src/HOL/NumberTheory/EvenOdd.thy
changeset 32479 521cc9bf2958
parent 32478 87201c60ae7d
child 32480 6c19da8e661a
--- a/src/HOL/NumberTheory/EvenOdd.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,256 +0,0 @@
-(*  Title:      HOL/Quadratic_Reciprocity/EvenOdd.thy
-    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
-*)
-
-header {*Parity: Even and Odd Integers*}
-
-theory EvenOdd
-imports Int2
-begin
-
-definition
-  zOdd    :: "int set" where
-  "zOdd = {x. \<exists>k. x = 2 * k + 1}"
-
-definition
-  zEven   :: "int set" where
-  "zEven = {x. \<exists>k. x = 2 * k}"
-
-subsection {* Some useful properties about even and odd *}
-
-lemma zOddI [intro?]: "x = 2 * k + 1 \<Longrightarrow> x \<in> zOdd"
-  and zOddE [elim?]: "x \<in> zOdd \<Longrightarrow> (!!k. x = 2 * k + 1 \<Longrightarrow> C) \<Longrightarrow> C"
-  by (auto simp add: zOdd_def)
-
-lemma zEvenI [intro?]: "x = 2 * k \<Longrightarrow> x \<in> zEven"
-  and zEvenE [elim?]: "x \<in> zEven \<Longrightarrow> (!!k. x = 2 * k \<Longrightarrow> C) \<Longrightarrow> C"
-  by (auto simp add: zEven_def)
-
-lemma one_not_even: "~(1 \<in> zEven)"
-proof
-  assume "1 \<in> zEven"
-  then obtain k :: int where "1 = 2 * k" ..
-  then show False by arith
-qed
-
-lemma even_odd_conj: "~(x \<in> zOdd & x \<in> zEven)"
-proof -
-  {
-    fix a b
-    assume "2 * (a::int) = 2 * (b::int) + 1"
-    then have "2 * (a::int) - 2 * (b :: int) = 1"
-      by arith
-    then have "2 * (a - b) = 1"
-      by (auto simp add: zdiff_zmult_distrib)
-    moreover have "(2 * (a - b)):zEven"
-      by (auto simp only: zEven_def)
-    ultimately have False
-      by (auto simp add: one_not_even)
-  }
-  then show ?thesis
-    by (auto simp add: zOdd_def zEven_def)
-qed
-
-lemma even_odd_disj: "(x \<in> zOdd | x \<in> zEven)"
-  by (simp add: zOdd_def zEven_def) arith
-
-lemma not_odd_impl_even: "~(x \<in> zOdd) ==> x \<in> zEven"
-  using even_odd_disj by auto
-
-lemma odd_mult_odd_prop: "(x*y):zOdd ==> x \<in> zOdd"
-proof (rule classical)
-  assume "\<not> ?thesis"
-  then have "x \<in> zEven" by (rule not_odd_impl_even)
-  then obtain a where a: "x = 2 * a" ..
-  assume "x * y : zOdd"
-  then obtain b where "x * y = 2 * b + 1" ..
-  with a have "2 * a * y = 2 * b + 1" by simp
-  then have "2 * a * y - 2 * b = 1"
-    by arith
-  then have "2 * (a * y - b) = 1"
-    by (auto simp add: zdiff_zmult_distrib)
-  moreover have "(2 * (a * y - b)):zEven"
-    by (auto simp only: zEven_def)
-  ultimately have False
-    by (auto simp add: one_not_even)
-  then show ?thesis ..
