src/HOL/Old_Number_Theory/BijectionRel.thy
changeset 32479 521cc9bf2958
parent 23755 1c4672d130b1
child 38159 e9b4835a54ee
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/BijectionRel.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,229 @@
+(*  Author:     Thomas M. Rasmussen
+    Copyright   2000  University of Cambridge
+*)
+
+header {* Bijections between sets *}
+
+theory BijectionRel imports Main begin
+
+text {*
+  Inductive definitions of bijections between two different sets and
+  between the same set.  Theorem for relating the two definitions.
+
+  \bigskip
+*}
+
+inductive_set
+  bijR :: "('a => 'b => bool) => ('a set * 'b set) set"
+  for P :: "'a => 'b => bool"
+where
+  empty [simp]: "({}, {}) \<in> bijR P"
+| insert: "P a b ==> a \<notin> A ==> b \<notin> B ==> (A, B) \<in> bijR P
+    ==> (insert a A, insert b B) \<in> bijR P"
+
+text {*
+  Add extra condition to @{term insert}: @{term "\<forall>b \<in> B. \<not> P a b"}
+  (and similar for @{term A}).
+*}
+
+definition
+  bijP :: "('a => 'a => bool) => 'a set => bool" where
+  "bijP P F = (\<forall>a b. a \<in> F \<and> P a b --> b \<in> F)"
+
+definition
+  uniqP :: "('a => 'a => bool) => bool" where
+  "uniqP P = (\<forall>a b c d. P a b \<and> P c d --> (a = c) = (b = d))"
+
+definition
+  symP :: "('a => 'a => bool) => bool" where
+  "symP P = (\<forall>a b. P a b = P b a)"
+
+inductive_set
+  bijER :: "('a => 'a => bool) => 'a set set"
+  for P :: "'a => 'a => bool"
+where
+  empty [simp]: "{} \<in> bijER P"
+| insert1: "P a a ==> a \<notin> A ==> A \<in> bijER P ==> insert a A \<in> bijER P"
+| insert2: "P a b ==> a \<noteq> b ==> a \<notin> A ==> b \<notin> A ==> A \<in> bijER P
+    ==> insert a (insert b A) \<in> bijER P"
+
+
+text {* \medskip @{term bijR} *}
+
+lemma fin_bijRl: "(A, B) \<in> bijR P ==> finite A"
+  apply (erule bijR.induct)
+  apply auto
+  done
+
+lemma fin_bijRr: "(A, B) \<in> bijR P ==> finite B"
+  apply (erule bijR.induct)
+  apply auto
+  done
+
+lemma aux_induct:
+  assumes major: "finite F"
+    and subs: "F \<subseteq> A"
+    and cases: "P {}"
+      "!!F a. F \<subseteq> A ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)"
+  shows "P F"
+  using major subs
+  apply (induct set: finite)
+   apply (blast intro: cases)+
+  done
+
+
+lemma inj_func_bijR_aux1:
+    "A \<subseteq> B ==> a \<notin> A ==> a \<in> B ==> inj_on f B ==> f a \<notin> f ` A"
+  apply (unfold inj_on_def)
+  apply auto
+  done
+
+lemma inj_func_bijR_aux2:
+  "\<forall>a. a \<in> A --> P a (f a) ==> inj_on f A ==> finite A ==> F <= A
+    ==> (F, f ` F) \<in> bijR P"
+  apply (rule_tac F = F and A = A in aux_induct)
+     apply (rule finite_subset)
+      apply auto
+  apply (rule bijR.insert)
+     apply (rule_tac [3] inj_func_bijR_aux1)
+        apply auto
+  done
+
+lemma inj_func_bijR:
+  "\<forall>a. a \<in> A --> P a (f a) ==> inj_on f A ==> finite A
+    ==> (A, f ` A) \<in> bijR P"
+  apply (rule inj_func_bijR_aux2)
+     apply auto
+  done
+
+
+text {* \medskip @{term bijER} *}
+
+lemma fin_bijER: "A \<in> bijER P ==> finite A"
+  apply (erule bijER.induct)
+    apply auto
+  done
+
+lemma aux1:
+  "a \<notin> A ==> a \<notin> B ==> F \<subseteq> insert a A ==> F \<subseteq> insert a B ==> a \<in> F
+    ==> \<exists>C. F = insert a C \<and> a \<notin> C \<and> C <= A \<and> C <= B"
+  apply (rule_tac x = "F - {a}" in exI)
+  apply auto
