src/ZF/Induct/Primrec.thy
changeset 12560 5820841f21fd
parent 12088 6f463d16cbd0
child 12610 8b9845807f77
--- a/src/ZF/Induct/Primrec.thy	Thu Dec 20 15:00:02 2001 +0100
+++ b/src/ZF/Induct/Primrec.thy	Thu Dec 20 15:17:48 2001 +0100
@@ -1,4 +1,4 @@
-(*  Title:      ZF/ex/Primrec.thy
+(*  Title:      ZF/Induct/Primrec.thy
     ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
@@ -14,22 +14,357 @@
 (Van Nostrand, 1964), page 250, exercise 11.
 *)
 
-Primrec = Primrec_defs +
+theory Primrec = Main:
+
+constdefs
+  SC      :: "i"
+    "SC == \<lambda>l \<in> list(nat). list_case(0, %x xs. succ(x), l)"
+
+  CONST   :: "i=>i"
+    "CONST(k) == \<lambda>l \<in> list(nat). k"
+
+  PROJ    :: "i=>i"
+    "PROJ(i) == \<lambda>l \<in> list(nat). list_case(0, %x xs. x, drop(i,l))"
+
+  COMP    :: "[i,i]=>i"
+    "COMP(g,fs) == \<lambda>l \<in> list(nat). g ` List.map(%f. f`l, fs)"
+
+  PREC    :: "[i,i]=>i"
+		(*Note that g is applied first to PREC(f,g)`y and then to y!*)
+  "PREC(f,g) == 
+     \<lambda>l \<in> list(nat). list_case(0, 
+                      %x xs. rec(x, f`xs, %y r. g ` Cons(r, Cons(y, xs))), l)"
+
 consts
-    prim_rec :: i
+  ACK     :: "i=>i"
+
+primrec
+  ACK_0:     "ACK(0) = SC"
+  ACK_succ:  "ACK(succ(i)) = PREC (CONST (ACK(i) ` [1]),
+		 	 	   COMP(ACK(i), [PROJ(0)]))"
+
+syntax
+  ack     :: "[i,i]=>i"  
+
+translations
+  "ack(x,y)"  == "ACK(x) ` [y]"
+
+
+
+(** Useful special cases of evaluation ***)
+
+lemma SC: "[| x \<in> nat;  l \<in> list(nat) |] ==> SC ` (Cons(x,l)) = succ(x)"
+by (simp add: SC_def) 
+
+lemma CONST: "l \<in> list(nat) ==> CONST(k) ` l = k"
+by (simp add: CONST_def) 
+
+lemma PROJ_0: "[| x \<in> nat;  l \<in> list(nat) |] ==> PROJ(0) ` (Cons(x,l)) = x"
+by (simp add: PROJ_def) 
+
+lemma COMP_1: "l \<in> list(nat) ==> COMP(g,[f]) ` l = g` [f`l]"
+by (simp add: COMP_def) 
+
+lemma PREC_0: "l \<in> list(nat) ==> PREC(f,g) ` (Cons(0,l)) = f`l"
+by (simp add: PREC_def) 
+
+lemma PREC_succ: 
+    "[| x \<in> nat;  l \<in> list(nat) |] 
+     ==> PREC(f,g) ` (Cons(succ(x),l)) = 
+         g ` Cons(PREC(f,g)`(Cons(x,l)), Cons(x,l))"
+by (simp add: PREC_def) 
+
+
+consts
+    prim_rec :: "i"
 
 inductive
   domains "prim_rec" <= "list(nat)->nat"
-  intrs
-    SC       "SC \\<in> prim_rec"
-    CONST    "k \\<in> nat ==> CONST(k) \\<in> prim_rec"
-    PROJ     "i \\<in> nat ==> PROJ(i) \\<in> prim_rec"
-    COMP     "[| g \\<in> prim_rec; fs: list(prim_rec) |] ==> COMP(g,fs): prim_rec"
-    PREC     "[| f \\<in> prim_rec; g \\<in> prim_rec |] ==> PREC(f,g): prim_rec"
-  monos       list_mono
-  con_defs    SC_def, CONST_def, PROJ_def, COMP_def, PREC_def
-  type_intrs "nat_typechecks @ list.intrs @                     
-              [lam_type, list_case_type, drop_type, map_type,   
-              apply_type, rec_type]"
+  intros
+    "SC \<in> prim_rec"
+    "k \<in> nat ==> CONST(k) \<in> prim_rec"
+    "i \<in> nat ==> PROJ(i) \<in> prim_rec"
+    "[| g \<in> prim_rec; fs\<in>list(prim_rec) |] ==> COMP(g,fs): prim_rec"
