src/HOL/Hoare/Hoare.ML
changeset 13696 631460c31a1f
parent 13695 3e48dcd25746
child 13697 e4db4f06cec1
--- a/src/HOL/Hoare/Hoare.ML	Tue Nov 05 15:59:17 2002 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,217 +0,0 @@
-(*  Title:      HOL/Hoare/Hoare.ML
-    ID:         $Id$
-    Author:     Leonor Prensa Nieto & Tobias Nipkow
-    Copyright   1998 TUM
-
-Derivation of the proof rules and, most importantly, the VCG tactic.
-*)
-
-(*** The proof rules ***)
-
-Goalw [thm "Valid_def"] "p <= q ==> Valid p (Basic id) q";
-by (Auto_tac);
-qed "SkipRule";
-
-Goalw [thm "Valid_def"] "p <= {s. (f s):q} ==> Valid p (Basic f) q";
-by (Auto_tac);
-qed "BasicRule";
-
-Goalw [thm "Valid_def"] "Valid P c1 Q ==> Valid Q c2 R ==> Valid P (c1;c2) R";
-by (Asm_simp_tac 1);
-by (Blast_tac 1);
-qed "SeqRule";
-
-Goalw [thm "Valid_def"]
- "p <= {s. (s:b --> s:w) & (s~:b --> s:w')} \
-\ ==> Valid w c1 q ==> Valid w' c2 q \
-\ ==> Valid p (Cond b c1 c2) q";
-by (Asm_simp_tac 1);
-by (Blast_tac 1);
-qed "CondRule";
-
-Goal "! s s'. Sem c s s' --> s : I Int b --> s' : I ==> \
-\     ! s s'. s : I --> iter n b (Sem c) s s' --> s' : I & s' ~: b";
-by (induct_tac "n" 1);
- by (Asm_simp_tac 1);
-by (Simp_tac 1);
-by (Blast_tac 1);
-val lemma = result() RS spec RS spec RS mp RS mp;
-
-Goalw [thm "Valid_def"]
- "p <= i ==> Valid (i Int b) c i ==> i Int (-b) <= q \
-\ ==> Valid p (While b j c) q";
-by (Asm_simp_tac 1);
-by (Clarify_tac 1);
-by (dtac lemma 1);
-by (assume_tac 2);
-by (Blast_tac 1);
-by (Blast_tac 1);
-qed "WhileRule'";
-
-Goal
- "p <= i ==> Valid (i Int b) c i ==> i Int (-b) <= q \
-\ ==> Valid p (While b i c) q";
-by (rtac WhileRule' 1);
-by (ALLGOALS assume_tac);
-qed "WhileRule";
-
-(*** The tactics ***)
-
-(*****************************************************************************)
-(** The function Mset makes the theorem                                     **)
-(** "?Mset <= {(x1,...,xn). ?P (x1,...,xn)} ==> ?Mset <= {s. ?P s}",        **)
-(** where (x1,...,xn) are the variables of the particular program we are    **)
-(** working on at the moment of the call                                    **)
-(*****************************************************************************)
-
-local open HOLogic in
-
-(** maps (%x1 ... xn. t) to [x1,...,xn] **)
-fun abs2list (Const ("split",_) $ (Abs(x,T,t))) = Free (x, T)::abs2list t
-  | abs2list (Abs(x,T,t)) = [Free (x, T)]
-  | abs2list _ = [];
-
-(** maps {(x1,...,xn). t} to [x1,...,xn] **)
-fun mk_vars (Const ("Collect",_) $ T) = abs2list T
-  | mk_vars _ = [];
-
-(** abstraction of body over a tuple formed from a list of free variables. 
-Types are also built **)
-fun mk_abstupleC []     body = absfree ("x", unitT, body)
-  | mk_abstupleC (v::w) body = let val (n,T) = dest_Free v
-                               in if w=[] then absfree (n, T, body)
-        else let val z  = mk_abstupleC w body;
-                 val T2 = case z of Abs(_,T,_) => T
-                        | Const (_, Type (_,[_, Type (_,[T,_])])) $ _ => T;
-       in Const ("split", (T --> T2 --> boolT) --> mk_prodT (T,T2) --> boolT) 
-          $ absfree (n, T, z) end end;
-
-(** maps [x1,...,xn] to (x1,...,xn) and types**)
-fun mk_bodyC []      = HOLogic.unit
-  | mk_bodyC (x::xs) = if xs=[] then x 
-               else let val (n, T) = dest_Free x ;
-                        val z = mk_bodyC xs;
-                        val T2 = case z of Free(_, T) => T
-                                         | Const ("Pair", Type ("fun", [_, Type
-                                            ("fun", [_, T])])) $ _ $ _ => T;
-                 in Const ("Pair", [T, T2] ---> mk_prodT (T, T2)) $ x $ z end;
-
-fun dest_Goal (Const ("Goal", _) $ P) = P;
-
-(** maps a goal of the form:
-        1. [| P |] ==> |- VARS x1 ... xn. {._.} _ {._.} or to [x1,...,xn]**) 
-fun get_vars thm = let  val c = dest_Goal (concl_of (thm));
-                        val d = Logic.strip_assums_concl c;
-                        val Const _ $ pre $ _ $ _ = dest_Trueprop d;
-      in mk_vars pre end;
-
-
-(** Makes Collect with type **)
-fun mk_CollectC trm = let val T as Type ("fun",[t,_]) = fastype_of trm 
-                      in Collect_const t $ trm end;
-
-fun inclt ty = Const ("op <=", [ty,ty] ---> boolT);
-
-(** Makes "Mset <= t" **)
-fun Mset_incl t = let val MsetT = fastype_of t 
-                 in mk_Trueprop ((inclt MsetT) $ Free ("Mset", MsetT) $ t) end;
-
-
-fun Mset thm = let val vars = get_vars(thm);
-                   val varsT = fastype_of (mk_bodyC vars);
-                   val big_Collect = mk_CollectC (mk_abstupleC vars 
