src/HOL/NewNumberTheory/Residues.thy
changeset 32479 521cc9bf2958
parent 32478 87201c60ae7d
child 32480 6c19da8e661a
--- a/src/HOL/NewNumberTheory/Residues.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,466 +0,0 @@
-(*  Title:      HOL/Library/Residues.thy
-    ID:         
-    Author:     Jeremy Avigad
-
-    An algebraic treatment of residue rings, and resulting proofs of
-    Euler's theorem and Wilson's theorem. 
-*)
-
-header {* Residue rings *}
-
-theory Residues
-imports
-   UniqueFactorization
-   Binomial
-   MiscAlgebra
-begin
-
-
-(*
- 
-  A locale for residue rings
-
-*)
-
-constdefs 
-  residue_ring :: "int => int ring"
-  "residue_ring m == (| 
-    carrier =       {0..m - 1}, 
-    mult =          (%x y. (x * y) mod m),
-    one =           1,
-    zero =          0,
-    add =           (%x y. (x + y) mod m) |)"
-
-locale residues =
-  fixes m :: int and R (structure)
-  assumes m_gt_one: "m > 1"
-  defines "R == residue_ring m"
-
-context residues begin
-
-lemma abelian_group: "abelian_group R"
-  apply (insert m_gt_one)
-  apply (rule abelian_groupI)
-  apply (unfold R_def residue_ring_def)
-  apply (auto simp add: mod_pos_pos_trivial mod_add_right_eq [symmetric]
-    add_ac)
-  apply (case_tac "x = 0")
-  apply force
-  apply (subgoal_tac "(x + (m - x)) mod m = 0")
-  apply (erule bexI)
-  apply auto
-done
-
-lemma comm_monoid: "comm_monoid R"
-  apply (insert m_gt_one)
-  apply (unfold R_def residue_ring_def)
-  apply (rule comm_monoidI)
-  apply auto
-  apply (subgoal_tac "x * y mod m * z mod m = z * (x * y mod m) mod m")
-  apply (erule ssubst)
-  apply (subst zmod_zmult1_eq [symmetric])+
-  apply (simp_all only: mult_ac)
-done
-
-lemma cring: "cring R"
-  apply (rule cringI)
-  apply (rule abelian_group)
-  apply (rule comm_monoid)
-  apply (unfold R_def residue_ring_def, auto)
-  apply (subst mod_add_eq [symmetric])
-  apply (subst mult_commute)
-  apply (subst zmod_zmult1_eq [symmetric])
-  apply (simp add: ring_simps)
-done
-
-end
-
-sublocale residues < cring
-  by (rule cring)
-
-
-context residues begin
-
-(* These lemmas translate back and forth between internal and 
-   external concepts *)
-
-lemma res_carrier_eq: "carrier R = {0..m - 1}"
-  by (unfold R_def residue_ring_def, auto)
-
-lemma res_add_eq: "x \<oplus> y = (x + y) mod m"
-  by (unfold R_def residue_ring_def, auto)
-
-lemma res_mult_eq: "x \<otimes> y = (x * y) mod m"
-  by (unfold R_def residue_ring_def, auto)
-
-lemma res_zero_eq: "\<zero> = 0"
-  by (unfold R_def residue_ring_def, auto)
-
-lemma res_one_eq: "\<one> = 1"
-  by (unfold R_def residue_ring_def units_of_def residue_ring_def, auto)
-
-lemma res_units_eq: "Units R = { x. 0 < x & x < m & coprime x m}"
-  apply (insert m_gt_one)
-  apply (unfold Units_def R_def residue_ring_def)
-  apply auto
-  apply (subgoal_tac "x ~= 0")
-  apply auto
-  apply (rule invertible_coprime_int)
-  apply (subgoal_tac "x ~= 0")
-  apply auto
-  apply (subst (asm) coprime_iff_invertible'_int)
-  apply (rule m_gt_one)
-  apply (auto simp add: cong_int_def mult_commute)
-done
-
-lemma res_neg_eq: "\<ominus> x = (- x) mod m"
-  apply (insert m_gt_one)
-  apply (unfold R_def a_inv_def m_inv_def residue_ring_def)
-  apply auto
-  apply (rule the_equality)
-  apply auto
-  apply (subst mod_add_right_eq [symmetric])
-  apply auto
-  apply (subst mod_add_left_eq [symmetric])
