src/HOL/NumberTheory/Gauss.thy
changeset 18369 694ea14ab4f2
parent 16775 c1b87ef4a1c3
child 20217 25b068a99d2b
--- a/src/HOL/NumberTheory/Gauss.thy	Thu Dec 08 12:50:03 2005 +0100
+++ b/src/HOL/NumberTheory/Gauss.thy	Thu Dec 08 12:50:04 2005 +0100
@@ -5,7 +5,7 @@
 
 header {* Gauss' Lemma *}
 
-theory Gauss imports Euler begin;
+theory Gauss imports Euler begin
 
 locale GAUSS =
   fixes p :: "int"
@@ -27,410 +27,417 @@
   defines C_def: "C == (StandardRes p) ` B"
   defines D_def: "D == C \<inter> {x. x \<le> ((p - 1) div 2)}"
   defines E_def: "E == C \<inter> {x. ((p - 1) div 2) < x}"
-  defines F_def: "F == (%x. (p - x)) ` E";
+  defines F_def: "F == (%x. (p - x)) ` E"
 
 subsection {* Basic properties of p *}
 
-lemma (in GAUSS) p_odd: "p \<in> zOdd";
+lemma (in GAUSS) p_odd: "p \<in> zOdd"
   by (auto simp add: p_prime p_g_2 zprime_zOdd_eq_grt_2)
 
-lemma (in GAUSS) p_g_0: "0 < p";
-  by (insert p_g_2, auto)
+lemma (in GAUSS) p_g_0: "0 < p"
+  using p_g_2 by auto
 
-lemma (in GAUSS) int_nat: "int (nat ((p - 1) div 2)) = (p - 1) div 2";
-  by (insert p_g_2, auto simp add: pos_imp_zdiv_nonneg_iff)
+lemma (in GAUSS) int_nat: "int (nat ((p - 1) div 2)) = (p - 1) div 2"
+  using insert p_g_2 by (auto simp add: pos_imp_zdiv_nonneg_iff)
 
-lemma (in GAUSS) p_minus_one_l: "(p - 1) div 2 < p";
-  proof -;
-    have "p - 1 = (p - 1) div 1" by auto
-    then have "(p - 1) div 2 \<le> p - 1"
-      apply (rule ssubst) back;
-      apply (rule zdiv_mono2)
-      by (auto simp add: p_g_0)
-    then have "(p - 1) div 2 \<le> p - 1";
-      by auto
-    then show ?thesis by simp
-qed;
+lemma (in GAUSS) p_minus_one_l: "(p - 1) div 2 < p"
+proof -
+  have "(p - 1) div 2 \<le> (p - 1) div 1"
+    by (rule zdiv_mono2) (auto simp add: p_g_0)
+  also have "\<dots> = p - 1" by simp
+  finally show ?thesis by simp
+qed
 
-lemma (in GAUSS) p_eq: "p = (2 * (p - 1) div 2) + 1";
-  apply (insert zdiv_zmult_self2 [of 2 "p - 1"])
-by auto
+lemma (in GAUSS) p_eq: "p = (2 * (p - 1) div 2) + 1"
+  using zdiv_zmult_self2 [of 2 "p - 1"] by auto
 
-lemma zodd_imp_zdiv_eq: "x \<in> zOdd ==> 2 * (x - 1) div 2 = 2 * ((x - 1) div 2)";
+lemma zodd_imp_zdiv_eq: "x \<in> zOdd ==> 2 * (x - 1) div 2 = 2 * ((x - 1) div 2)"
   apply (frule odd_minus_one_even)
   apply (simp add: zEven_def)
   apply (subgoal_tac "2 \<noteq> 0")
-  apply (frule_tac b = "2 :: int" and a = "x - 1" in zdiv_zmult_self2)  
-by (auto simp add: even_div_2_prop2)
+  apply (frule_tac b = "2 :: int" and a = "x - 1" in zdiv_zmult_self2)
+  apply (auto simp add: even_div_2_prop2)
+  done
 
-lemma (in GAUSS) p_eq2: "p = (2 * ((p - 1) div 2)) + 1";
+lemma (in GAUSS) p_eq2: "p = (2 * ((p - 1) div 2)) + 1"
   apply (insert p_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 [of p], auto)
-by (frule zodd_imp_zdiv_eq, auto)
+  apply (frule zodd_imp_zdiv_eq, auto)
+  done
 
 subsection {* Basic Properties of the Gauss Sets *}
 
-lemma (in GAUSS) finite_A: "finite (A)";
-  apply (auto simp add: A_def) 
-thm bdd_int_set_l_finite;
-  apply (subgoal_tac "{x. 0 < x & x \<le> (p - 1) div 2} \<subseteq> {x. 0 \<le> x & x < 1 + (p - 1) div 2}"); 
-by (auto simp add: bdd_int_set_l_finite finite_subset)
+lemma (in GAUSS) finite_A: "finite (A)"
+  apply (auto simp add: A_def)
+  apply (subgoal_tac "{x. 0 < x & x \<le> (p - 1) div 2} \<subseteq> {x. 0 \<le> x & x < 1 + (p - 1) div 2}")
+  apply (auto simp add: bdd_int_set_l_finite finite_subset)
+  done
 
-lemma (in GAUSS) finite_B: "finite (B)";
+lemma (in GAUSS) finite_B: "finite (B)"
   by (auto simp add: B_def finite_A finite_imageI)
 
-lemma (in GAUSS) finite_C: "finite (C)";
+lemma (in GAUSS) finite_C: "finite (C)"
   by (auto simp add: C_def finite_B finite_imageI)
 
