src/HOL/Isar_examples/MutilatedCheckerboard.thy
changeset 10007 64bf7da1994a
parent 9941 fe05af7ec816
child 10387 9dac2cad5500
--- a/src/HOL/Isar_examples/MutilatedCheckerboard.thy	Sun Sep 17 22:15:08 2000 +0200
+++ b/src/HOL/Isar_examples/MutilatedCheckerboard.thy	Sun Sep 17 22:19:02 2000 +0200
@@ -4,296 +4,296 @@
                 Lawrence C Paulson, Cambridge University Computer Laboratory (original scripts)
 *)
 
-header {* The Mutilated Checker Board Problem *};
+header {* The Mutilated Checker Board Problem *}
 
-theory MutilatedCheckerboard = Main:;
+theory MutilatedCheckerboard = Main:
 
 text {*
  The Mutilated Checker Board Problem, formalized inductively.  See
  \cite{paulson-mutilated-board} and
  \url{http://isabelle.in.tum.de/library/HOL/Induct/Mutil.html} for the
  original tactic script version.
-*};
+*}
 
-subsection {* Tilings *};
+subsection {* Tilings *}
 
 consts
-  tiling :: "'a set set => 'a set set";
+  tiling :: "'a set set => 'a set set"
 
 inductive "tiling A"
   intros
     empty: "{} : tiling A"
     Un:    "a : A ==> t : tiling A ==> a <= - t
-              ==> a Un t : tiling A";
+              ==> a Un t : tiling A"
 
 
-text "The union of two disjoint tilings is a tiling.";
+text "The union of two disjoint tilings is a tiling."
 
 lemma tiling_Un:
   "t : tiling A --> u : tiling A --> t Int u = {}
-    --> t Un u : tiling A";
-proof;
-  assume "t : tiling A" (is "_ : ?T");
-  thus "u : ?T --> t Int u = {} --> t Un u : ?T" (is "?P t");
-  proof (induct (stripped) t);
+    --> t Un u : tiling A"
+proof
+  assume "t : tiling A" (is "_ : ?T")
+  thus "u : ?T --> t Int u = {} --> t Un u : ?T" (is "?P t")
+  proof (induct (stripped) t)
     assume "u : ?T" "{} Int u = {}"
-    thus "{} Un u : ?T" by simp;
+    thus "{} Un u : ?T" by simp
   next
-    fix a t;
-    assume "a : A" "t : ?T" "?P t" "a <= - t";
-    assume "u : ?T" "(a Un t) Int u = {}";
-    have hyp: "t Un u: ?T"; by (blast!);
-    have "a <= - (t Un u)"; by (blast!);
-    with _ hyp; have "a Un (t Un u) : ?T"; by (rule tiling.Un);
-    also; have "a Un (t Un u) = (a Un t) Un u";
-      by (simp only: Un_assoc);
-    finally; show "... : ?T"; .;
-  qed;
-qed;
+    fix a t
+    assume "a : A" "t : ?T" "?P t" "a <= - t"
+    assume "u : ?T" "(a Un t) Int u = {}"
+    have hyp: "t Un u: ?T" by (blast!)
+    have "a <= - (t Un u)" by (blast!)
+    with _ hyp have "a Un (t Un u) : ?T" by (rule tiling.Un)
+    also have "a Un (t Un u) = (a Un t) Un u"
+      by (simp only: Un_assoc)
+    finally show "... : ?T" .
+  qed
+qed
 
 
-subsection {* Basic properties of ``below'' *};
+subsection {* Basic properties of ``below'' *}
 
 constdefs
   below :: "nat => nat set"
-  "below n == {i. i < n}";
+  "below n == {i. i < n}"
 
-lemma below_less_iff [iff]: "(i: below k) = (i < k)";
-  by (simp add: below_def);
+lemma below_less_iff [iff]: "(i: below k) = (i < k)"
+  by (simp add: below_def)
 
-lemma below_0: "below 0 = {}";
-  by (simp add: below_def);
+lemma below_0: "below 0 = {}"
+  by (simp add: below_def)
 
 lemma Sigma_Suc1:
-    "m = n + 1 ==> below m <*> B = ({n} <*> B) Un (below n <*> B)";
-  by (simp add: below_def less_Suc_eq) blast;
+    "m = n + 1 ==> below m <*> B = ({n} <*> B) Un (below n <*> B)"
+  by (simp add: below_def less_Suc_eq) blast
 
 lemma Sigma_Suc2:
     "m = n + 2 ==> A <*> below m =
-      (A <*> {n}) Un (A <*> {n + 1}) Un (A <*> below n)";
-  by (auto simp add: below_def) arith;
+      (A <*> {n}) Un (A <*> {n + 1}) Un (A <*> below n)"
+  by (auto simp add: below_def) arith
 