-                         (Free ("P",varsT --> boolT) $ mk_bodyC vars));
-                   val small_Collect = mk_CollectC (Abs("x",varsT,
-                           Free ("P",varsT --> boolT) $ Bound 0));
-                   val impl = implies $ (Mset_incl big_Collect) $ 
-                                          (Mset_incl small_Collect);
-   in Tactic.prove (Thm.sign_of_thm thm) ["Mset", "P"] [] impl (K (CLASET' blast_tac 1)) end;
-
-end;
-
-
-(*****************************************************************************)
-(** Simplifying:                                                            **)
-(** Some useful lemmata, lists and simplification tactics to control which  **)
-(** theorems are used to simplify at each moment, so that the original      **)
-(** input does not suffer any unexpected transformation                     **)
-(*****************************************************************************)
-
-Goal "-(Collect b) = {x. ~(b x)}";
-by (Fast_tac 1);
-qed "Compl_Collect";
-
-
-(**Simp_tacs**)
-
-val before_set2pred_simp_tac =
-  (simp_tac (HOL_basic_ss addsimps [Collect_conj_eq RS sym,Compl_Collect]));
-
-val split_simp_tac = (simp_tac (HOL_basic_ss addsimps [split_conv]));
-
-(*****************************************************************************)
-(** set2pred transforms sets inclusion into predicates implication,         **)
-(** maintaining the original variable names.                                **)
-(** Ex. "{x. x=0} <= {x. x <= 1}" -set2pred-> "x=0 --> x <= 1"              **)
-(** Subgoals containing intersections (A Int B) or complement sets (-A)     **)
-(** are first simplified by "before_set2pred_simp_tac", that returns only   **)
-(** subgoals of the form "{x. P x} <= {x. Q x}", which are easily           **)
-(** transformed.                                                            **)
-(** This transformation may solve very easy subgoals due to a ligth         **)
-(** simplification done by (split_all_tac)                                  **)
-(*****************************************************************************)
-
-fun set2pred i thm = let fun mk_string [] = ""
-                           | mk_string (x::xs) = x^" "^mk_string xs;
-                         val vars=get_vars(thm);
-                         val var_string = mk_string (map (fst o dest_Free) vars);
-      in ((before_set2pred_simp_tac i) THEN_MAYBE
-          (EVERY [rtac subsetI i, 
-                  rtac CollectI i,
-                  dtac CollectD i,
-                  (TRY(split_all_tac i)) THEN_MAYBE
-                  ((rename_tac var_string i) THEN
-                   (full_simp_tac (HOL_basic_ss addsimps [split_conv]) i)) ])) thm
-      end;
-
-(*****************************************************************************)
-(** BasicSimpTac is called to simplify all verification conditions. It does **)
-(** a light simplification by applying "mem_Collect_eq", then it calls      **)
-(** MaxSimpTac, which solves subgoals of the form "A <= A",                 **)
-(** and transforms any other into predicates, applying then                 **)
-(** the tactic chosen by the user, which may solve the subgoal completely.  **)
-(*****************************************************************************)
-
-fun MaxSimpTac tac = FIRST'[rtac subset_refl, set2pred THEN_MAYBE' tac];
-
-fun BasicSimpTac tac =
-  simp_tac
-    (HOL_basic_ss addsimps [mem_Collect_eq,split_conv] addsimprocs [record_simproc])
-  THEN_MAYBE' MaxSimpTac tac;
-
-(** HoareRuleTac **)
-
-fun WlpTac Mlem tac i = rtac SeqRule i THEN  HoareRuleTac Mlem tac false (i+1)
-and HoareRuleTac Mlem tac pre_cond i st = st |>
-        (*abstraction over st prevents looping*)
-    ( (WlpTac Mlem tac i THEN HoareRuleTac Mlem tac pre_cond i)
-      ORELSE
-      (FIRST[rtac SkipRule i,
-             EVERY[rtac BasicRule i,
-                   rtac Mlem i,
-                   split_simp_tac i],
-             EVERY[rtac CondRule i,
-                   HoareRuleTac Mlem tac false (i+2),
-                   HoareRuleTac Mlem tac false (i+1)],
-             EVERY[rtac WhileRule i,
-                   BasicSimpTac tac (i+2),
-                   HoareRuleTac Mlem tac true (i+1)] ] 
-       THEN (if pre_cond then (BasicSimpTac tac i) else (rtac subset_refl i)) ));
-
-
-(** tac:(int -> tactic) is the tactic the user chooses to solve or simplify **)
-(** the final verification conditions                                       **)
- 
-fun hoare_tac tac i thm =
-  let val Mlem = Mset(thm)
-  in SELECT_GOAL(EVERY[HoareRuleTac Mlem tac true 1]) i thm end;