src/HOL/Old_Number_Theory/Finite2.thy
changeset 32479 521cc9bf2958
parent 25592 e8ddaf6bf5df
child 38159 e9b4835a54ee
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/Finite2.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,223 @@
+(*  Title:      HOL/Quadratic_Reciprocity/Finite2.thy
+    ID:         $Id$
+    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
+*)
+
+header {*Finite Sets and Finite Sums*}
+
+theory Finite2
+imports Main IntFact Infinite_Set
+begin
+
+text{*
+  These are useful for combinatorial and number-theoretic counting
+  arguments.
+*}
+
+
+subsection {* Useful properties of sums and products *}
+
+lemma setsum_same_function_zcong:
+  assumes a: "\<forall>x \<in> S. [f x = g x](mod m)"
+  shows "[setsum f S = setsum g S] (mod m)"
+proof cases
+  assume "finite S"
+  thus ?thesis using a by induct (simp_all add: zcong_zadd)
+next
+  assume "infinite S" thus ?thesis by(simp add:setsum_def)
+qed
+
+lemma setprod_same_function_zcong:
+  assumes a: "\<forall>x \<in> S. [f x = g x](mod m)"
+  shows "[setprod f S = setprod g S] (mod m)"
+proof cases
+  assume "finite S"
+  thus ?thesis using a by induct (simp_all add: zcong_zmult)
+next
+  assume "infinite S" thus ?thesis by(simp add:setprod_def)
+qed
+
+lemma setsum_const: "finite X ==> setsum (%x. (c :: int)) X = c * int(card X)"
+  apply (induct set: finite)
+  apply (auto simp add: left_distrib right_distrib int_eq_of_nat)
+  done
+
+lemma setsum_const2: "finite X ==> int (setsum (%x. (c :: nat)) X) =
+    int(c) * int(card X)"
+  apply (induct set: finite)
+  apply (auto simp add: zadd_zmult_distrib2)
+  done
+
+lemma setsum_const_mult: "finite A ==> setsum (%x. c * ((f x)::int)) A =
+    c * setsum f A"
+  by (induct set: finite) (auto simp add: zadd_zmult_distrib2)
+
+
+subsection {* Cardinality of explicit finite sets *}
+
+lemma finite_surjI: "[| B \<subseteq> f ` A; finite A |] ==> finite B"
+  by (simp add: finite_subset finite_imageI)
+
+lemma bdd_nat_set_l_finite: "finite {y::nat . y < x}"
+  by (rule bounded_nat_set_is_finite) blast
+
+lemma bdd_nat_set_le_finite: "finite {y::nat . y \<le> x}"
+proof -
+  have "{y::nat . y \<le> x} = {y::nat . y < Suc x}" by auto
+  then show ?thesis by (auto simp add: bdd_nat_set_l_finite)
+qed
+
+lemma  bdd_int_set_l_finite: "finite {x::int. 0 \<le> x & x < n}"
+  apply (subgoal_tac " {(x :: int). 0 \<le> x & x < n} \<subseteq>
+      int ` {(x :: nat). x < nat n}")
+   apply (erule finite_surjI)
+   apply (auto simp add: bdd_nat_set_l_finite image_def)
+  apply (rule_tac x = "nat x" in exI, simp)
+  done
+
+lemma bdd_int_set_le_finite: "finite {x::int. 0 \<le> x & x \<le> n}"
+  apply (subgoal_tac "{x. 0 \<le> x & x \<le> n} = {x. 0 \<le> x & x < n + 1}")
+   apply (erule ssubst)
+   apply (rule bdd_int_set_l_finite)
+  apply auto
+  done
+
+lemma bdd_int_set_l_l_finite: "finite {x::int. 0 < x & x < n}"
+proof -
+  have "{x::int. 0 < x & x < n} \<subseteq> {x::int. 0 \<le> x & x < n}"
+    by auto
+  then show ?thesis by (auto simp add: bdd_int_set_l_finite finite_subset)
+qed
+
+lemma bdd_int_set_l_le_finite: "finite {x::int. 0 < x & x \<le> n}"
+proof -
+  have "{x::int. 0 < x & x \<le> n} \<subseteq> {x::int. 0 \<le> x & x \<le> n}"
+    by auto
+  then show ?thesis by (auto simp add: bdd_int_set_le_finite finite_subset)
+qed
+
+lemma card_bdd_nat_set_l: "card {y::nat . y < x} = x"
+proof (induct x)
+  case 0
+  show "card {y::nat . y < 0} = 0" by simp
+next
+  case (Suc n)
+  have "{y. y < Suc n} = insert n {y. y < n}"
+    by auto
+  then have "card {y. y < Suc n} = card (insert n {y. y < n})"
+    by auto
+  also have "... = Suc (card {y. y < n})"
+    by (rule card_insert_disjoint) (auto simp add: bdd_nat_set_l_finite)
+  finally show "card {y. y < Suc n} = Suc n"
+    using `card {y. y < n} = n` by simp
+qed
+
+lemma card_bdd_nat_set_le: "card { y::nat. y \<le> x} = Suc x"
+proof -
+  have "{y::nat. y \<le> x} = { y::nat. y < Suc x}"
+    by auto
+  then show ?thesis by (auto simp add: card_bdd_nat_set_l)
+qed
+
+lemma card_bdd_int_set_l: "0 \<le> (n::int) ==> card {y. 0 \<le> y & y < n} = nat n"
+proof -
+  assume "0 \<le> n"
+  have "inj_on (%y. int y) {y. y < nat n}"
+    by (auto simp add: inj_on_def)
+  hence "card (int ` {y. y < nat n}) = card {y. y < nat n}"
+    by (rule card_image)
+  also from `0 \<le> n` have "int ` {y. y < nat n} = {y. 0 \<le> y & y < n}"
+    apply (auto simp add: zless_nat_eq_int_zless image_def)
+    apply (rule_tac x = "nat x" in exI)
+    apply (auto simp add: nat_0_le)
+    done
+  also have "card {y. y < nat n} = nat n"
+    by (rule card_bdd_nat_set_l)
+  finally show "card {y. 0 \<le> y & y < n} = nat n" .