+    "[| f \<in> prim_rec; g \<in> prim_rec |] ==> PREC(f,g): prim_rec"
+  monos        list_mono
+  con_defs     SC_def CONST_def PROJ_def COMP_def PREC_def
+  type_intros  nat_typechecks list.intros
+               lam_type list_case_type drop_type List.map_type   
+               apply_type rec_type
+
+
+(*** Inductive definition of the PR functions ***)
+
+(* c \<in> prim_rec ==> c \<in> list(nat) -> nat *)
+lemmas prim_rec_into_fun [TC] = subsetD [OF prim_rec.dom_subset]
+lemmas [TC] = apply_type [OF prim_rec_into_fun]
+
+declare prim_rec.intros [TC]
+declare nat_into_Ord [TC]
+declare rec_type [TC]
+
+lemma ACK_in_prim_rec [TC]: "i \<in> nat ==> ACK(i): prim_rec"
+by (induct_tac "i", simp_all)
+
+lemma ack_type [TC]: "[| i \<in> nat;  j \<in> nat |] ==>  ack(i,j): nat"
+by auto
+
+(** Ackermann's function cases **)
+
+(*PROPERTY A 1*)
+lemma ack_0: "j \<in> nat ==> ack(0,j) = succ(j)"
+by (simp add: SC)
+
+(*PROPERTY A 2*)
+lemma ack_succ_0: "ack(succ(i), 0) = ack(i,1)"
+by (simp add: CONST PREC_0)
+
+(*PROPERTY A 3*)
+lemma ack_succ_succ:
+ "[| i\<in>nat;  j\<in>nat |] ==> ack(succ(i), succ(j)) = ack(i, ack(succ(i), j))"
+by (simp add: CONST PREC_succ COMP_1 PROJ_0)
+
+declare ack_0 [simp] ack_succ_0 [simp] ack_succ_succ [simp] ack_type [simp]
+declare ACK_0 [simp del] ACK_succ [simp del]
+
+
+(*PROPERTY A 4*)
+lemma lt_ack2 [rule_format]: "i \<in> nat ==> \<forall>j \<in> nat. j < ack(i,j)"
+apply (induct_tac "i")
+apply simp
+apply (rule ballI)
+apply (induct_tac "j")
+apply (erule_tac [2] succ_leI [THEN lt_trans1])
+apply (rule nat_0I [THEN nat_0_le, THEN lt_trans])
+apply auto
+done
+
+(*PROPERTY A 5-, the single-step lemma*)
+lemma ack_lt_ack_succ2: "[|i\<in>nat; j\<in>nat|] ==> ack(i,j) < ack(i, succ(j))"
+by (induct_tac "i", simp_all add: lt_ack2)
+
+(*PROPERTY A 5, monotonicity for < *)
+lemma ack_lt_mono2: "[| j<k; i \<in> nat; k \<in> nat |] ==> ack(i,j) < ack(i,k)"
+apply (frule lt_nat_in_nat , assumption)
+apply (erule succ_lt_induct)
+apply assumption
+apply (rule_tac [2] lt_trans)
+apply (auto intro: ack_lt_ack_succ2)
+done
+
+(*PROPERTY A 5', monotonicity for\<le>*)
+lemma ack_le_mono2: "[|j\<le>k;  i\<in>nat;  k\<in>nat|] ==> ack(i,j) \<le> ack(i,k)"
+apply (rule_tac f = "%j. ack (i,j) " in Ord_lt_mono_imp_le_mono)
+apply (assumption | rule ack_lt_mono2 ack_type [THEN nat_into_Ord])+;
+done
+
+(*PROPERTY A 6*)
+lemma ack2_le_ack1:
+     "[| i\<in>nat;  j\<in>nat |] ==> ack(i, succ(j)) \<le> ack(succ(i), j)"
+apply (induct_tac "j")
+apply (simp_all)
+apply (rule ack_le_mono2)
+apply (rule lt_ack2 [THEN succ_leI, THEN le_trans])
+apply auto
+done
+
+(*PROPERTY A 7-, the single-step lemma*)
+lemma ack_lt_ack_succ1: "[| i \<in> nat; j \<in> nat |] ==> ack(i,j) < ack(succ(i),j)"
+apply (rule ack_lt_mono2 [THEN lt_trans2])
+apply (rule_tac [4] ack2_le_ack1)
+apply auto
+done
+
+(*PROPERTY A 7, monotonicity for < *)
+lemma ack_lt_mono1: "[| i<j; j \<in> nat; k \<in> nat |] ==> ack(i,k) < ack(j,k)"
+apply (frule lt_nat_in_nat , assumption)
+apply (erule succ_lt_induct)
+apply assumption