-lemma (in GAUSS) finite_D: "finite (D)";
+lemma (in GAUSS) finite_D: "finite (D)"
   by (auto simp add: D_def finite_Int finite_C)
 
-lemma (in GAUSS) finite_E: "finite (E)";
+lemma (in GAUSS) finite_E: "finite (E)"
   by (auto simp add: E_def finite_Int finite_C)
 
-lemma (in GAUSS) finite_F: "finite (F)";
+lemma (in GAUSS) finite_F: "finite (F)"
   by (auto simp add: F_def finite_E finite_imageI)
 
-lemma (in GAUSS) C_eq: "C = D \<union> E";
+lemma (in GAUSS) C_eq: "C = D \<union> E"
   by (auto simp add: C_def D_def E_def)
 
-lemma (in GAUSS) A_card_eq: "card A = nat ((p - 1) div 2)";
-  apply (auto simp add: A_def) 
+lemma (in GAUSS) A_card_eq: "card A = nat ((p - 1) div 2)"
+  apply (auto simp add: A_def)
   apply (insert int_nat)
   apply (erule subst)
-  by (auto simp add: card_bdd_int_set_l_le)
+  apply (auto simp add: card_bdd_int_set_l_le)
+  done
 
-lemma (in GAUSS) inj_on_xa_A: "inj_on (%x. x * a) A";
-  apply (insert a_nonzero)
-by (simp add: A_def inj_on_def)
+lemma (in GAUSS) inj_on_xa_A: "inj_on (%x. x * a) A"
+  using a_nonzero by (simp add: A_def inj_on_def)
 
-lemma (in GAUSS) A_res: "ResSet p A";
-  apply (auto simp add: A_def ResSet_def) 
-  apply (rule_tac m = p in zcong_less_eq) 
-  apply (insert p_g_2, auto) 
-  apply (subgoal_tac [1-2] "(p - 1) div 2 < p");
-by (auto, auto simp add: p_minus_one_l)
+lemma (in GAUSS) A_res: "ResSet p A"
+  apply (auto simp add: A_def ResSet_def)
+  apply (rule_tac m = p in zcong_less_eq)
+  apply (insert p_g_2, auto)
+  apply (subgoal_tac [1-2] "(p - 1) div 2 < p")
+  apply (auto, auto simp add: p_minus_one_l)
+  done
 
-lemma (in GAUSS) B_res: "ResSet p B";
+lemma (in GAUSS) B_res: "ResSet p B"
   apply (insert p_g_2 p_a_relprime p_minus_one_l)
-  apply (auto simp add: B_def) 
+  apply (auto simp add: B_def)
   apply (rule ResSet_image)
-  apply (auto simp add: A_res) 
+  apply (auto simp add: A_res)
   apply (auto simp add: A_def)
-  proof -;
-    fix x fix y
-    assume a: "[x * a = y * a] (mod p)"
-    assume b: "0 < x"
-    assume c: "x \<le> (p - 1) div 2"
-    assume d: "0 < y"
-    assume e: "y \<le> (p - 1) div 2"
-    from a p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y] 
-        have "[x = y](mod p)";
-      by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less) 
-    with zcong_less_eq [of x y p] p_minus_one_l 
-         order_le_less_trans [of x "(p - 1) div 2" p]
-         order_le_less_trans [of y "(p - 1) div 2" p] show "x = y";
-      by (simp add: prems p_minus_one_l p_g_0)
-qed;
+proof -
+  fix x fix y
+  assume a: "[x * a = y * a] (mod p)"
+  assume b: "0 < x"
+  assume c: "x \<le> (p - 1) div 2"
+  assume d: "0 < y"
+  assume e: "y \<le> (p - 1) div 2"
+  from a p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y]
+  have "[x = y](mod p)"
+    by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less)
+  with zcong_less_eq [of x y p] p_minus_one_l
+      order_le_less_trans [of x "(p - 1) div 2" p]
+      order_le_less_trans [of y "(p - 1) div 2" p] show "x = y"
+    by (simp add: prems p_minus_one_l p_g_0)
+qed
 
-lemma (in GAUSS) SR_B_inj: "inj_on (StandardRes p) B";
+lemma (in GAUSS) SR_B_inj: "inj_on (StandardRes p) B"
   apply (auto simp add: B_def StandardRes_def inj_on_def A_def prems)
-  proof -;
-    fix x fix y
-    assume a: "x * a mod p = y * a mod p"
-    assume b: "0 < x"
-    assume c: "x \<le> (p - 1) div 2"
-    assume d: "0 < y"
-    assume e: "y \<le> (p - 1) div 2"
-    assume f: "x \<noteq> y"
-    from a have "[x * a = y * a](mod p)";
-      by (simp add: zcong_zmod_eq p_g_0)
-    with p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y] 
-        have "[x = y](mod p)";
-      by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less) 
-    with zcong_less_eq [of x y p] p_minus_one_l 
-         order_le_less_trans [of x "(p - 1) div 2" p]
-         order_le_less_trans [of y "(p - 1) div 2" p] have "x = y";
-      by (simp add: prems p_minus_one_l p_g_0)
-    then have False;
-      by (simp add: f)
-    then show "a = 0";
-      by simp
-qed;
+proof -
+  fix x fix y
+  assume a: "x * a mod p = y * a mod p"
+  assume b: "0 < x"
+  assume c: "x \<le> (p - 1) div 2"
+  assume d: "0 < y"
+  assume e: "y \<le> (p - 1) div 2"
+  assume f: "x \<noteq> y"
+  from a have "[x * a = y * a](mod p)"
+    by (simp add: zcong_zmod_eq p_g_0)
+  with p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y]
+  have "[x = y](mod p)"
+    by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less)
+  with zcong_less_eq [of x y p] p_minus_one_l
+    order_le_less_trans [of x "(p - 1) div 2" p]
+    order_le_less_trans [of y "(p - 1) div 2" p] have "x = y"
+    by (simp add: prems p_minus_one_l p_g_0)
+  then have False
+    by (simp add: f)
+  then show "a = 0"
+    by simp
+qed
 