+qed
+
+lemma card_bdd_int_set_le: "0 \<le> (n::int) ==> card {y. 0 \<le> y & y \<le> n} =
+  nat n + 1"
+proof -
+  assume "0 \<le> n"
+  moreover have "{y. 0 \<le> y & y \<le> n} = {y. 0 \<le> y & y < n+1}" by auto
+  ultimately show ?thesis
+    using card_bdd_int_set_l [of "n + 1"]
+    by (auto simp add: nat_add_distrib)
+qed
+
+lemma card_bdd_int_set_l_le: "0 \<le> (n::int) ==>
+    card {x. 0 < x & x \<le> n} = nat n"
+proof -
+  assume "0 \<le> n"
+  have "inj_on (%x. x+1) {x. 0 \<le> x & x < n}"
+    by (auto simp add: inj_on_def)
+  hence "card ((%x. x+1) ` {x. 0 \<le> x & x < n}) =
+     card {x. 0 \<le> x & x < n}"
+    by (rule card_image)
+  also from `0 \<le> n` have "... = nat n"
+    by (rule card_bdd_int_set_l)
+  also have "(%x. x + 1) ` {x. 0 \<le> x & x < n} = {x. 0 < x & x<= n}"
+    apply (auto simp add: image_def)
+    apply (rule_tac x = "x - 1" in exI)
+    apply arith
+    done
+  finally show "card {x. 0 < x & x \<le> n} = nat n" .
+qed
+
+lemma card_bdd_int_set_l_l: "0 < (n::int) ==>
+  card {x. 0 < x & x < n} = nat n - 1"
+proof -
+  assume "0 < n"
+  moreover have "{x. 0 < x & x < n} = {x. 0 < x & x \<le> n - 1}"
+    by simp
+  ultimately show ?thesis
+    using insert card_bdd_int_set_l_le [of "n - 1"]
+    by (auto simp add: nat_diff_distrib)
+qed
+
+lemma int_card_bdd_int_set_l_l: "0 < n ==>
+    int(card {x. 0 < x & x < n}) = n - 1"
+  apply (auto simp add: card_bdd_int_set_l_l)
+  done
+
+lemma int_card_bdd_int_set_l_le: "0 \<le> n ==>
+    int(card {x. 0 < x & x \<le> n}) = n"
+  by (auto simp add: card_bdd_int_set_l_le)
+
+
+subsection {* Cardinality of finite cartesian products *}
+
+(* FIXME could be useful in general but not needed here
+lemma insert_Sigma [simp]: "(insert x A) <*> B = ({ x } <*> B) \<union> (A <*> B)"
+  by blast
+ *)
+
+text {* Lemmas for counting arguments. *}
+
+lemma setsum_bij_eq: "[| finite A; finite B; f ` A \<subseteq> B; inj_on f A;
+    g ` B \<subseteq> A; inj_on g B |] ==> setsum g B = setsum (g \<circ> f) A"
+  apply (frule_tac h = g and f = f in setsum_reindex)
+  apply (subgoal_tac "setsum g B = setsum g (f ` A)")
+   apply (simp add: inj_on_def)
+  apply (subgoal_tac "card A = card B")
+   apply (drule_tac A = "f ` A" and B = B in card_seteq)
+     apply (auto simp add: card_image)
+  apply (frule_tac A = A and B = B and f = f in card_inj_on_le, auto)
+  apply (frule_tac A = B and B = A and f = g in card_inj_on_le)
+    apply auto
+  done
+
+lemma setprod_bij_eq: "[| finite A; finite B; f ` A \<subseteq> B; inj_on f A;
+    g ` B \<subseteq> A; inj_on g B |] ==> setprod g B = setprod (g \<circ> f) A"
+  apply (frule_tac h = g and f = f in setprod_reindex)
+  apply (subgoal_tac "setprod g B = setprod g (f ` A)")
+   apply (simp add: inj_on_def)
+  apply (subgoal_tac "card A = card B")
+   apply (drule_tac A = "f ` A" and B = B in card_seteq)
+     apply (auto simp add: card_image)
+  apply (frule_tac A = A and B = B and f = f in card_inj_on_le, auto)
+  apply (frule_tac A = B and B = A and f = g in card_inj_on_le, auto)
+  done
+
+end