-lemmas Sigma_Suc = Sigma_Suc1 Sigma_Suc2;
+lemmas Sigma_Suc = Sigma_Suc1 Sigma_Suc2
 
 
-subsection {* Basic properties of ``evnodd'' *};
+subsection {* Basic properties of ``evnodd'' *}
 
 constdefs
   evnodd :: "(nat * nat) set => nat => (nat * nat) set"
-  "evnodd A b == A Int {(i, j). (i + j) mod #2 = b}";
+  "evnodd A b == A Int {(i, j). (i + j) mod #2 = b}"
 
 lemma evnodd_iff:
-    "(i, j): evnodd A b = ((i, j): A  & (i + j) mod #2 = b)";
-  by (simp add: evnodd_def);
+    "(i, j): evnodd A b = ((i, j): A  & (i + j) mod #2 = b)"
+  by (simp add: evnodd_def)
 
-lemma evnodd_subset: "evnodd A b <= A";
-  by (unfold evnodd_def, rule Int_lower1);
+lemma evnodd_subset: "evnodd A b <= A"
+  by (unfold evnodd_def, rule Int_lower1)
 
-lemma evnoddD: "x : evnodd A b ==> x : A";
-  by (rule subsetD, rule evnodd_subset);
+lemma evnoddD: "x : evnodd A b ==> x : A"
+  by (rule subsetD, rule evnodd_subset)
 
-lemma evnodd_finite: "finite A ==> finite (evnodd A b)";
-  by (rule finite_subset, rule evnodd_subset);
+lemma evnodd_finite: "finite A ==> finite (evnodd A b)"
+  by (rule finite_subset, rule evnodd_subset)
 
-lemma evnodd_Un: "evnodd (A Un B) b = evnodd A b Un evnodd B b";
-  by (unfold evnodd_def) blast;
+lemma evnodd_Un: "evnodd (A Un B) b = evnodd A b Un evnodd B b"
+  by (unfold evnodd_def) blast
 
-lemma evnodd_Diff: "evnodd (A - B) b = evnodd A b - evnodd B b";
-  by (unfold evnodd_def) blast;
+lemma evnodd_Diff: "evnodd (A - B) b = evnodd A b - evnodd B b"
+  by (unfold evnodd_def) blast
 
-lemma evnodd_empty: "evnodd {} b = {}";
-  by (simp add: evnodd_def);
+lemma evnodd_empty: "evnodd {} b = {}"
+  by (simp add: evnodd_def)
 
 lemma evnodd_insert: "evnodd (insert (i, j) C) b =
     (if (i + j) mod #2 = b
-      then insert (i, j) (evnodd C b) else evnodd C b)";
-  by (simp add: evnodd_def) blast;
+      then insert (i, j) (evnodd C b) else evnodd C b)"
+  by (simp add: evnodd_def) blast
 
 
-subsection {* Dominoes *};
+subsection {* Dominoes *}
 
 consts 
-  domino :: "(nat * nat) set set";
+  domino :: "(nat * nat) set set"
 
 inductive domino
   intros
     horiz:  "{(i, j), (i, j + 1)} : domino"
-    vertl:  "{(i, j), (i + 1, j)} : domino";
+    vertl:  "{(i, j), (i + 1, j)} : domino"
 
 lemma dominoes_tile_row:
   "{i} <*> below (2 * n) : tiling domino"
-  (is "?P n" is "?B n : ?T");
-proof (induct n);
-  show "?P 0"; by (simp add: below_0 tiling.empty);
+  (is "?P n" is "?B n : ?T")
+proof (induct n)
+  show "?P 0" by (simp add: below_0 tiling.empty)
 
-  fix n; assume hyp: "?P n";
-  let ?a = "{i} <*> {2 * n + 1} Un {i} <*> {2 * n}";
+  fix n assume hyp: "?P n"
+  let ?a = "{i} <*> {2 * n + 1} Un {i} <*> {2 * n}"
 