-lemma (in GAUSS) inj_on_pminusx_E: "inj_on (%x. p - x) E";
+lemma (in GAUSS) inj_on_pminusx_E: "inj_on (%x. p - x) E"
   apply (auto simp add: E_def C_def B_def A_def)
-  apply (rule_tac g = "%x. -1 * (x - p)" in inj_on_inverseI);
-by auto
+  apply (rule_tac g = "%x. -1 * (x - p)" in inj_on_inverseI)
+  apply auto
+  done
 
-lemma (in GAUSS) A_ncong_p: "x \<in> A ==> ~[x = 0](mod p)";
+lemma (in GAUSS) A_ncong_p: "x \<in> A ==> ~[x = 0](mod p)"
   apply (auto simp add: A_def)
   apply (frule_tac m = p in zcong_not_zero)
   apply (insert p_minus_one_l)
-by auto
+  apply auto
+  done
 
-lemma (in GAUSS) A_greater_zero: "x \<in> A ==> 0 < x";
+lemma (in GAUSS) A_greater_zero: "x \<in> A ==> 0 < x"
   by (auto simp add: A_def)
 
-lemma (in GAUSS) B_ncong_p: "x \<in> B ==> ~[x = 0](mod p)";
+lemma (in GAUSS) B_ncong_p: "x \<in> B ==> ~[x = 0](mod p)"
   apply (auto simp add: B_def)
-  apply (frule A_ncong_p) 
+  apply (frule A_ncong_p)
   apply (insert p_a_relprime p_prime a_nonzero)
   apply (frule_tac a = x and b = a in zcong_zprime_prod_zero_contra)
-by (auto simp add: A_greater_zero)
+  apply (auto simp add: A_greater_zero)
+  done
 
-lemma (in GAUSS) B_greater_zero: "x \<in> B ==> 0 < x";
-  apply (insert a_nonzero)
-by (auto simp add: B_def mult_pos_pos A_greater_zero)
+lemma (in GAUSS) B_greater_zero: "x \<in> B ==> 0 < x"
+  using a_nonzero by (auto simp add: B_def mult_pos_pos A_greater_zero)
 
-lemma (in GAUSS) C_ncong_p: "x \<in> C ==>  ~[x = 0](mod p)";
+lemma (in GAUSS) C_ncong_p: "x \<in> C ==>  ~[x = 0](mod p)"
   apply (auto simp add: C_def)
   apply (frule B_ncong_p)
-  apply (subgoal_tac "[x = StandardRes p x](mod p)");
-  defer; apply (simp add: StandardRes_prop1)
+  apply (subgoal_tac "[x = StandardRes p x](mod p)")
+  defer apply (simp add: StandardRes_prop1)
   apply (frule_tac a = x and b = "StandardRes p x" and c = 0 in zcong_trans)
-by auto
+  apply auto
+  done
 
-lemma (in GAUSS) C_greater_zero: "y \<in> C ==> 0 < y";
+lemma (in GAUSS) C_greater_zero: "y \<in> C ==> 0 < y"
   apply (auto simp add: C_def)
-  proof -;
-    fix x;
-    assume a: "x \<in> B";
-    from p_g_0 have "0 \<le> StandardRes p x";
-      by (simp add: StandardRes_lbound)
-    moreover have "~[x = 0] (mod p)";
-      by (simp add: a B_ncong_p)
-    then have "StandardRes p x \<noteq> 0";
-      by (simp add: StandardRes_prop3)
-    ultimately show "0 < StandardRes p x";
-      by (simp add: order_le_less)
-qed;
+proof -
+  fix x
+  assume a: "x \<in> B"
+  from p_g_0 have "0 \<le> StandardRes p x"
+    by (simp add: StandardRes_lbound)
+  moreover have "~[x = 0] (mod p)"
+    by (simp add: a B_ncong_p)
+  then have "StandardRes p x \<noteq> 0"
+    by (simp add: StandardRes_prop3)
+  ultimately show "0 < StandardRes p x"
+    by (simp add: order_le_less)
+qed
 
-lemma (in GAUSS) D_ncong_p: "x \<in> D ==> ~[x = 0](mod p)";
+lemma (in GAUSS) D_ncong_p: "x \<in> D ==> ~[x = 0](mod p)"
   by (auto simp add: D_def C_ncong_p)
 
-lemma (in GAUSS) E_ncong_p: "x \<in> E ==> ~[x = 0](mod p)";
+lemma (in GAUSS) E_ncong_p: "x \<in> E ==> ~[x = 0](mod p)"
   by (auto simp add: E_def C_ncong_p)
 