-  apply auto
-  apply (subgoal_tac "y mod m = - x mod m")
-  apply simp
-  apply (subst zmod_eq_dvd_iff)
-  apply auto
-done
-
-lemma finite [iff]: "finite(carrier R)"
-  by (subst res_carrier_eq, auto)
-
-lemma finite_Units [iff]: "finite(Units R)"
-  by (subst res_units_eq, auto)
-
-(* The function a -> a mod m maps the integers to the 
-   residue classes. The following lemmas show that this mapping 
-   respects addition and multiplication on the integers. *)
-
-lemma mod_in_carrier [iff]: "a mod m : carrier R"
-  apply (unfold res_carrier_eq)
-  apply (insert m_gt_one, auto)
-done
-
-lemma add_cong: "(x mod m) \<oplus> (y mod m) = (x + y) mod m"
-  by (unfold R_def residue_ring_def, auto, arith)
-
-lemma mult_cong: "(x mod m) \<otimes> (y mod m) = (x * y) mod m"
-  apply (unfold R_def residue_ring_def, auto)
-  apply (subst zmod_zmult1_eq [symmetric])
-  apply (subst mult_commute)
-  apply (subst zmod_zmult1_eq [symmetric])
-  apply (subst mult_commute)
-  apply auto
-done  
-
-lemma zero_cong: "\<zero> = 0"
-  apply (unfold R_def residue_ring_def, auto)
-done
-
-lemma one_cong: "\<one> = 1 mod m"
-  apply (insert m_gt_one)
-  apply (unfold R_def residue_ring_def, auto)
-done
-
-(* revise algebra library to use 1? *)
-lemma pow_cong: "(x mod m) (^) n = x^n mod m"
-  apply (insert m_gt_one)
-  apply (induct n)
-  apply (auto simp add: nat_pow_def one_cong One_nat_def)
-  apply (subst mult_commute)
-  apply (rule mult_cong)
-done
-
-lemma neg_cong: "\<ominus> (x mod m) = (- x) mod m"
-  apply (rule sym)
-  apply (rule sum_zero_eq_neg)
-  apply auto
-  apply (subst add_cong)
-  apply (subst zero_cong)
-  apply auto
-done
-
-lemma (in residues) prod_cong: 
-  "finite A \<Longrightarrow> (\<Otimes> i:A. (f i) mod m) = (PROD i:A. f i) mod m"
-  apply (induct set: finite)
-  apply (auto simp: one_cong mult_cong)
-done
-
-lemma (in residues) sum_cong:
-  "finite A \<Longrightarrow> (\<Oplus> i:A. (f i) mod m) = (SUM i: A. f i) mod m"
-  apply (induct set: finite)
-  apply (auto simp: zero_cong add_cong)
-done
-
-lemma mod_in_res_units [simp]: "1 < m \<Longrightarrow> coprime a m \<Longrightarrow> 
-    a mod m : Units R"
-  apply (subst res_units_eq, auto)
-  apply (insert pos_mod_sign [of m a])
-  apply (subgoal_tac "a mod m ~= 0")
-  apply arith
-  apply auto
-  apply (subst (asm) gcd_red_int)
-  apply (subst gcd_commute_int, assumption)
-done
-
-lemma res_eq_to_cong: "((a mod m) = (b mod m)) = [a = b] (mod (m::int))" 
-  unfolding cong_int_def by auto
-
-(* Simplifying with these will translate a ring equation in R to a 
-   congruence. *)
-
-lemmas res_to_cong_simps = add_cong mult_cong pow_cong one_cong
-    prod_cong sum_cong neg_cong res_eq_to_cong
-
-(* Other useful facts about the residue ring *)
-
-lemma one_eq_neg_one: "\<one> = \<ominus> \<one> \<Longrightarrow> m = 2"
-  apply (simp add: res_one_eq res_neg_eq)
-  apply (insert m_gt_one)
-  apply (subgoal_tac "~(m > 2)")
-  apply arith
-  apply (rule notI)
-  apply (subgoal_tac "-1 mod m = m - 1")
-  apply force
-  apply (subst mod_add_self2 [symmetric])
-  apply (subst mod_pos_pos_trivial)
-  apply auto
-done
-
-end
-
-
-(* prime residues *)
-
-locale residues_prime =
-  fixes p :: int and R (structure)
-  assumes p_prime [intro]: "prime p"
-  defines "R == residue_ring p"
-
-sublocale residues_prime < residues p
-  apply (unfold R_def residues_def)