-  have "?B (Suc n) = ?a Un ?B n";
-    by (auto simp add: Sigma_Suc Un_assoc);
-  also; have "... : ?T";
-  proof (rule tiling.Un);
-    have "{(i, 2 * n), (i, 2 * n + 1)} : domino";
-      by (rule domino.horiz);
-    also; have "{(i, 2 * n), (i, 2 * n + 1)} = ?a"; by blast;
-    finally; show "... : domino"; .;
-    from hyp; show "?B n : ?T"; .;
-    show "?a <= - ?B n"; by blast;
-  qed;
-  finally; show "?P (Suc n)"; .;
-qed;
+  have "?B (Suc n) = ?a Un ?B n"
+    by (auto simp add: Sigma_Suc Un_assoc)
+  also have "... : ?T"
+  proof (rule tiling.Un)
+    have "{(i, 2 * n), (i, 2 * n + 1)} : domino"
+      by (rule domino.horiz)
+    also have "{(i, 2 * n), (i, 2 * n + 1)} = ?a" by blast
+    finally show "... : domino" .
+    from hyp show "?B n : ?T" .
+    show "?a <= - ?B n" by blast
+  qed
+  finally show "?P (Suc n)" .
+qed
 
 lemma dominoes_tile_matrix:
   "below m <*> below (2 * n) : tiling domino"
-  (is "?P m" is "?B m : ?T");
-proof (induct m);
-  show "?P 0"; by (simp add: below_0 tiling.empty);
+  (is "?P m" is "?B m : ?T")
+proof (induct m)
+  show "?P 0" by (simp add: below_0 tiling.empty)
 
-  fix m; assume hyp: "?P m";
-  let ?t = "{m} <*> below (2 * n)";
+  fix m assume hyp: "?P m"
+  let ?t = "{m} <*> below (2 * n)"
 
-  have "?B (Suc m) = ?t Un ?B m"; by (simp add: Sigma_Suc);
-  also; have "... : ?T";
-  proof (rule tiling_Un [rule_format]);
-    show "?t : ?T"; by (rule dominoes_tile_row);
-    from hyp; show "?B m : ?T"; .;
-    show "?t Int ?B m = {}"; by blast;
-  qed;
-  finally; show "?P (Suc m)"; .;
-qed;
+  have "?B (Suc m) = ?t Un ?B m" by (simp add: Sigma_Suc)
+  also have "... : ?T"
+  proof (rule tiling_Un [rule_format])
+    show "?t : ?T" by (rule dominoes_tile_row)
+    from hyp show "?B m : ?T" .
+    show "?t Int ?B m = {}" by blast
+  qed
+  finally show "?P (Suc m)" .
+qed
 
 lemma domino_singleton:
-  "d : domino ==> b < 2 ==> EX i j. evnodd d b = {(i, j)}";
-proof -;
-  assume b: "b < 2";
-  assume "d : domino";
-  thus ?thesis (is "?P d");
-  proof induct;
-    from b; have b_cases: "b = 0 | b = 1"; by arith;
-    fix i j;
-    note [simp] = evnodd_empty evnodd_insert mod_Suc;
-    from b_cases; show "?P {(i, j), (i, j + 1)}"; by rule auto;
-    from b_cases; show "?P {(i, j), (i + 1, j)}"; by rule auto;
-  qed;
-qed;
+  "d : domino ==> b < 2 ==> EX i j. evnodd d b = {(i, j)}"
+proof -
+  assume b: "b < 2"
+  assume "d : domino"
+  thus ?thesis (is "?P d")
+  proof induct
+    from b have b_cases: "b = 0 | b = 1" by arith
+    fix i j
+    note [simp] = evnodd_empty evnodd_insert mod_Suc
+    from b_cases show "?P {(i, j), (i, j + 1)}" by rule auto
+    from b_cases show "?P {(i, j), (i + 1, j)}" by rule auto
+  qed
+qed
 
-lemma domino_finite: "d: domino ==> finite d";
-proof (induct set: domino);
-  fix i j :: nat;
-  show "finite {(i, j), (i, j + 1)}"; by (intro Finites.intros);
-  show "finite {(i, j), (i + 1, j)}"; by (intro Finites.intros);
-qed;
+lemma domino_finite: "d: domino ==> finite d"
+proof (induct set: domino)
+  fix i j :: nat
+  show "finite {(i, j), (i, j + 1)}" by (intro Finites.intros)
+  show "finite {(i, j), (i + 1, j)}" by (intro Finites.intros)
+qed
 