-lemma (in GAUSS) F_ncong_p: "x \<in> F ==> ~[x = 0](mod p)";
-  apply (auto simp add: F_def) 
-  proof -;
-    fix x assume a: "x \<in> E" assume b: "[p - x = 0] (mod p)"
-    from E_ncong_p have "~[x = 0] (mod p)";
-      by (simp add: a)
-    moreover from a have "0 < x";
-      by (simp add: a E_def C_greater_zero)
-    moreover from a have "x < p";
-      by (auto simp add: E_def C_def p_g_0 StandardRes_ubound)
-    ultimately have "~[p - x = 0] (mod p)";
-      by (simp add: zcong_not_zero)
-    from this show False by (simp add: b)
-qed;
+lemma (in GAUSS) F_ncong_p: "x \<in> F ==> ~[x = 0](mod p)"
+  apply (auto simp add: F_def)
+proof -
+  fix x assume a: "x \<in> E" assume b: "[p - x = 0] (mod p)"
+  from E_ncong_p have "~[x = 0] (mod p)"
+    by (simp add: a)
+  moreover from a have "0 < x"
+    by (simp add: a E_def C_greater_zero)
+  moreover from a have "x < p"
+    by (auto simp add: E_def C_def p_g_0 StandardRes_ubound)
+  ultimately have "~[p - x = 0] (mod p)"
+    by (simp add: zcong_not_zero)
+  from this show False by (simp add: b)
+qed
 
-lemma (in GAUSS) F_subset: "F \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}";
-  apply (auto simp add: F_def E_def) 
+lemma (in GAUSS) F_subset: "F \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}"
+  apply (auto simp add: F_def E_def)
   apply (insert p_g_0)
   apply (frule_tac x = xa in StandardRes_ubound)
   apply (frule_tac x = x in StandardRes_ubound)
   apply (subgoal_tac "xa = StandardRes p xa")
   apply (auto simp add: C_def StandardRes_prop2 StandardRes_prop1)
-  proof -;
-    from zodd_imp_zdiv_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 have 
-        "2 * (p - 1) div 2 = 2 * ((p - 1) div 2)";
-      by simp
-    with p_eq2 show " !!x. [| (p - 1) div 2 < StandardRes p x; x \<in> B |]
-         ==> p - StandardRes p x \<le> (p - 1) div 2";
-      by simp
-qed;
+proof -
+  from zodd_imp_zdiv_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 have
+    "2 * (p - 1) div 2 = 2 * ((p - 1) div 2)"
+    by simp
+  with p_eq2 show " !!x. [| (p - 1) div 2 < StandardRes p x; x \<in> B |]
+      ==> p - StandardRes p x \<le> (p - 1) div 2"
+    by simp
+qed
 
-lemma (in GAUSS) D_subset: "D \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}";
+lemma (in GAUSS) D_subset: "D \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}"
   by (auto simp add: D_def C_greater_zero)
 
-lemma (in GAUSS) F_eq: "F = {x. \<exists>y \<in> A. ( x = p - (StandardRes p (y*a)) & (p - 1) div 2 < StandardRes p (y*a))}";
+lemma (in GAUSS) F_eq: "F = {x. \<exists>y \<in> A. ( x = p - (StandardRes p (y*a)) & (p - 1) div 2 < StandardRes p (y*a))}"
   by (auto simp add: F_def E_def D_def C_def B_def A_def)
 
-lemma (in GAUSS) D_eq: "D = {x. \<exists>y \<in> A. ( x = StandardRes p (y*a) & StandardRes p (y*a) \<le> (p - 1) div 2)}";
+lemma (in GAUSS) D_eq: "D = {x. \<exists>y \<in> A. ( x = StandardRes p (y*a) & StandardRes p (y*a) \<le> (p - 1) div 2)}"
   by (auto simp add: D_def C_def B_def A_def)
 
-lemma (in GAUSS) D_leq: "x \<in> D ==> x \<le> (p - 1) div 2";
+lemma (in GAUSS) D_leq: "x \<in> D ==> x \<le> (p - 1) div 2"
   by (auto simp add: D_eq)
 
-lemma (in GAUSS) F_ge: "x \<in> F ==> x \<le> (p - 1) div 2";
+lemma (in GAUSS) F_ge: "x \<in> F ==> x \<le> (p - 1) div 2"
   apply (auto simp add: F_eq A_def)
-  proof -;
-    fix y;
-    assume "(p - 1) div 2 < StandardRes p (y * a)";
-    then have "p - StandardRes p (y * a) < p - ((p - 1) div 2)";
-      by arith
-    also from p_eq2 have "... = 2 * ((p - 1) div 2) + 1 - ((p - 1) div 2)"; 
-      by (rule subst, auto)
-    also; have "2 * ((p - 1) div 2) + 1 - (p - 1) div 2 = (p - 1) div 2 + 1";
-      by arith
-    finally show "p - StandardRes p (y * a) \<le> (p - 1) div 2";
-      by (insert zless_add1_eq [of "p - StandardRes p (y * a)" 
-          "(p - 1) div 2"],auto);
-qed;
+proof -
+  fix y
+  assume "(p - 1) div 2 < StandardRes p (y * a)"
+  then have "p - StandardRes p (y * a) < p - ((p - 1) div 2)"
+    by arith
+  also from p_eq2 have "... = 2 * ((p - 1) div 2) + 1 - ((p - 1) div 2)"
+    by auto
+  also have "2 * ((p - 1) div 2) + 1 - (p - 1) div 2 = (p - 1) div 2 + 1"
+    by arith
+  finally show "p - StandardRes p (y * a) \<le> (p - 1) div 2"
+    using zless_add1_eq [of "p - StandardRes p (y * a)" "(p - 1) div 2"] by auto
+qed
 