+apply (rule_tac [2] lt_trans)
+apply (auto intro: ack_lt_ack_succ1)
+done
+
+(*PROPERTY A 7', monotonicity for\<le>*)
+lemma ack_le_mono1: "[| i\<le>j; j \<in> nat; k \<in> nat |] ==> ack(i,k) \<le> ack(j,k)"
+apply (rule_tac f = "%j. ack (j,k) " in Ord_lt_mono_imp_le_mono)
+apply (assumption | rule ack_lt_mono1 ack_type [THEN nat_into_Ord])+;
+done
+
+(*PROPERTY A 8*)
+lemma ack_1: "j \<in> nat ==> ack(1,j) = succ(succ(j))"
+by (induct_tac "j", simp_all)
+
+(*PROPERTY A 9*)
+lemma ack_2: "j \<in> nat ==> ack(succ(1),j) = succ(succ(succ(j#+j)))"
+by (induct_tac "j", simp_all add: ack_1)
+
+(*PROPERTY A 10*)
+lemma ack_nest_bound:
+     "[| i1 \<in> nat; i2 \<in> nat; j \<in> nat |] 
+      ==> ack(i1, ack(i2,j)) < ack(succ(succ(i1#+i2)), j)"
+apply (rule lt_trans2 [OF _ ack2_le_ack1]) 
+apply simp
+apply (rule add_le_self [THEN ack_le_mono1, THEN lt_trans1])
+apply auto
+apply (force intro: add_le_self2 [THEN ack_lt_mono1, THEN ack_lt_mono2])
+done
+
+(*PROPERTY A 11*)
+lemma ack_add_bound:
+     "[| i1 \<in> nat; i2 \<in> nat; j \<in> nat |] 
+      ==> ack(i1,j) #+ ack(i2,j) < ack(succ(succ(succ(succ(i1#+i2)))), j)"
+apply (rule_tac j = "ack (succ (1) , ack (i1 #+ i2, j))" in lt_trans)
+apply (simp add: ack_2)
+apply (rule_tac [2] ack_nest_bound [THEN lt_trans2])
+apply (rule add_le_mono [THEN leI, THEN leI])
+apply (auto intro: add_le_self add_le_self2 ack_le_mono1)
+done
+
+(*PROPERTY A 12.  Article uses existential quantifier but the ALF proof
+  used k#+4.  Quantified version must be nested \<exists>k'. \<forall>i,j... *)
+lemma ack_add_bound2:
+     "[| i < ack(k,j);  j \<in> nat;  k \<in> nat |] 
+      ==> i#+j < ack(succ(succ(succ(succ(k)))), j)"
+apply (rule_tac j = "ack (k,j) #+ ack (0,j) " in lt_trans)
+apply (rule_tac [2] ack_add_bound [THEN lt_trans2])
+apply (rule add_lt_mono)
+apply auto
+done
+
+(*** MAIN RESULT ***)
+
+declare list_add_type [simp]
+
+lemma SC_case: "l \<in> list(nat) ==> SC ` l < ack(1, list_add(l))"
+apply (unfold SC_def)
+apply (erule list.cases)
+apply (simp add: succ_iff)
+apply (simp add: ack_1 add_le_self)
+done
+
+(*PROPERTY A 4'? Extra lemma needed for CONST case, constant functions*)
+lemma lt_ack1: "[| i \<in> nat; j \<in> nat |] ==> i < ack(i,j)"
+apply (induct_tac "i")
+apply (simp add: nat_0_le)
+apply (erule lt_trans1 [OF succ_leI ack_lt_ack_succ1])
+apply auto
+done
+
+lemma CONST_case: 
+    "[| l \<in> list(nat);  k \<in> nat |] ==> CONST(k) ` l < ack(k, list_add(l))"
+by (simp add: CONST_def lt_ack1)
+
+lemma PROJ_case [rule_format]: 
+    "l \<in> list(nat) ==> \<forall>i \<in> nat. PROJ(i) ` l < ack(0, list_add(l))"
+apply (unfold PROJ_def)
+apply simp
+apply (erule list.induct)
+apply (simp add: nat_0_le)
+apply simp
+apply (rule ballI)
+apply (erule_tac n = "x" in natE)
+apply (simp add: add_le_self)
+apply simp
+apply (erule bspec [THEN lt_trans2])
+apply (rule_tac [2] add_le_self2 [THEN succ_leI])
+apply auto
+done
+
+(** COMP case **)
+
+lemma COMP_map_lemma:
+     "fs \<in> list({f \<in> prim_rec .                                  