 
-subsection {* Tilings of dominoes *};
+subsection {* Tilings of dominoes *}
 
 lemma tiling_domino_finite:
-  "t : tiling domino ==> finite t" (is "t : ?T ==> ?F t");
-proof -;
-  assume "t : ?T";
-  thus "?F t";
-  proof induct;
-    show "?F {}"; by (rule Finites.emptyI);
-    fix a t; assume "?F t";
-    assume "a : domino"; hence "?F a"; by (rule domino_finite);
-    thus "?F (a Un t)"; by (rule finite_UnI);
-  qed;
-qed;
+  "t : tiling domino ==> finite t" (is "t : ?T ==> ?F t")
+proof -
+  assume "t : ?T"
+  thus "?F t"
+  proof induct
+    show "?F {}" by (rule Finites.emptyI)
+    fix a t assume "?F t"
+    assume "a : domino" hence "?F a" by (rule domino_finite)
+    thus "?F (a Un t)" by (rule finite_UnI)
+  qed
+qed
 
 lemma tiling_domino_01:
   "t : tiling domino ==> card (evnodd t 0) = card (evnodd t 1)"
-  (is "t : ?T ==> ?P t");
-proof -;
-  assume "t : ?T";
-  thus "?P t";
-  proof induct;
-    show "?P {}"; by (simp add: evnodd_def);
+  (is "t : ?T ==> ?P t")
+proof -
+  assume "t : ?T"
+  thus "?P t"
+  proof induct
+    show "?P {}" by (simp add: evnodd_def)
 
-    fix a t;
-    let ?e = evnodd;
+    fix a t
+    let ?e = evnodd
     assume "a : domino" "t : ?T"
       and hyp: "card (?e t 0) = card (?e t 1)"
-      and "a <= - t";
+      and "a <= - t"
 
     have card_suc:
-      "!!b. b < 2 ==> card (?e (a Un t) b) = Suc (card (?e t b))";
-    proof -;
-      fix b; assume "b < 2";
-      have "?e (a Un t) b = ?e a b Un ?e t b"; by (rule evnodd_Un);
-      also; obtain i j where "?e a b = {(i, j)}";
-      proof -;
-	have "EX i j. ?e a b = {(i, j)}"; by (rule domino_singleton);
-	thus ?thesis; by blast;
-      qed;
-      also; have "... Un ?e t b = insert (i, j) (?e t b)"; by simp;
-      also; have "card ... = Suc (card (?e t b))";
-      proof (rule card_insert_disjoint);
-	show "finite (?e t b)";
-          by (rule evnodd_finite, rule tiling_domino_finite);
-	have "(i, j) : ?e a b"; by (simp!);
-	thus "(i, j) ~: ?e t b"; by (blast! dest: evnoddD);
-      qed;
-      finally; show "?thesis b"; .;
-    qed;
-    hence "card (?e (a Un t) 0) = Suc (card (?e t 0))"; by simp;
-    also; from hyp; have "card (?e t 0) = card (?e t 1)"; .;
-    also; from card_suc; have "Suc ... = card (?e (a Un t) 1)";
-      by simp;
-    finally; show "?P (a Un t)"; .;
-  qed;
-qed;
+      "!!b. b < 2 ==> card (?e (a Un t) b) = Suc (card (?e t b))"
+    proof -
+      fix b assume "b < 2"
+      have "?e (a Un t) b = ?e a b Un ?e t b" by (rule evnodd_Un)
+      also obtain i j where "?e a b = {(i, j)}"
+      proof -
+	have "EX i j. ?e a b = {(i, j)}" by (rule domino_singleton)
+	thus ?thesis by blast
+      qed
+      also have "... Un ?e t b = insert (i, j) (?e t b)" by simp
+      also have "card ... = Suc (card (?e t b))"
+      proof (rule card_insert_disjoint)
+	show "finite (?e t b)"
+          by (rule evnodd_finite, rule tiling_domino_finite)
+	have "(i, j) : ?e a b" by (simp!)
+	thus "(i, j) ~: ?e t b" by (blast! dest: evnoddD)
+      qed
+      finally show "?thesis b" .
+    qed
+    hence "card (?e (a Un t) 0) = Suc (card (?e t 0))" by simp
+    also from hyp have "card (?e t 0) = card (?e t 1)" .
+    also from card_suc have "Suc ... = card (?e (a Un t) 1)"
+      by simp
+    finally show "?P (a Un t)" .
+  qed
+qed
 