-  using p_prime apply auto
-done
-
-context residues_prime begin
-
-lemma is_field: "field R"
-  apply (rule cring.field_intro2)
-  apply (rule cring)
-  apply (auto simp add: res_carrier_eq res_one_eq res_zero_eq
-    res_units_eq)
-  apply (rule classical)
-  apply (erule notE)
-  apply (subst gcd_commute_int)
-  apply (rule prime_imp_coprime_int)
-  apply (rule p_prime)
-  apply (rule notI)
-  apply (frule zdvd_imp_le)
-  apply auto
-done
-
-lemma res_prime_units_eq: "Units R = {1..p - 1}"
-  apply (subst res_units_eq)
-  apply auto
-  apply (subst gcd_commute_int)
-  apply (rule prime_imp_coprime_int)
-  apply (rule p_prime)
-  apply (rule zdvd_not_zless)
-  apply auto
-done
-
-end
-
-sublocale residues_prime < field
-  by (rule is_field)
-
-
-(*
-  Test cases: Euler's theorem and Wilson's theorem.
-*)
-
-
-subsection{* Euler's theorem *}
-
-(* the definition of the phi function *)
-
-constdefs
-  phi :: "int => nat"
-  "phi m == card({ x. 0 < x & x < m & gcd x m = 1})" 
-
-lemma phi_zero [simp]: "phi 0 = 0"
-  apply (subst phi_def)
-(* Auto hangs here. Once again, where is the simplification rule 
-   1 == Suc 0 coming from? *)
-  apply (auto simp add: card_eq_0_iff)
-(* Add card_eq_0_iff as a simp rule? delete card_empty_imp? *)
-done
-
-lemma phi_one [simp]: "phi 1 = 0"
-  apply (auto simp add: phi_def card_eq_0_iff)
-done
-
-lemma (in residues) phi_eq: "phi m = card(Units R)"
-  by (simp add: phi_def res_units_eq)
-
-lemma (in residues) euler_theorem1: 
-  assumes a: "gcd a m = 1"
-  shows "[a^phi m = 1] (mod m)"
-proof -
-  from a m_gt_one have [simp]: "a mod m : Units R"
-    by (intro mod_in_res_units)
-  from phi_eq have "(a mod m) (^) (phi m) = (a mod m) (^) (card (Units R))"
-    by simp
-  also have "\<dots> = \<one>" 
-    by (intro units_power_order_eq_one, auto)
-  finally show ?thesis
-    by (simp add: res_to_cong_simps)
-qed
-
-(* In fact, there is a two line proof!
-
-lemma (in residues) euler_theorem1: 
-  assumes a: "gcd a m = 1"
-  shows "[a^phi m = 1] (mod m)"
-proof -
-  have "(a mod m) (^) (phi m) = \<one>"
-    by (simp add: phi_eq units_power_order_eq_one a m_gt_one)
-  thus ?thesis
-    by (simp add: res_to_cong_simps)
-qed
-
-*)
-
-(* outside the locale, we can relax the restriction m > 1 *)
-
-lemma euler_theorem:
-  assumes "m >= 0" and "gcd a m = 1"
-  shows "[a^phi m = 1] (mod m)"
-proof (cases)
-  assume "m = 0 | m = 1"
-  thus ?thesis by auto
-next
-  assume "~(m = 0 | m = 1)"
-  with prems show ?thesis
-    by (intro residues.euler_theorem1, unfold residues_def, auto)
-qed
-
-lemma (in residues_prime) phi_prime: "phi p = (nat p - 1)"
-  apply (subst phi_eq)
-  apply (subst res_prime_units_eq)
-  apply auto
-done
-
-lemma phi_prime: "prime p \<Longrightarrow> phi p = (nat p - 1)"
-  apply (rule residues_prime.phi_prime)
-  apply (erule residues_prime.intro)
-done
-
-lemma fermat_theorem:
-  assumes "prime p" and "~ (p dvd a)"
-  shows "[a^(nat p - 1) = 1] (mod p)"
-proof -
-  from prems have "[a^phi p = 1] (mod p)"
-    apply (intro euler_theorem)
-    (* auto should get this next part. matching across
-       substitutions is needed. *)
-    apply (frule prime_gt_1_int, arith)
-    apply (subst gcd_commute_int, erule prime_imp_coprime_int, assumption)
-    done
-  also have "phi p = nat p - 1"
-    by (rule phi_prime, rule prems)
-  finally show ?thesis .
