g B"
+by (auto simp only: bij_betw_iff_ex)
+
+lemma inver_surj: "\<lbrakk>g ` B \<subseteq> A; f ` A \<subseteq> B; inver g f A\<rbrakk> \<Longrightarrow> g ` B = A"
+unfolding inver_def by auto (rule rev_image_eqI, auto)
+
+lemma inver_mono: "\<lbrakk>A \<subseteq> B; inver f g B\<rbrakk> \<Longrightarrow> inver f g A"
+unfolding inver_def by auto
+
+lemma inver_pointfree: "inver f g A = (\<forall>a \<in> A. (f o g) a = a)"
+unfolding inver_def by simp
+
+lemma bij_betwE: "bij_betw f A B \<Longrightarrow> \<forall>a\<in>A. f a \<in> B"
+unfolding bij_betw_def by auto
+
+lemma bij_betw_imageE: "bij_betw f A B \<Longrightarrow> f ` A = B"
+unfolding bij_betw_def by auto
+
+lemma inverE: "\<lbrakk>inver f f' A; x \<in> A\<rbrakk> \<Longrightarrow> f (f' x) = x"
+unfolding inver_def by auto
+
+lemma bij_betw_inver1: "bij_betw f A B \<Longrightarrow> inver (inv_into A f) f A"
+unfolding bij_betw_def inver_def by auto
+
+lemma bij_betw_inver2: "bij_betw f A B \<Longrightarrow> inver f (inv_into A f) B"
+unfolding bij_betw_def inver_def by auto
+
+lemma bij_betwI: "\<lbrakk>bij_betw g B A; inver g f A; inver f g B\<rbrakk> \<Longrightarrow> bij_betw f A B"
+by (drule bij_betw_imageE, unfold bij_betw_iff_ex) blast
+
+lemma bij_betwI':
+  "\<lbrakk>\<And>x y. \<lbrakk>x \<in> X; y \<in> X\<rbrakk> \<Longrightarrow> (f x = f y) = (x = y);
+    \<And>x. x \<in> X \<Longrightarrow> f x \<in> Y;
+    \<And>y. y \<in> Y \<Longrightarrow> \<exists>x \<in> X. y = f x\<rbrakk> \<Longrightarrow> bij_betw f X Y"
+unfolding bij_betw_def inj_on_def by blast
+
+lemma surj_fun_eq:
+  assumes surj_on: "f ` X = UNIV" and eq_on: "\<forall>x \<in> X. (g1 o f) x = (g2 o f) x"
+  shows "g1 = g2"
+proof (rule ext)
+  fix y
+  from surj_on obtain x where "x \<in> X" and "y = f x" by blast
+  thus "g1 y = g2 y" using eq_on by simp
+qed
+
+lemma Card_order_wo_rel: "Card_order r \<Longrightarrow> wo_rel r"
+unfolding wo_rel_def card_order_on_def by blast
+
+lemma Cinfinite_limit: "\<lbrakk>x \<in> Field r; Cinfinite r\<rbrakk> \<Longrightarrow>
+  \<exists>y \<in> Field r. x \<noteq> y \<and> (x, y) \<in> r"
+unfolding cinfinite_def by (auto simp add: infinite_Card_order_limit)
+
+lemma Card_order_trans:
+  "\<lbrakk>Card_order r; x \<noteq> y; (x, y) \<in> r; y \<noteq> z; (y, z) \<in> r\<rbrakk> \<Longrightarrow> x \<noteq> z \<and> (x, z) \<in> r"
+unfolding card_order_on_def well_order_on_def linear_order_on_def
+  partial_order_on_def preorder_on_def trans_def antisym_def by blast
+
+lemma Cinfinite_limit2:
+ assumes x1: "x1 \<in> Field r" and x2: "x2 \<in> Field r" and r: "Cinfinite r"
+ shows "\<exists>y \<in> Field r. (x1 \<noteq> y \<and> (x1, y) \<in> r) \<and> (x2 \<noteq> y \<and> (x2, y) \<in> r)"
+proof -
+  from r have trans: "trans r" and total: "Total r" and antisym: "antisym r"
+    unfolding card_order_on_def well_order_on_def linear_order_on_def
+      partial_order_on_def preorder_on_def by auto
+  obtain y1 where y1: "y1 \<in> Field r" "x1 \<noteq> y1" "(x1, y1) \<in> r"
