src/ZF/Zorn.ML
changeset 485 5e00a676a211
child 516 1957113f0d7d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/Zorn.ML	Tue Jul 26 13:44:42 1994 +0200
@@ -0,0 +1,406 @@
+(*  Title: 	ZF/Zorn.ML
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1994  University of Cambridge
+
+Conclusion to proofs from the paper
+    Abrial & Laffitte, 
+    Towards the Mechanization of the Proofs of Some 
+    Classical Theorems of Set Theory. 
+*)
+
+
+structure Zorn = Inductive_Fun
+ (val thy        = Zorn0.thy |> add_consts [("TFin", "[i,i]=>i", NoSyn)]
+  val thy_name   = "Zorn"
+  val rec_doms   = [("TFin","Pow(S)")]
+  val sintrs     = ["[| x : TFin(S,next);  next: increasing(S) \
+\                    |] ==> next`x : TFin(S,next)",
+                    "Y : Pow(TFin(S,next)) ==> Union(Y) : TFin(S,next)"]
+  val monos      = [Pow_mono]
+  val con_defs   = []
+  val type_intrs = [next_bounded, Union_in_Pow]
+  val type_elims = []);
+
+(*Introduction rules*)
+val [TFin_nextI, Pow_TFin_UnionI] = Zorn.intrs;
+val TFin_UnionI = PowI RS Pow_TFin_UnionI;
+
+val TFin_is_subset = Zorn.dom_subset RS subsetD RS PowD;
+
+
+(** Structural induction on TFin(S,next) **)
+
+val major::prems = goal Zorn.thy
+  "[| n: TFin(S,next);  \
+\     !!x. [| x : TFin(S,next);  P(x);  next: increasing(S) |] ==> P(next`x); \
+\     !!Y. [| Y <= TFin(S,next);  ALL y:Y. P(y) |] ==> P(Union(Y)) \
+\  |] ==> P(n)";
+by (rtac (major RS Zorn.induct) 1);
+by (ALLGOALS (fast_tac (ZF_cs addIs prems)));
+val TFin_induct = result();
+
+(*Perform induction on n, then prove the major premise using prems. *)
+fun TFin_ind_tac a prems i = 
+    EVERY [res_inst_tac [("n",a)] TFin_induct i,
+	   rename_last_tac a ["1"] (i+1),
+	   rename_last_tac a ["2"] (i+2),
+	   ares_tac prems i];
+
+(*** Section 3.  Some Properties of the Transfinite Construction ***)
+
+val increasing_trans = 
+    TFin_is_subset RSN (3, increasingD2 RSN (2,subset_trans)) |> standard;
+
+(*Lemma 1 of section 3.1*)
+val major::prems = goal Zorn.thy
+    "[| n: TFin(S,next);  m: TFin(S,next);  \
+\       ALL x: TFin(S,next) . x<=m --> x=m | next`x<=m \
+\    |] ==> n<=m | next`m<=n";
+by (cut_facts_tac prems 1);
+br (major RS TFin_induct) 1;
+by (etac Union_lemma0 2);		(*or just fast_tac ZF_cs*)
+by (fast_tac (subset_cs addIs [increasing_trans]) 1);
+val TFin_linear_lemma1 = result();
+
+(*Lemma 2 of section 3.2.  Interesting in its own right!