-lemma (in GAUSS) all_A_relprime: "\<forall>x \<in> A. zgcd(x,p) = 1";
-  apply (insert p_prime p_minus_one_l)
-by (auto simp add: A_def zless_zprime_imp_zrelprime)
+lemma (in GAUSS) all_A_relprime: "\<forall>x \<in> A. zgcd(x, p) = 1"
+  using p_prime p_minus_one_l by (auto simp add: A_def zless_zprime_imp_zrelprime)
 
-lemma (in GAUSS) A_prod_relprime: "zgcd((setprod id A),p) = 1";
-  by (insert all_A_relprime finite_A, simp add: all_relprime_prod_relprime)
+lemma (in GAUSS) A_prod_relprime: "zgcd((setprod id A),p) = 1"
+  using all_A_relprime finite_A by (simp add: all_relprime_prod_relprime)
 
 subsection {* Relationships Between Gauss Sets *}
 
-lemma (in GAUSS) B_card_eq_A: "card B = card A";
-  apply (insert finite_A)
-by (simp add: finite_A B_def inj_on_xa_A card_image)
+lemma (in GAUSS) B_card_eq_A: "card B = card A"
+  using finite_A by (simp add: finite_A B_def inj_on_xa_A card_image)
 
-lemma (in GAUSS) B_card_eq: "card B = nat ((p - 1) div 2)";
-  by (auto simp add: B_card_eq_A A_card_eq)
+lemma (in GAUSS) B_card_eq: "card B = nat ((p - 1) div 2)"
+  by (simp add: B_card_eq_A A_card_eq)
 
-lemma (in GAUSS) F_card_eq_E: "card F = card E";
-  apply (insert finite_E)
-by (simp add: F_def inj_on_pminusx_E card_image)
+lemma (in GAUSS) F_card_eq_E: "card F = card E"
+  using finite_E by (simp add: F_def inj_on_pminusx_E card_image)
 
-lemma (in GAUSS) C_card_eq_B: "card C = card B";
+lemma (in GAUSS) C_card_eq_B: "card C = card B"
   apply (insert finite_B)
-  apply (subgoal_tac "inj_on (StandardRes p) B");
+  apply (subgoal_tac "inj_on (StandardRes p) B")
   apply (simp add: B_def C_def card_image)
   apply (rule StandardRes_inj_on_ResSet)
-by (simp add: B_res)
+  apply (simp add: B_res)
+  done
 
-lemma (in GAUSS) D_E_disj: "D \<inter> E = {}";
+lemma (in GAUSS) D_E_disj: "D \<inter> E = {}"
   by (auto simp add: D_def E_def)
 
-lemma (in GAUSS) C_card_eq_D_plus_E: "card C = card D + card E";
+lemma (in GAUSS) C_card_eq_D_plus_E: "card C = card D + card E"
   by (auto simp add: C_eq card_Un_disjoint D_E_disj finite_D finite_E)
 
-lemma (in GAUSS) C_prod_eq_D_times_E: "setprod id E * setprod id D = setprod id C";
+lemma (in GAUSS) C_prod_eq_D_times_E: "setprod id E * setprod id D = setprod id C"
   apply (insert D_E_disj finite_D finite_E C_eq)
   apply (frule setprod_Un_disjoint [of D E id])
-by auto
+  apply auto
+  done
 
-lemma (in GAUSS) C_B_zcong_prod: "[setprod id C = setprod id B] (mod p)";
+lemma (in GAUSS) C_B_zcong_prod: "[setprod id C = setprod id B] (mod p)"
   apply (auto simp add: C_def)
-  apply (insert finite_B SR_B_inj) 
-  apply (frule_tac f1 = "StandardRes p" in setprod_reindex_id[THEN sym], auto)
+  apply (insert finite_B SR_B_inj)
+  apply (frule_tac f1 = "StandardRes p" in setprod_reindex_id [symmetric], auto)
   apply (rule setprod_same_function_zcong)
-by (auto simp add: StandardRes_prop1 zcong_sym p_g_0)
+  apply (auto simp add: StandardRes_prop1 zcong_sym p_g_0)
+  done
 
-lemma (in GAUSS) F_Un_D_subset: "(F \<union> D) \<subseteq> A";
+lemma (in GAUSS) F_Un_D_subset: "(F \<union> D) \<subseteq> A"
   apply (rule Un_least)
-by (auto simp add: A_def F_subset D_subset)
+  apply (auto simp add: A_def F_subset D_subset)
+  done
 
-lemma two_eq: "2 * (x::int) = x + x";
+lemma two_eq: "2 * (x::int) = x + x"
   by arith
 