+                   \<exists>kf \<in> nat. \<forall>l \<in> list(nat). f`l < ack(kf, list_add(l))})
+      ==> \<exists>k \<in> nat. \<forall>l \<in> list(nat).                           
+                 list_add(map(%f. f ` l, fs)) < ack(k, list_add(l))"
+apply (erule list.induct)
+apply (rule_tac x = "0" in bexI)
+apply (simp_all add: lt_ack1 nat_0_le)
+apply clarify
+apply (rule ballI [THEN bexI])
+apply (rule add_lt_mono [THEN lt_trans])
+apply (rule_tac [5] ack_add_bound)
+apply blast
+apply auto
+done
+
+lemma COMP_case: 
+ "[| kg\<in>nat;                                  
+     \<forall>l \<in> list(nat). g`l < ack(kg, list_add(l));           
+     fs \<in> list({f \<in> prim_rec .                                
+                 \<exists>kf \<in> nat. \<forall>l \<in> list(nat).                 
+                        f`l < ack(kf, list_add(l))}) |]
+   ==> \<exists>k \<in> nat. \<forall>l \<in> list(nat). COMP(g,fs)`l < ack(k, list_add(l))"
+apply (simp add: COMP_def)
+apply (frule list_CollectD)
+apply (erule COMP_map_lemma [THEN bexE])
+apply (rule ballI [THEN bexI])
+apply (erule bspec [THEN lt_trans])
+apply (rule_tac [2] lt_trans)
+apply (rule_tac [3] ack_nest_bound)
+apply (erule_tac [2] bspec [THEN ack_lt_mono2])
+apply auto
+done
+
+(** PREC case **)
+
+lemma PREC_case_lemma: 
+ "[| \<forall>l \<in> list(nat). f`l #+ list_add(l) < ack(kf, list_add(l));  
+     \<forall>l \<in> list(nat). g`l #+ list_add(l) < ack(kg, list_add(l));  
+     f \<in> prim_rec;  kf\<in>nat;                                        
+     g \<in> prim_rec;  kg\<in>nat;                                        
+     l \<in> list(nat) |]
+  ==> PREC(f,g)`l #+ list_add(l) < ack(succ(kf#+kg), list_add(l))"
+apply (unfold PREC_def)
+apply (erule list.cases) 
+apply (simp add: lt_trans [OF nat_le_refl lt_ack2])
+apply simp
+apply (erule ssubst) (*get rid of the needless assumption*)
+apply (induct_tac "a")
+apply simp_all 
+(*base case*)
+apply (rule lt_trans, erule bspec, assumption); 
+apply (simp add: add_le_self [THEN ack_lt_mono1]) 
+(*ind step*)
+apply (rule succ_leI [THEN lt_trans1])
+apply (rule_tac j = "g ` ?ll #+ ?mm" in lt_trans1)
+apply (erule_tac [2] bspec)
+apply (rule nat_le_refl [THEN add_le_mono])
+apply typecheck
+apply (simp add: add_le_self2)
+(*final part of the simplification*)
+apply simp
+apply (rule add_le_self2 [THEN ack_le_mono1, THEN lt_trans1])
+apply (erule_tac [4] ack_lt_mono2)
+apply auto
+done
+
+lemma PREC_case:
+     "[| f \<in> prim_rec;  kf\<in>nat;                                
+         g \<in> prim_rec;  kg\<in>nat;                                
+         \<forall>l \<in> list(nat). f`l < ack(kf, list_add(l));         
+         \<forall>l \<in> list(nat). g`l < ack(kg, list_add(l)) |]
+      ==> \<exists>k \<in> nat. \<forall>l \<in> list(nat). PREC(f,g)`l< ack(k, list_add(l))"
+apply (rule ballI [THEN bexI])
+apply (rule lt_trans1 [OF add_le_self PREC_case_lemma])
+apply typecheck
+apply (blast intro: ack_add_bound2 list_add_type)+ 
+done
+
+lemma ack_bounds_prim_rec:
+     "f \<in> prim_rec ==> \<exists>k \<in> nat. \<forall>l \<in> list(nat). f`l < ack(k, list_add(l))"
+apply (erule prim_rec.induct)
+apply (auto intro: SC_case CONST_case PROJ_case COMP_case PREC_case)
+done
+
+lemma ack_not_prim_rec:
+     "~ (\<lambda>l \<in> list(nat). list_case(0, %x xs. ack(x,x), l)) \<in> prim_rec"
+apply (rule notI)
+apply (drule ack_bounds_prim_rec)
+apply force
+done
 
 end
+
+
+