+  Requires next: increasing(S) in the second induction step. *)
+val [major,ninc] = goal Zorn.thy
+    "[| m: TFin(S,next);  next: increasing(S) \
+\    |] ==> ALL n: TFin(S,next) . n<=m --> n=m | next`n<=m";
+br (major RS TFin_induct) 1;
+br (impI RS ballI) 1;
+(*case split using TFin_linear_lemma1*)
+by (res_inst_tac [("n1","n"), ("m1","x")] 
+    (TFin_linear_lemma1 RS disjE) 1  THEN  REPEAT (assume_tac 1));
+by (dres_inst_tac [("x","n")] bspec 1 THEN assume_tac 1);
+by (fast_tac (subset_cs addIs [increasing_trans]) 1);
+by (REPEAT (ares_tac [disjI1,equalityI] 1));
+(*second induction step*)
+br (impI RS ballI) 1;
+br (Union_lemma0 RS disjE) 1;
+be disjI2 3;
+by (REPEAT (ares_tac [disjI1,equalityI] 2));
+br ballI 1;
+by (ball_tac 1);
+by (set_mp_tac 1);
+by (res_inst_tac [("n1","n"), ("m1","x")] 
+    (TFin_linear_lemma1 RS disjE) 1  THEN  REPEAT (assume_tac 1));
+by (fast_tac subset_cs 1);
+br (ninc RS increasingD2 RS subset_trans RS disjI1) 1;
+by (REPEAT (ares_tac [TFin_is_subset] 1));
+val TFin_linear_lemma2 = result();
+
+(*a more convenient form for Lemma 2*)
+goal Zorn.thy
+    "!!m n. [| n<=m;  m: TFin(S,next);  n: TFin(S,next);  next: increasing(S) \
+\           |] ==> n=m | next`n<=m";
+br (TFin_linear_lemma2 RS bspec RS mp) 1;
+by (REPEAT (assume_tac 1));
+val TFin_subsetD = result();
+
+(*Consequences from section 3.3 -- Property 3.2, the ordering is total*)
+goal Zorn.thy
+    "!!m n. [| m: TFin(S,next);  n: TFin(S,next);  next: increasing(S) \
+\           |] ==> n<=m | m<=n";
+br (TFin_linear_lemma2 RSN (3,TFin_linear_lemma1) RS disjE) 1;
+by (REPEAT (assume_tac 1) THEN etac disjI2 1);
+by (fast_tac (subset_cs addIs [increasingD2 RS subset_trans, 
+			       TFin_is_subset]) 1);
+val TFin_subset_linear = result();
+
+
+(*Lemma 3 of section 3.3*)
+val major::prems = goal Zorn.thy
+    "[| n: TFin(S,next);  m: TFin(S,next);  m = next`m |] ==> n<=m";
+by (cut_facts_tac prems 1);
+br (major RS TFin_induct) 1;
+bd TFin_subsetD 1;
+by (REPEAT (assume_tac 1));
+by (fast_tac (ZF_cs addEs [ssubst]) 1);
+by (fast_tac (subset_cs addIs [TFin_is_subset]) 1);
+val equal_next_upper = result();
+
+(*Property 3.3 of section 3.3*)
+goal Zorn.thy
+    "!!m. [| m: TFin(S,next);  next: increasing(S) \
+\         |] ==> m = next`m <-> m = Union(TFin(S,next))";
+br iffI 1;
+br (Union_upper RS equalityI) 1;
+br (equal_next_upper RS Union_least) 2;
+by (REPEAT (assume_tac 1));
+be ssubst 1;
+by (rtac (increasingD2 RS equalityI) 1 THEN assume_tac 1);
+by (ALLGOALS
+    (fast_tac (subset_cs addIs [TFin_UnionI, TFin_nextI, TFin_is_subset])));
+val equal_next_Union = result();
+
+
+(*** Section 4.  Hausdorff's Theorem: every set contains a maximal chain ***)
+(*** NB: We assume the partial ordering is <=, the subset relation! **)
+
+(** Defining the "next" operation for Hausdorff's Theorem **)
+
+goalw Zorn.thy [chain_def] "chain(A) <= Pow(A)";
+by (resolve_tac [Collect_subset] 1);
+val chain_subset_Pow = result();
+
+goalw Zorn.thy [super_def] "super(A,c) <= chain(A)";
+by (resolve_tac [Collect_subset] 1);
+val super_subset_chain = result();
+
+goalw Zorn.thy [maxchain_def] "maxchain(A) <= chain(A)";