-lemma (in GAUSS) F_D_disj: "(F \<inter> D) = {}";
+lemma (in GAUSS) F_D_disj: "(F \<inter> D) = {}"
   apply (simp add: F_eq D_eq)
   apply (auto simp add: F_eq D_eq)
-  proof -;
-    fix y; fix ya;
-    assume "p - StandardRes p (y * a) = StandardRes p (ya * a)";
-    then have "p = StandardRes p (y * a) + StandardRes p (ya * a)";
-      by arith
-    moreover have "p dvd p";
-      by auto
-    ultimately have "p dvd (StandardRes p (y * a) + StandardRes p (ya * a))";
-      by auto
-    then have a: "[StandardRes p (y * a) + StandardRes p (ya * a) = 0] (mod p)";
-      by (auto simp add: zcong_def)
-    have "[y * a = StandardRes p (y * a)] (mod p)";
-      by (simp only: zcong_sym StandardRes_prop1)
-    moreover have "[ya * a = StandardRes p (ya * a)] (mod p)";
-      by (simp only: zcong_sym StandardRes_prop1)
-    ultimately have "[y * a + ya * a = 
-        StandardRes p (y * a) + StandardRes p (ya * a)] (mod p)";
-      by (rule zcong_zadd)
-    with a have "[y * a + ya * a = 0] (mod p)";
-      apply (elim zcong_trans)
-      by (simp only: zcong_refl)
-    also have "y * a + ya * a = a * (y + ya)";
-      by (simp add: zadd_zmult_distrib2 zmult_commute)
-    finally have "[a * (y + ya) = 0] (mod p)";.;
-    with p_prime a_nonzero zcong_zprime_prod_zero [of p a "y + ya"]
-        p_a_relprime
-        have a: "[y + ya = 0] (mod p)";
-      by auto
-    assume b: "y \<in> A" and c: "ya: A";
-    with A_def have "0 < y + ya";
-      by auto
-    moreover from b c A_def have "y + ya \<le> (p - 1) div 2 + (p - 1) div 2";
-      by auto 
-    moreover from b c p_eq2 A_def have "y + ya < p";
-      by auto
-    ultimately show False;
-      apply simp
-      apply (frule_tac m = p in zcong_not_zero)
-      by (auto simp add: a)
-qed;
+proof -
+  fix y fix ya
+  assume "p - StandardRes p (y * a) = StandardRes p (ya * a)"
+  then have "p = StandardRes p (y * a) + StandardRes p (ya * a)"
+    by arith
+  moreover have "p dvd p"
+    by auto
+  ultimately have "p dvd (StandardRes p (y * a) + StandardRes p (ya * a))"
+    by auto
+  then have a: "[StandardRes p (y * a) + StandardRes p (ya * a) = 0] (mod p)"
+    by (auto simp add: zcong_def)
+  have "[y * a = StandardRes p (y * a)] (mod p)"
+    by (simp only: zcong_sym StandardRes_prop1)
+  moreover have "[ya * a = StandardRes p (ya * a)] (mod p)"
+    by (simp only: zcong_sym StandardRes_prop1)
+  ultimately have "[y * a + ya * a =
+    StandardRes p (y * a) + StandardRes p (ya * a)] (mod p)"
+    by (rule zcong_zadd)
+  with a have "[y * a + ya * a = 0] (mod p)"
+    apply (elim zcong_trans)
+    by (simp only: zcong_refl)
+  also have "y * a + ya * a = a * (y + ya)"
+    by (simp add: zadd_zmult_distrib2 zmult_commute)
+  finally have "[a * (y + ya) = 0] (mod p)" .
+  with p_prime a_nonzero zcong_zprime_prod_zero [of p a "y + ya"]
+    p_a_relprime
+  have a: "[y + ya = 0] (mod p)"
+    by auto
+  assume b: "y \<in> A" and c: "ya: A"
+  with A_def have "0 < y + ya"
+    by auto
+  moreover from b c A_def have "y + ya \<le> (p - 1) div 2 + (p - 1) div 2"
+    by auto
+  moreover from b c p_eq2 A_def have "y + ya < p"
+    by auto
+  ultimately show False
+    apply simp
+    apply (frule_tac m = p in zcong_not_zero)
+    apply (auto simp add: a)
+    done
+qed
 
-lemma (in GAUSS) F_Un_D_card: "card (F \<union> D) = nat ((p - 1) div 2)";
+lemma (in GAUSS) F_Un_D_card: "card (F \<union> D) = nat ((p - 1) div 2)"
   apply (insert F_D_disj finite_F finite_D)
-  proof -;
-    have "card (F \<union> D) = card E + card D";
-      by (auto simp add: finite_F finite_D F_D_disj 
-                         card_Un_disjoint F_card_eq_E)
-    then have "card (F \<union> D) = card C";
-      by (simp add: C_card_eq_D_plus_E)
-    from this show "card (F \<union> D) = nat ((p - 1) div 2)"; 
-      by (simp add: C_card_eq_B B_card_eq)
-qed;
+proof -
+  have "card (F \<union> D) = card E + card D"
+    by (auto simp add: finite_F finite_D F_D_disj
+      card_Un_disjoint F_card_eq_E)
+  then have "card (F \<union> D) = card C"
+    by (simp add: C_card_eq_D_plus_E)
+  from this show "card (F \<union> D) = nat ((p - 1) div 2)"
+    by (simp add: C_card_eq_B B_card_eq)
+qed
 
-lemma (in GAUSS) F_Un_D_eq_A: "F \<union> D = A";
-  apply (insert finite_A F_Un_D_subset A_card_eq F_Un_D_card) 
-by (auto simp add: card_seteq)
+lemma (in GAUSS) F_Un_D_eq_A: "F \<union> D = A"
+  using finite_A F_Un_D_subset A_card_eq F_Un_D_card by (auto simp add: card_seteq)
 