-qed
-
-lemma odd_minus_one_even: "x \<in> zOdd ==> (x - 1):zEven"
-  by (auto simp add: zOdd_def zEven_def)
-
-lemma even_div_2_prop1: "x \<in> zEven ==> (x mod 2) = 0"
-  by (auto simp add: zEven_def)
-
-lemma even_div_2_prop2: "x \<in> zEven ==> (2 * (x div 2)) = x"
-  by (auto simp add: zEven_def)
-
-lemma even_plus_even: "[| x \<in> zEven; y \<in> zEven |] ==> x + y \<in> zEven"
-  apply (auto simp add: zEven_def)
-  apply (auto simp only: zadd_zmult_distrib2 [symmetric])
-  done
-
-lemma even_times_either: "x \<in> zEven ==> x * y \<in> zEven"
-  by (auto simp add: zEven_def)
-
-lemma even_minus_even: "[| x \<in> zEven; y \<in> zEven |] ==> x - y \<in> zEven"
-  apply (auto simp add: zEven_def)
-  apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
-  done
-
-lemma odd_minus_odd: "[| x \<in> zOdd; y \<in> zOdd |] ==> x - y \<in> zEven"
-  apply (auto simp add: zOdd_def zEven_def)
-  apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
-  done
-
-lemma even_minus_odd: "[| x \<in> zEven; y \<in> zOdd |] ==> x - y \<in> zOdd"
-  apply (auto simp add: zOdd_def zEven_def)
-  apply (rule_tac x = "k - ka - 1" in exI)
-  apply auto
-  done
-
-lemma odd_minus_even: "[| x \<in> zOdd; y \<in> zEven |] ==> x - y \<in> zOdd"
-  apply (auto simp add: zOdd_def zEven_def)
-  apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
-  done
-
-lemma odd_times_odd: "[| x \<in> zOdd;  y \<in> zOdd |] ==> x * y \<in> zOdd"
-  apply (auto simp add: zOdd_def zadd_zmult_distrib zadd_zmult_distrib2)
-  apply (rule_tac x = "2 * ka * k + ka + k" in exI)
-  apply (auto simp add: zadd_zmult_distrib)
-  done
-
-lemma odd_iff_not_even: "(x \<in> zOdd) = (~ (x \<in> zEven))"
-  using even_odd_conj even_odd_disj by auto
-
-lemma even_product: "x * y \<in> zEven ==> x \<in> zEven | y \<in> zEven"
-  using odd_iff_not_even odd_times_odd by auto
-
-lemma even_diff: "x - y \<in> zEven = ((x \<in> zEven) = (y \<in> zEven))"
-proof
-  assume xy: "x - y \<in> zEven"
-  {
-    assume x: "x \<in> zEven"
-    have "y \<in> zEven"
-    proof (rule classical)
-      assume "\<not> ?thesis"
-      then have "y \<in> zOdd"
-        by (simp add: odd_iff_not_even)
-      with x have "x - y \<in> zOdd"
-        by (simp add: even_minus_odd)
-      with xy have False
-        by (auto simp add: odd_iff_not_even)
-      then show ?thesis ..
-    qed
-  } moreover {
-    assume y: "y \<in> zEven"
-    have "x \<in> zEven"
-    proof (rule classical)
-      assume "\<not> ?thesis"
-      then have "x \<in> zOdd"
-        by (auto simp add: odd_iff_not_even)
-      with y have "x - y \<in> zOdd"
-        by (simp add: odd_minus_even)
-      with xy have False
-        by (auto simp add: odd_iff_not_even)
-      then show ?thesis ..
-    qed
-  }
-  ultimately show "(x \<in> zEven) = (y \<in> zEven)"
-    by (auto simp add: odd_iff_not_even even_minus_even odd_minus_odd
-      even_minus_odd odd_minus_even)
-next
-  assume "(x \<in> zEven) = (y \<in> zEven)"
-  then show "x - y \<in> zEven"
-    by (auto simp add: odd_iff_not_even even_minus_even odd_minus_odd
-      even_minus_odd odd_minus_even)
-qed
-
-lemma neg_one_even_power: "[| x \<in> zEven; 0 \<le> x |] ==> (-1::int)^(nat x) = 1"
-proof -
-  assume "x \<in> zEven" and "0 \<le> x"
-  from `x \<in> zEven` obtain a where "x = 2 * a" ..