+by (resolve_tac [Collect_subset] 1);
+val maxchain_subset_chain = result();
+
+goal Zorn.thy
+    "!!S. [| ch : (PROD X:Pow(chain(S)) - {0}. X);	\
+\            X : chain(S);  X ~: maxchain(S)		\
+\         |] ==> ch ` super(S,X) : super(S,X)";
+by (eresolve_tac [apply_type] 1);
+by (rewrite_goals_tac [super_def, maxchain_def]);
+by (fast_tac ZF_cs 1);
+val choice_super = result();
+
+goal Zorn.thy
+    "!!S. [| ch : (PROD X:Pow(chain(S)) - {0}. X);	\
+\            X : chain(S);  X ~: maxchain(S)		\
+\         |] ==> ch ` super(S,X) ~= X";
+by (resolve_tac [notI] 1);
+by (dresolve_tac [choice_super] 1);
+by (assume_tac 1);
+by (assume_tac 1);
+by (asm_full_simp_tac (ZF_ss addsimps [super_def]) 1);
+val choice_not_equals = result();
+
+(*This justifies Definition 4.4*)
+goal Zorn.thy
+    "!!S. ch: (PROD X: Pow(chain(S))-{0}. X) ==>	\
+\          EX next: increasing(S). ALL X: Pow(S). 	\
+\                     next`X = if(X: chain(S)-maxchain(S), ch`super(S,X), X)";
+by (rtac bexI 1);
+by (rtac ballI 1);
+by (resolve_tac [beta] 1);
+by (assume_tac 1);
+bw increasing_def;
+by (rtac CollectI 1);
+by (rtac lam_type 1);
+by (asm_simp_tac (ZF_ss setloop split_tac [expand_if]) 1);
+by (fast_tac (ZF_cs addSIs [super_subset_chain RS subsetD,
+			    chain_subset_Pow RS subsetD,
+			    choice_super]) 1);
+(*Now, verify that it increases*)
+by (resolve_tac [allI] 1);
+by (resolve_tac [impI] 1);
+by (asm_simp_tac (ZF_ss addsimps [Pow_iff, subset_refl]
+                        setloop split_tac [expand_if]) 1);
+by (safe_tac ZF_cs);
+by (dresolve_tac [choice_super] 1);
+by (REPEAT (assume_tac 1));
+bw super_def;
+by (fast_tac ZF_cs 1);
+val Hausdorff_next_exists = result();
+
+(*Lemma 4*)
+goal Zorn.thy
+ "!!S. [| c: TFin(S,next);				\
+\	  ch: (PROD X: Pow(chain(S))-{0}. X);		\
+\         next: increasing(S);			 	\
+\         ALL X: Pow(S). next`X = 	\
+\			  if(X: chain(S)-maxchain(S), ch`super(S,X), X)	\
+\      |] ==> c: chain(S)";
+by (eresolve_tac [TFin_induct] 1);
+by (asm_simp_tac 
+    (ZF_ss addsimps [chain_subset_Pow RS subsetD, 
+		     choice_super RS (super_subset_chain RS subsetD)]
+           setloop split_tac [expand_if]) 1);
+bw chain_def;
+by (rtac CollectI 1 THEN fast_tac ZF_cs 1);
+(*Cannot use safe_tac: the disjunction must be left alone*)
+by (REPEAT (rtac ballI 1 ORELSE etac UnionE 1));
+by (res_inst_tac  [("m1","B"), ("n1","Ba")] (TFin_subset_linear RS disjE) 1);
+(*fast_tac is just too slow here!*)
+by (DEPTH_SOLVE (eresolve_tac [asm_rl, subsetD] 1
+       ORELSE ball_tac 1 THEN etac (CollectD2 RS bspec RS bspec) 1));
+val TFin_chain_lemma4 = result();
+
+goal Zorn.thy "EX c. c : maxchain(S)";
+by (rtac (AC_Pi_Pow RS exE) 1);
+by (rtac (Hausdorff_next_exists RS bexE) 1);
+by (assume_tac 1);
+by (rename_tac "ch next" 1);
+by (subgoal_tac "Union(TFin(S,next)) : chain(S)" 1);
+by (REPEAT (ares_tac [TFin_chain_lemma4, subset_refl RS TFin_UnionI] 2));
+by (res_inst_tac [("x", "Union(TFin(S,next))")] exI 1);
+by (resolve_tac [classical] 1);
+by (subgoal_tac "next ` Union(TFin(S,next)) = Union(TFin(S,next))" 1);
+by (resolve_tac [equal_next_Union RS iffD2 RS sym] 2);
