src/HOL/Analysis/Cartesian_Euclidean_Space.thy
changeset 63886 685fb01256af
parent 63627 6ddb43c6b711
child 63918 6bf55e6e0b75
--- a/src/HOL/Analysis/Cartesian_Euclidean_Space.thy	Thu Sep 15 22:41:05 2016 +0200
+++ b/src/HOL/Analysis/Cartesian_Euclidean_Space.thy	Fri Sep 16 13:56:51 2016 +0200
@@ -1,7 +1,7 @@
 section \<open>Instantiates the finite Cartesian product of Euclidean spaces as a Euclidean space.\<close>
 
 theory Cartesian_Euclidean_Space
-imports Finite_Cartesian_Product Henstock_Kurzweil_Integration
+imports Finite_Cartesian_Product Derivative (* Henstock_Kurzweil_Integration *)
 begin
 
 lemma subspace_special_hyperplane: "subspace {x. x $ k = 0}"
@@ -927,7 +927,6 @@
   unfolding dot_matrix_product transpose_columnvector[symmetric]
     dot_rowvector_columnvector matrix_transpose_mul matrix_mul_assoc ..
 
-
 lemma infnorm_cart:"infnorm (x::real^'n) = Sup {\<bar>x$i\<bar> |i. i\<in>UNIV}"
   by (simp add: infnorm_def inner_axis Basis_vec_def) (metis (lifting) inner_axis real_inner_1_right)
 
@@ -1409,12 +1408,6 @@
   apply (rule bounded_linearI[where K=1])
   using component_le_norm_cart[of _ k] unfolding real_norm_def by auto
 
-lemma integral_component_eq_cart[simp]:
-  fixes f :: "'n::euclidean_space \<Rightarrow> real^'m"
-  assumes "f integrable_on s"
-  shows "integral s (\<lambda>x. f x $ k) = integral s f $ k"
-  using integral_linear[OF assms(1) bounded_linear_component_cart,unfolded o_def] .
-
 lemma interval_split_cart:
   "{a..b::real^'n} \<inter> {x. x$k \<le> c} = {a .. (\<chi> i. if i = k then min (b$k) c else b$i)}"
   "cbox a b \<inter> {x. x$k \<ge> c} = {(\<chi> i. if i = k then max (a$k) c else a$i) .. b}"