 
-subsection {* Main theorem *};
+subsection {* Main theorem *}
 
 constdefs
   mutilated_board :: "nat => nat => (nat * nat) set"
   "mutilated_board m n ==
     below (2 * (m + 1)) <*> below (2 * (n + 1))
-      - {(0, 0)} - {(2 * m + 1, 2 * n + 1)}";
+      - {(0, 0)} - {(2 * m + 1, 2 * n + 1)}"
 
-theorem mutil_not_tiling: "mutilated_board m n ~: tiling domino";
-proof (unfold mutilated_board_def);
-  let ?T = "tiling domino";
-  let ?t = "below (2 * (m + 1)) <*> below (2 * (n + 1))";
-  let ?t' = "?t - {(0, 0)}";
-  let ?t'' = "?t' - {(2 * m + 1, 2 * n + 1)}";
+theorem mutil_not_tiling: "mutilated_board m n ~: tiling domino"
+proof (unfold mutilated_board_def)
+  let ?T = "tiling domino"
+  let ?t = "below (2 * (m + 1)) <*> below (2 * (n + 1))"
+  let ?t' = "?t - {(0, 0)}"
+  let ?t'' = "?t' - {(2 * m + 1, 2 * n + 1)}"
 
-  show "?t'' ~: ?T";
-  proof;
-    have t: "?t : ?T"; by (rule dominoes_tile_matrix);
-    assume t'': "?t'' : ?T";
+  show "?t'' ~: ?T"
+  proof
+    have t: "?t : ?T" by (rule dominoes_tile_matrix)
+    assume t'': "?t'' : ?T"
 
-    let ?e = evnodd;
-    have fin: "finite (?e ?t 0)";
-      by (rule evnodd_finite, rule tiling_domino_finite, rule t);
+    let ?e = evnodd
+    have fin: "finite (?e ?t 0)"
+      by (rule evnodd_finite, rule tiling_domino_finite, rule t)
 
-    note [simp] = evnodd_iff evnodd_empty evnodd_insert evnodd_Diff;
-    have "card (?e ?t'' 0) < card (?e ?t' 0)";
-    proof -;
+    note [simp] = evnodd_iff evnodd_empty evnodd_insert evnodd_Diff
+    have "card (?e ?t'' 0) < card (?e ?t' 0)"
+    proof -
       have "card (?e ?t' 0 - {(2 * m + 1, 2 * n + 1)})
-        < card (?e ?t' 0)";
-      proof (rule card_Diff1_less);
-	from _ fin; show "finite (?e ?t' 0)";
-          by (rule finite_subset) auto;
-	show "(2 * m + 1, 2 * n + 1) : ?e ?t' 0"; by simp;
-      qed;
-      thus ?thesis; by simp;
-    qed;
-    also; have "... < card (?e ?t 0)";
-    proof -;
-      have "(0, 0) : ?e ?t 0"; by simp;
-      with fin; have "card (?e ?t 0 - {(0, 0)}) < card (?e ?t 0)";
-        by (rule card_Diff1_less);
-      thus ?thesis; by simp;
-    qed;
-    also; from t; have "... = card (?e ?t 1)";
-      by (rule tiling_domino_01);
-    also; have "?e ?t 1 = ?e ?t'' 1"; by simp;
-    also; from t''; have "card ... = card (?e ?t'' 0)";
-      by (rule tiling_domino_01 [symmetric]);
-    finally; have "... < ..."; .; thus False; ..;
-  qed;
-qed;
+        < card (?e ?t' 0)"
+      proof (rule card_Diff1_less)
+	from _ fin show "finite (?e ?t' 0)"
+          by (rule finite_subset) auto
+	show "(2 * m + 1, 2 * n + 1) : ?e ?t' 0" by simp
+      qed
+      thus ?thesis by simp
+    qed
+    also have "... < card (?e ?t 0)"
+    proof -
+      have "(0, 0) : ?e ?t 0" by simp
+      with fin have "card (?e ?t 0 - {(0, 0)}) < card (?e ?t 0)"
+        by (rule card_Diff1_less)
+      thus ?thesis by simp
+    qed
+    also from t have "... = card (?e ?t 1)"
+      by (rule tiling_domino_01)
+    also have "?e ?t 1 = ?e ?t'' 1" by simp
+    also from t'' have "card ... = card (?e ?t'' 0)"
+      by (rule tiling_domino_01 [symmetric])
+    finally have "... < ..." . thus False ..
+  qed
+qed
 
-end;
+end