-lemma (in GAUSS) prod_D_F_eq_prod_A: 
-    "(setprod id D) * (setprod id F) = setprod id A";
+lemma (in GAUSS) prod_D_F_eq_prod_A:
+    "(setprod id D) * (setprod id F) = setprod id A"
   apply (insert F_D_disj finite_D finite_F)
   apply (frule setprod_Un_disjoint [of F D id])
-by (auto simp add: F_Un_D_eq_A)
+  apply (auto simp add: F_Un_D_eq_A)
+  done
 
 lemma (in GAUSS) prod_F_zcong:
-    "[setprod id F = ((-1) ^ (card E)) * (setprod id E)] (mod p)"
-  proof -
-    have "setprod id F = setprod id (op - p ` E)"
-      by (auto simp add: F_def)
-    then have "setprod id F = setprod (op - p) E"
-      apply simp
-      apply (insert finite_E inj_on_pminusx_E)
-      by (frule_tac f = "op - p" in setprod_reindex_id, auto)
-    then have one: 
-      "[setprod id F = setprod (StandardRes p o (op - p)) E] (mod p)"
-      apply simp
-      apply (insert p_g_0 finite_E)
-      by (auto simp add: StandardRes_prod)
-    moreover have a: "\<forall>x \<in> E. [p - x = 0 - x] (mod p)"
-      apply clarify
-      apply (insert zcong_id [of p])
-      by (rule_tac a = p and m = p and c = x and d = x in zcong_zdiff, auto)
-    moreover have b: "\<forall>x \<in> E. [StandardRes p (p - x) = p - x](mod p)"
-      apply clarify
-      by (simp add: StandardRes_prop1 zcong_sym)
-    moreover have "\<forall>x \<in> E. [StandardRes p (p - x) = - x](mod p)"
-      apply clarify
-      apply (insert a b)
-      by (rule_tac b = "p - x" in zcong_trans, auto)
-    ultimately have c:
-      "[setprod (StandardRes p o (op - p)) E = setprod (uminus) E](mod p)"
-      apply simp
-      apply (insert finite_E p_g_0)
-      by (rule setprod_same_function_zcong [of E "StandardRes p o (op - p)"
-                                                     uminus p], auto)
-    then have two: "[setprod id F = setprod (uminus) E](mod p)"
-      apply (insert one c)
-      by (rule zcong_trans [of "setprod id F" 
+  "[setprod id F = ((-1) ^ (card E)) * (setprod id E)] (mod p)"
+proof -
+  have "setprod id F = setprod id (op - p ` E)"
+    by (auto simp add: F_def)
+  then have "setprod id F = setprod (op - p) E"
+    apply simp
+    apply (insert finite_E inj_on_pminusx_E)
+    apply (frule_tac f = "op - p" in setprod_reindex_id, auto)
+    done
+  then have one:
+    "[setprod id F = setprod (StandardRes p o (op - p)) E] (mod p)"
+    apply simp
+    apply (insert p_g_0 finite_E)
+    by (auto simp add: StandardRes_prod)
+  moreover have a: "\<forall>x \<in> E. [p - x = 0 - x] (mod p)"
+    apply clarify
+    apply (insert zcong_id [of p])
+    apply (rule_tac a = p and m = p and c = x and d = x in zcong_zdiff, auto)
+    done
+  moreover have b: "\<forall>x \<in> E. [StandardRes p (p - x) = p - x](mod p)"
+    apply clarify
+    apply (simp add: StandardRes_prop1 zcong_sym)
+    done
+  moreover have "\<forall>x \<in> E. [StandardRes p (p - x) = - x](mod p)"
+    apply clarify
+    apply (insert a b)
+    apply (rule_tac b = "p - x" in zcong_trans, auto)
+    done
+  ultimately have c:
+    "[setprod (StandardRes p o (op - p)) E = setprod (uminus) E](mod p)"
+    apply simp
+    apply (insert finite_E p_g_0)
+    apply (rule setprod_same_function_zcong
+      [of E "StandardRes p o (op - p)" uminus p], auto)
+    done
+  then have two: "[setprod id F = setprod (uminus) E](mod p)"
+    apply (insert one c)
+    apply (rule zcong_trans [of "setprod id F"
                                "setprod (StandardRes p o op - p) E" p
-                               "setprod uminus E"], auto) 
-    also have "setprod uminus E = (setprod id E) * (-1)^(card E)" 
-      apply (insert finite_E)
-      by (induct set: Finites, auto)
-    then have "setprod uminus E = (-1) ^ (card E) * (setprod id E)"
-      by (simp add: zmult_commute)
-    with two show ?thesis
-      by simp
+                               "setprod uminus E"], auto)
+    done
+  also have "setprod uminus E = (setprod id E) * (-1)^(card E)"
+    using finite_E by (induct set: Finites) auto
+  then have "setprod uminus E = (-1) ^ (card E) * (setprod id E)"
+    by (simp add: zmult_commute)
+  with two show ?thesis
+    by simp
 qed
 
 subsection {* Gauss' Lemma *}
@@ -439,60 +446,65 @@
   by (auto simp add: finite_E neg_one_special)
 