-  with `0 \<le> x` have "0 \<le> a" by simp
-  from `0 \<le> x` and `x = 2 * a` have "nat x = nat (2 * a)"
-    by simp
-  also from `x = 2 * a` have "nat (2 * a) = 2 * nat a"
-    by (simp add: nat_mult_distrib)
-  finally have "(-1::int)^nat x = (-1)^(2 * nat a)"
-    by simp
-  also have "... = ((-1::int)^2)^ (nat a)"
-    by (simp add: zpower_zpower [symmetric])
-  also have "(-1::int)^2 = 1"
-    by simp
-  finally show ?thesis
-    by simp
-qed
-
-lemma neg_one_odd_power: "[| x \<in> zOdd; 0 \<le> x |] ==> (-1::int)^(nat x) = -1"
-proof -
-  assume "x \<in> zOdd" and "0 \<le> x"
-  from `x \<in> zOdd` obtain a where "x = 2 * a + 1" ..
-  with `0 \<le> x` have a: "0 \<le> a" by simp
-  with `0 \<le> x` and `x = 2 * a + 1` have "nat x = nat (2 * a + 1)"
-    by simp
-  also from a have "nat (2 * a + 1) = 2 * nat a + 1"
-    by (auto simp add: nat_mult_distrib nat_add_distrib)
-  finally have "(-1::int)^nat x = (-1)^(2 * nat a + 1)"
-    by simp
-  also have "... = ((-1::int)^2)^ (nat a) * (-1)^1"
-    by (auto simp add: zpower_zpower [symmetric] zpower_zadd_distrib)
-  also have "(-1::int)^2 = 1"
-    by simp
-  finally show ?thesis
-    by simp
-qed
-
-lemma neg_one_power_parity: "[| 0 \<le> x; 0 \<le> y; (x \<in> zEven) = (y \<in> zEven) |] ==>
-    (-1::int)^(nat x) = (-1::int)^(nat y)"
-  using even_odd_disj [of x] even_odd_disj [of y]
-  by (auto simp add: neg_one_even_power neg_one_odd_power)
-
-
-lemma one_not_neg_one_mod_m: "2 < m ==> ~([1 = -1] (mod m))"
-  by (auto simp add: zcong_def zdvd_not_zless)
-
-lemma even_div_2_l: "[| y \<in> zEven; x < y |] ==> x div 2 < y div 2"
-proof -
-  assume "y \<in> zEven" and "x < y"
-  from `y \<in> zEven` obtain k where k: "y = 2 * k" ..
-  with `x < y` have "x < 2 * k" by simp
-  then have "x div 2 < k" by (auto simp add: div_prop1)
-  also have "k = (2 * k) div 2" by simp
-  finally have "x div 2 < 2 * k div 2" by simp
-  with k show ?thesis by simp
-qed
-
-lemma even_sum_div_2: "[| x \<in> zEven; y \<in> zEven |] ==> (x + y) div 2 = x div 2 + y div 2"
-  by (auto simp add: zEven_def)
-
-lemma even_prod_div_2: "[| x \<in> zEven |] ==> (x * y) div 2 = (x div 2) * y"
-  by (auto simp add: zEven_def)
-
-(* An odd prime is greater than 2 *)
-
-lemma zprime_zOdd_eq_grt_2: "zprime p ==> (p \<in> zOdd) = (2 < p)"
-  apply (auto simp add: zOdd_def zprime_def)
-  apply (drule_tac x = 2 in allE)
-  using odd_iff_not_even [of p]
-  apply (auto simp add: zOdd_def zEven_def)
-  done
-
-(* Powers of -1 and parity *)
-
-lemma neg_one_special: "finite A ==>
-    ((-1 :: int) ^ card A) * (-1 ^ card A) = 1"
-  by (induct set: finite) auto
-
-lemma neg_one_power: "(-1::int)^n = 1 | (-1::int)^n = -1"
-  by (induct n) auto
-
-lemma neg_one_power_eq_mod_m: "[| 2 < m; [(-1::int)^j = (-1::int)^k] (mod m) |]
-    ==> ((-1::int)^j = (-1::int)^k)"
-  using neg_one_power [of j] and ListMem.insert neg_one_power [of k]
-  by (auto simp add: one_not_neg_one_mod_m zcong_sym)
-
-end