+by (resolve_tac [subset_refl RS TFin_UnionI] 2);
+by (assume_tac 2);
+by (resolve_tac [refl] 2);
+by (asm_full_simp_tac 
+    (ZF_ss addsimps [subset_refl RS TFin_UnionI RS
+		     (Zorn.dom_subset RS subsetD)]
+           setloop split_tac [expand_if]) 1);
+by (eresolve_tac [choice_not_equals RS notE] 1);
+by (REPEAT (assume_tac 1));
+val Hausdorff = result();
+
+
+(*** Section 5.  Zorn's Lemma: if all chains in S have upper bounds in S 
+                               then S contains a maximal element ***)
+
+(*Used in the proof of Zorn's Lemma*)
+goalw Zorn.thy [chain_def]
+    "!!c. [| c: chain(A);  z: A;  ALL x:c. x<=z |] ==> cons(z,c) : chain(A)";
+by (fast_tac ZF_cs 1);
+val chain_extend = result();
+
+goal Zorn.thy
+    "!!S. ALL c: chain(S). Union(c) : S ==> EX y:S. ALL z:S. y<=z --> y=z";
+by (resolve_tac [Hausdorff RS exE] 1);
+by (asm_full_simp_tac (ZF_ss addsimps [maxchain_def]) 1);
+by (rename_tac "c" 1);
+by (res_inst_tac [("x", "Union(c)")] bexI 1);
+by (fast_tac ZF_cs 2);
+by (safe_tac ZF_cs);
+by (rename_tac "z" 1);
+by (resolve_tac [classical] 1);
+by (subgoal_tac "cons(z,c): super(S,c)" 1);
+by (fast_tac (ZF_cs addEs [equalityE]) 1);
+bw super_def;
+by (safe_tac eq_cs);
+by (fast_tac (ZF_cs addEs [chain_extend]) 1);
+by (best_tac (ZF_cs addEs [equalityE]) 1);
+val Zorn = result();
+
+
+(*** Section 6.  Zermelo's Theorem: every set can be well-ordered ***)
+
+(*Lemma 5*)
+val major::prems = goal Zorn.thy
+    "[| n: TFin(S,next);  Z <= TFin(S,next);  z:Z;  ~ Inter(Z) : Z	\
+\    |] ==> ALL m:Z. n<=m";
+by (cut_facts_tac prems 1);
+br (major RS TFin_induct) 1;
+by (fast_tac ZF_cs 2);			(*second induction step is easy*)
+br ballI 1;
+br (bspec RS TFin_subsetD RS disjE) 1;
+by (REPEAT_SOME (eresolve_tac [asm_rl,subsetD]));
+by (subgoal_tac "x = Inter(Z)" 1);
+by (fast_tac ZF_cs 1);
+by (fast_tac eq_cs 1);
+val TFin_well_lemma5 = result();
+
+(*Well-ordering of TFin(S,next)*)
+goal Zorn.thy "!!Z. [| Z <= TFin(S,next);  z:Z |] ==> Inter(Z) : Z";
+br classical 1;
+by (subgoal_tac "Z = {Union(TFin(S,next))}" 1);
+by (asm_simp_tac (ZF_ss addsimps [Inter_singleton]) 1);
+be equal_singleton 1;
+br (Union_upper RS equalityI) 1;
+br (subset_refl RS TFin_UnionI RS TFin_well_lemma5 RS bspec) 2;
+by (REPEAT_SOME (eresolve_tac [asm_rl,subsetD]));
+val well_ord_TFin_lemma = result();
+
+(*This theorem just packages the previous result*)
+goal Zorn.thy
+    "!!S. next: increasing(S) ==> \
+\         well_ord(TFin(S,next), Subset_rel(TFin(S,next)))";
+by (resolve_tac [well_ordI] 1);
+by (rewrite_goals_tac [Subset_rel_def, linear_def]);
+(*Prove the linearity goal first*)
+by (REPEAT (rtac ballI 2));
+by (excluded_middle_tac "x=y" 2);
+by (fast_tac ZF_cs 3);
+(*The x~=y case remains*)
+by (res_inst_tac [("n1","x"), ("m1","y")] 
+    (TFin_subset_linear RS disjE) 2  THEN  REPEAT (assume_tac 2));
+by (fast_tac ZF_cs 2);
+by (fast_tac ZF_cs 2);
+(*Now prove the well_foundedness goal*)
+by (resolve_tac [wf_onI] 1);
+by (forward_tac [well_ord_TFin_lemma] 1 THEN assume_tac 1);
+by (dres_inst_tac [("x","Inter(Z)")] bspec 1 THEN assume_tac 1);
+by (fast_tac eq_cs 1);
+val well_ord_TFin = result();
+