 theorem (in GAUSS) pre_gauss_lemma:
-    "[a ^ nat((p - 1) div 2) = (-1) ^ (card E)] (mod p)"
-  proof -
-    have "[setprod id A = setprod id F * setprod id D](mod p)"
-      by (auto simp add: prod_D_F_eq_prod_A zmult_commute)
-    then have "[setprod id A = ((-1)^(card E) * setprod id E) * 
-        setprod id D] (mod p)"
-      apply (rule zcong_trans)
-      by (auto simp add: prod_F_zcong zcong_scalar)
-    then have "[setprod id A = ((-1)^(card E) * setprod id C)] (mod p)"
-      apply (rule zcong_trans)
-      apply (insert C_prod_eq_D_times_E, erule subst)
-      by (subst zmult_assoc, auto)
-    then have "[setprod id A = ((-1)^(card E) * setprod id B)] (mod p)"
-      apply (rule zcong_trans)
-      by (simp add: C_B_zcong_prod zcong_scalar2)
-    then have "[setprod id A = ((-1)^(card E) *
-        (setprod id ((%x. x * a) ` A)))] (mod p)"
-      by (simp add: B_def)
-    then have "[setprod id A = ((-1)^(card E) * (setprod (%x. x * a) A))] 
-        (mod p)"
-      by(simp add:finite_A inj_on_xa_A setprod_reindex_id[symmetric])
-    moreover have "setprod (%x. x * a) A = 
-        setprod (%x. a) A * setprod id A"
-      by (insert finite_A, induct set: Finites, auto)
-    ultimately have "[setprod id A = ((-1)^(card E) * (setprod (%x. a) A * 
-        setprod id A))] (mod p)"
-      by simp 
-    then have "[setprod id A = ((-1)^(card E) * a^(card A) * 
-        setprod id A)](mod p)"
-      apply (rule zcong_trans)
-      by (simp add: zcong_scalar2 zcong_scalar finite_A setprod_constant
-        zmult_assoc)
-    then have a: "[setprod id A * (-1)^(card E) = 
-        ((-1)^(card E) * a^(card A) * setprod id A * (-1)^(card E))](mod p)"
-      by (rule zcong_scalar)
-    then have "[setprod id A * (-1)^(card E) = setprod id A * 
-        (-1)^(card E) * a^(card A) * (-1)^(card E)](mod p)"
-      apply (rule zcong_trans)
-      by (simp add: a mult_commute mult_left_commute)
-    then have "[setprod id A * (-1)^(card E) = setprod id A * 
-        a^(card A)](mod p)"
-      apply (rule zcong_trans)
-      by (simp add: aux)
-    with this zcong_cancel2 [of p "setprod id A" "-1 ^ card E" "a ^ card A"]
-         p_g_0 A_prod_relprime have "[-1 ^ card E = a ^ card A](mod p)"
-       by (simp add: order_less_imp_le)
-    from this show ?thesis
-      by (simp add: A_card_eq zcong_sym)
+  "[a ^ nat((p - 1) div 2) = (-1) ^ (card E)] (mod p)"
+proof -
+  have "[setprod id A = setprod id F * setprod id D](mod p)"
+    by (auto simp add: prod_D_F_eq_prod_A zmult_commute)
+  then have "[setprod id A = ((-1)^(card E) * setprod id E) *
+      setprod id D] (mod p)"
+    apply (rule zcong_trans)
+    apply (auto simp add: prod_F_zcong zcong_scalar)
+    done
+  then have "[setprod id A = ((-1)^(card E) * setprod id C)] (mod p)"
+    apply (rule zcong_trans)
+    apply (insert C_prod_eq_D_times_E, erule subst)
+    apply (subst zmult_assoc, auto)
+    done
+  then have "[setprod id A = ((-1)^(card E) * setprod id B)] (mod p)"
+    apply (rule zcong_trans)
+    apply (simp add: C_B_zcong_prod zcong_scalar2)
+    done
+  then have "[setprod id A = ((-1)^(card E) *
+    (setprod id ((%x. x * a) ` A)))] (mod p)"
+    by (simp add: B_def)
+  then have "[setprod id A = ((-1)^(card E) * (setprod (%x. x * a) A))]
+    (mod p)"
+    by (simp add:finite_A inj_on_xa_A setprod_reindex_id[symmetric])
+  moreover have "setprod (%x. x * a) A =
+    setprod (%x. a) A * setprod id A"
+    using finite_A by (induct set: Finites) auto
+  ultimately have "[setprod id A = ((-1)^(card E) * (setprod (%x. a) A *
+    setprod id A))] (mod p)"
+    by simp
+  then have "[setprod id A = ((-1)^(card E) * a^(card A) *
+      setprod id A)](mod p)"
+    apply (rule zcong_trans)
+    apply (simp add: zcong_scalar2 zcong_scalar finite_A setprod_constant zmult_assoc)
+    done
+  then have a: "[setprod id A * (-1)^(card E) =
+      ((-1)^(card E) * a^(card A) * setprod id A * (-1)^(card E))](mod p)"
+    by (rule zcong_scalar)
+  then have "[setprod id A * (-1)^(card E) = setprod id A *
+      (-1)^(card E) * a^(card A) * (-1)^(card E)](mod p)"
+    apply (rule zcong_trans)
+    apply (simp add: a mult_commute mult_left_commute)
+    done
+  then have "[setprod id A * (-1)^(card E) = setprod id A *
+      a^(card A)](mod p)"
+    apply (rule zcong_trans)
+    apply (simp add: aux)
+    done
+  with this zcong_cancel2 [of p "setprod id A" "-1 ^ card E" "a ^ card A"]
+      p_g_0 A_prod_relprime have "[-1 ^ card E = a ^ card A](mod p)"
+    by (simp add: order_less_imp_le)
+  from this show ?thesis
+    by (simp add: A_card_eq zcong_sym)
 qed
 
 theorem (in GAUSS) gauss_lemma: "(Legendre a p) = (-1) ^ (card E)"
 proof -
   from Euler_Criterion p_prime p_g_2 have
-    "[(Legendre a p) = a^(nat (((p) - 1) div 2))] (mod p)"
+      "[(Legendre a p) = a^(nat (((p) - 1) div 2))] (mod p)"
     by auto
   moreover note pre_gauss_lemma
   ultimately have "[(Legendre a p) = (-1) ^ (card E)] (mod p)"