-qed
-
-
-subsection {* Wilson's theorem *}
-
-lemma (in field) inv_pair_lemma: "x : Units R \<Longrightarrow> y : Units R \<Longrightarrow> 
-  {x, inv x} ~= {y, inv y} \<Longrightarrow> {x, inv x} Int {y, inv y} = {}" 
-  apply auto
-  apply (erule notE)
-  apply (erule inv_eq_imp_eq)
-  apply auto
-  apply (erule notE)
-  apply (erule inv_eq_imp_eq)
-  apply auto
-done
-
-lemma (in residues_prime) wilson_theorem1:
-  assumes a: "p > 2"
-  shows "[fact (p - 1) = - 1] (mod p)"
-proof -
-  let ?InversePairs = "{ {x, inv x} | x. x : Units R - {\<one>, \<ominus> \<one>}}" 
-  have UR: "Units R = {\<one>, \<ominus> \<one>} Un (Union ?InversePairs)"
-    by auto
-  have "(\<Otimes>i: Units R. i) = 
-    (\<Otimes>i: {\<one>, \<ominus> \<one>}. i) \<otimes> (\<Otimes>i: Union ?InversePairs. i)"
-    apply (subst UR)
-    apply (subst finprod_Un_disjoint)
-    apply (auto intro:funcsetI)
-    apply (drule sym, subst (asm) inv_eq_one_eq)
-    apply auto
-    apply (drule sym, subst (asm) inv_eq_neg_one_eq)
-    apply auto
-    done
-  also have "(\<Otimes>i: {\<one>, \<ominus> \<one>}. i) = \<ominus> \<one>"
-    apply (subst finprod_insert)
-    apply auto
-    apply (frule one_eq_neg_one)
-    apply (insert a, force)
-    done
-  also have "(\<Otimes>i:(Union ?InversePairs). i) = 
-      (\<Otimes> A: ?InversePairs. (\<Otimes> y:A. y))"
-    apply (subst finprod_Union_disjoint)
-    apply force
-    apply force
-    apply clarify
-    apply (rule inv_pair_lemma)
-    apply auto
-    done
-  also have "\<dots> = \<one>"
-    apply (rule finprod_one)
-    apply auto
-    apply (subst finprod_insert)
-    apply auto
-    apply (frule inv_eq_self)
-    apply (auto)
-    done
-  finally have "(\<Otimes>i: Units R. i) = \<ominus> \<one>"
-    by simp
-  also have "(\<Otimes>i: Units R. i) = (\<Otimes>i: Units R. i mod p)"
-    apply (rule finprod_cong')
-    apply (auto)
-    apply (subst (asm) res_prime_units_eq)
-    apply auto
-    done
-  also have "\<dots> = (PROD i: Units R. i) mod p"
-    apply (rule prod_cong)
-    apply auto
-    done
-  also have "\<dots> = fact (p - 1) mod p"
-    apply (subst fact_altdef_int)
-    apply (insert prems, force)
-    apply (subst res_prime_units_eq, rule refl)
-    done
-  finally have "fact (p - 1) mod p = \<ominus> \<one>".
-  thus ?thesis
-    by (simp add: res_to_cong_simps)
-qed
-
-lemma wilson_theorem: "prime (p::int) \<Longrightarrow> [fact (p - 1) = - 1] (mod p)"
-  apply (frule prime_gt_1_int)
-  apply (case_tac "p = 2")
-  apply (subst fact_altdef_int, simp)
-  apply (subst cong_int_def)
-  apply simp
-  apply (rule residues_prime.wilson_theorem1)
-  apply (rule residues_prime.intro)
-  apply auto
-done
-
-
-end