+  done
+
+lemma aux2: "a \<noteq> b ==> a \<notin> A ==> b \<notin> B ==> a \<in> F ==> b \<in> F
+    ==> F \<subseteq> insert a A ==> F \<subseteq> insert b B
+    ==> \<exists>C. F = insert a (insert b C) \<and> a \<notin> C \<and> b \<notin> C \<and> C \<subseteq> A \<and> C \<subseteq> B"
+  apply (rule_tac x = "F - {a, b}" in exI)
+  apply auto
+  done
+
+lemma aux_uniq: "uniqP P ==> P a b ==> P c d ==> (a = c) = (b = d)"
+  apply (unfold uniqP_def)
+  apply auto
+  done
+
+lemma aux_sym: "symP P ==> P a b = P b a"
+  apply (unfold symP_def)
+  apply auto
+  done
+
+lemma aux_in1:
+    "uniqP P ==> b \<notin> C ==> P b b ==> bijP P (insert b C) ==> bijP P C"
+  apply (unfold bijP_def)
+  apply auto
+  apply (subgoal_tac "b \<noteq> a")
+   prefer 2
+   apply clarify
+  apply (simp add: aux_uniq)
+  apply auto
+  done
+
+lemma aux_in2:
+  "symP P ==> uniqP P ==> a \<notin> C ==> b \<notin> C ==> a \<noteq> b ==> P a b
+    ==> bijP P (insert a (insert b C)) ==> bijP P C"
+  apply (unfold bijP_def)
+  apply auto
+  apply (subgoal_tac "aa \<noteq> a")
+   prefer 2
+   apply clarify
+  apply (subgoal_tac "aa \<noteq> b")
+   prefer 2
+   apply clarify
+  apply (simp add: aux_uniq)
+  apply (subgoal_tac "ba \<noteq> a")
+   apply auto
+  apply (subgoal_tac "P a aa")
+   prefer 2
+   apply (simp add: aux_sym)
+  apply (subgoal_tac "b = aa")
+   apply (rule_tac [2] iffD1)
+    apply (rule_tac [2] a = a and c = a and P = P in aux_uniq)
+      apply auto
+  done
+
+lemma aux_foo: "\<forall>a b. Q a \<and> P a b --> R b ==> P a b ==> Q a ==> R b"
+  apply auto
+  done
+
+lemma aux_bij: "bijP P F ==> symP P ==> P a b ==> (a \<in> F) = (b \<in> F)"
+  apply (unfold bijP_def)
+  apply (rule iffI)
+  apply (erule_tac [!] aux_foo)
+      apply simp_all
+  apply (rule iffD2)
+   apply (rule_tac P = P in aux_sym)
+   apply simp_all
+  done
+
+
+lemma aux_bijRER:
+  "(A, B) \<in> bijR P ==> uniqP P ==> symP P
+    ==> \<forall>F. bijP P F \<and> F \<subseteq> A \<and> F \<subseteq> B --> F \<in> bijER P"
+  apply (erule bijR.induct)
+   apply simp
+  apply (case_tac "a = b")
+   apply clarify
+   apply (case_tac "b \<in> F")
+    prefer 2
+    apply (simp add: subset_insert)
+   apply (cut_tac F = F and a = b and A = A and B = B in aux1)
+        prefer 6
+        apply clarify
+        apply (rule bijER.insert1)
+          apply simp_all
+   apply (subgoal_tac "bijP P C")
+    apply simp
+   apply (rule aux_in1)
+      apply simp_all
+  apply clarify
+  apply (case_tac "a \<in> F")
+   apply (case_tac [!] "b \<in> F")
+     apply (cut_tac F = F and a = a and b = b and A = A and B = B
+       in aux2)
+            apply (simp_all add: subset_insert)
+    apply clarify
+    apply (rule bijER.insert2)
+        apply simp_all
+    apply (subgoal_tac "bijP P C")
+     apply simp
+    apply (rule aux_in2)
+          apply simp_all
+   apply (subgoal_tac "b \<in> F")
+    apply (rule_tac [2] iffD1)
+     apply (rule_tac [2] a = a and F = F and P = P in aux_bij)
+       apply (simp_all (no_asm_simp))
+   apply (subgoal_tac [2] "a \<in> F")
+    apply (rule_tac [3] iffD2)
+     apply (rule_tac [3] b = b and F = F and P = P in aux_bij)
+       apply auto
+  done
+
+lemma bijR_bijER:
+  "(A, A) \<in> bijR P ==>
+    bijP P A ==> uniqP P ==> symP P ==> A \<in> bijER P"
+  apply (cut_tac A = A and B = A and P = P in aux_bijRER)
+     apply auto
+  done
+
+end