+(** Defining the "next" operation for Zermelo's Theorem **)
+
+goal AC.thy
+    "!!S. [| ch : (PROD X:Pow(S) - {0}. X);  X<=S;  X~=S	\
+\         |] ==> ch ` (S-X) : S-X";
+by (eresolve_tac [apply_type] 1);
+by (fast_tac (eq_cs addEs [equalityE]) 1);
+val choice_Diff = result();
+
+(*This justifies Definition 6.1*)
+goal Zorn.thy
+    "!!S. ch: (PROD X: Pow(S)-{0}. X) ==>		\
+\          EX next: increasing(S). ALL X: Pow(S). 	\
+\                     next`X = if(X=S, S, cons(ch`(S-X), X))";
+by (rtac bexI 1);
+by (rtac ballI 1);
+by (resolve_tac [beta] 1);
+by (assume_tac 1);
+bw increasing_def;
+by (rtac CollectI 1);
+by (rtac lam_type 1);
+(*Verify that it increases*)
+by (resolve_tac [allI] 2);
+by (resolve_tac [impI] 2);
+by (asm_simp_tac (ZF_ss addsimps [Pow_iff, subset_consI, subset_refl]
+                        setloop split_tac [expand_if]) 2);
+(*Type checking is surprisingly hard!*)
+by (asm_simp_tac (ZF_ss addsimps [Pow_iff, cons_subset_iff, subset_refl]
+                        setloop split_tac [expand_if]) 1);
+by (fast_tac (ZF_cs addSIs [choice_Diff RS DiffD1]) 1);
+val Zermelo_next_exists = result();
+
+
+(*The construction of the injection*)
+goal Zorn.thy
+  "!!S. [| ch: (PROD X: Pow(S)-{0}. X);			\
+\          next: increasing(S);			 	\
+\          ALL X: Pow(S). next`X = if(X=S, S, cons(ch`(S-X), X))	\
+\       |] ==> (lam x:S. Union({y: TFin(S,next). x~: y})) 	\
+\              : inj(S, TFin(S,next) - {S})";
+by (res_inst_tac [("d", "%y. ch`(S-y)")] lam_injective 1);
+by (rtac DiffI 1);
+by (resolve_tac [Collect_subset RS TFin_UnionI] 1);
+by (fast_tac (ZF_cs addSIs [Collect_subset RS TFin_UnionI]
+                    addEs [equalityE]) 1);
+by (subgoal_tac "x ~: Union({y: TFin(S,next). x~: y})" 1);
+by (fast_tac (ZF_cs addEs [equalityE]) 2);
+by (subgoal_tac "Union({y: TFin(S,next). x~: y}) ~= S" 1);
+by (fast_tac (ZF_cs addEs [equalityE]) 2);
+(*For proving x : next`Union(...);
+  Abrial & Laffitte's justification appears to be faulty.*)
+by (subgoal_tac "~ next ` Union({y: TFin(S,next). x~: y}) <= \
+\                  Union({y: TFin(S,next). x~: y})" 1);
+by (asm_simp_tac 
+    (ZF_ss addsimps [Collect_subset RS TFin_UnionI RS TFin_is_subset,
+		     Pow_iff, cons_subset_iff, subset_refl,
+		     choice_Diff RS DiffD2]
+           setloop split_tac [expand_if]) 2);
+by (subgoal_tac "x : next ` Union({y: TFin(S,next). x~: y})" 1);
+by (fast_tac (subset_cs addSIs [Collect_subset RS TFin_UnionI, TFin_nextI]) 2);
+(*End of the lemmas!*)
+by (asm_full_simp_tac 
+    (ZF_ss addsimps [Collect_subset RS TFin_UnionI RS TFin_is_subset,
+		     Pow_iff, cons_subset_iff, subset_refl]
+           setloop split_tac [expand_if]) 1);
+by (REPEAT (eresolve_tac [asm_rl, consE, sym, notE] 1));
+val choice_imp_injection = result();
+
+(*The wellordering theorem*)
+goal Zorn.thy "EX r. well_ord(S,r)";
+by (rtac (AC_Pi_Pow RS exE) 1);
+by (rtac (Zermelo_next_exists RS bexE) 1);
+by (assume_tac 1);
+br exI 1;
+by (resolve_tac [well_ord_rvimage] 1);
+by (eresolve_tac [well_ord_TFin] 2);
+by (resolve_tac [choice_imp_injection RS inj_weaken_type] 1);
+by (REPEAT (ares_tac [Diff_subset] 1));
+val AC_well_ord = result();