+    using Cinfinite_limit[OF x1 r] by blast
+  obtain y2 where y2: "y2 \<in> Field r" "x2 \<noteq> y2" "(x2, y2) \<in> r"
+    using Cinfinite_limit[OF x2 r] by blast
+  show ?thesis
+  proof (cases "y1 = y2")
+    case True with y1 y2 show ?thesis by blast
+  next
+    case False
+    with y1(1) y2(1) total have "(y1, y2) \<in> r \<or> (y2, y1) \<in> r"
+      unfolding total_on_def by auto
+    thus ?thesis
+    proof
+      assume *: "(y1, y2) \<in> r"
+      with trans y1(3) have "(x1, y2) \<in> r" unfolding trans_def by blast
+      with False y1 y2 * antisym show ?thesis by (cases "x1 = y2") (auto simp: antisym_def)
+    next
+      assume *: "(y2, y1) \<in> r"
+      with trans y2(3) have "(x2, y1) \<in> r" unfolding trans_def by blast
+      with False y1 y2 * antisym show ?thesis by (cases "x2 = y1") (auto simp: antisym_def)
+    qed
+  qed
+qed
+
+lemma Cinfinite_limit_finite: "\<lbrakk>finite X; X \<subseteq> Field r; Cinfinite r\<rbrakk>
+ \<Longrightarrow> \<exists>y \<in> Field r. \<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)"
+proof (induct X rule: finite_induct)
+  case empty thus ?case unfolding cinfinite_def using ex_in_conv[of "Field r"] finite.emptyI by auto
+next
+  case (insert x X)
+  then obtain y where y: "y \<in> Field r" "\<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" by blast
+  then obtain z where z: "z \<in> Field r" "x \<noteq> z \<and> (x, z) \<in> r" "y \<noteq> z \<and> (y, z) \<in> r"
+    using Cinfinite_limit2[OF _ y(1) insert(5), of x] insert(4) by blast
+  show ?case
+    apply (intro bexI ballI)
+    apply (erule insertE)
+    apply hypsubst
+    apply (rule z(2))
+    using Card_order_trans[OF insert(5)[THEN conjunct2]] y(2) z(3)
+    apply blast
+    apply (rule z(1))
+    done
+qed
+
+lemma insert_subsetI: "\<lbrakk>x \<in> A; X \<subseteq> A\<rbrakk> \<Longrightarrow> insert x X \<subseteq> A"
+by auto
+
+(*helps resolution*)
+lemma well_order_induct_imp:
+  "wo_rel r \<Longrightarrow> (\<And>x. \<forall>y. y \<noteq> x \<and> (y, x) \<in> r \<longrightarrow> y \<in> Field r \<longrightarrow> P y \<Longrightarrow> x \<in> Field r \<longrightarrow> P x) \<Longrightarrow>
+     x \<in> Field r \<longrightarrow> P x"
+by (erule wo_rel.well_order_induct)
+
+lemma meta_spec2:
+  assumes "(\<And>x y. PROP P x y)"
+  shows "PROP P x y"
+by (rule `(\<And>x y. PROP P x y)`)
+
+lemma nchotomy_relcomppE:
+  "\<lbrakk>\<And>y. \<exists>x. y = f x; (r OO s) a c; (\<And>b. r a (f b) \<Longrightarrow> s (f b) c \<Longrightarrow> P)\<rbrakk> \<Longrightarrow> P"
+  by (metis relcompp.cases)
+
+lemma vimage2p_fun_rel: "(fun_rel (vimage2p f g R) R) f g"
+  unfolding fun_rel_def vimage2p_def by auto
+
+lemma predicate2D_vimage2p: "\<lbrakk>R \<le> vimage2p f g S; R x y\<rbrakk> \<Longrightarrow> S (f x) (g y)"
+  unfolding vimage2p_def by auto
+
+ML_file "Tools/bnf_lfp_rec_sugar.ML"
+ML_file "Tools/bnf_lfp_util.ML"
+ML_file "Tools/bnf_lfp_tactics.ML"
+ML_file "Tools/bnf_lfp.ML"
+ML_file "Tools/bnf_lfp_compat.ML"
+
+end