src/HOL/ex/Classpackage.thy
changeset 25543 6b2031004d3f
parent 25542 ced4104f6c1f
child 25544 437251bbc5ce
--- a/src/HOL/ex/Classpackage.thy	Wed Dec 05 14:16:14 2007 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,321 +0,0 @@
-(*  ID:         $Id$
-    Author:     Florian Haftmann, TU Muenchen
-*)
-
-header {* Test and examples for Isar class package *}
-
-theory Classpackage
-imports List
-begin
-
-class semigroup = type +
-  fixes mult :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<otimes>" 70)
-  assumes assoc: "x \<otimes> y \<otimes> z = x \<otimes> (y \<otimes> z)"
-
-instance nat :: semigroup
-  "m \<otimes> n \<equiv> (m\<Colon>nat) + n"
-proof
-  fix m n q :: nat 
-  from mult_nat_def show "m \<otimes> n \<otimes> q = m \<otimes> (n \<otimes> q)" by simp
-qed
-
-instance int :: semigroup
-  "k \<otimes> l \<equiv> (k\<Colon>int) + l"
-proof
-  fix k l j :: int
-  from mult_int_def show "k \<otimes> l \<otimes> j = k \<otimes> (l \<otimes> j)" by simp
-qed
-
-instance * :: (semigroup, semigroup) semigroup
-  mult_prod_def: "x \<otimes> y \<equiv> let (x1, x2) = x; (y1, y2) = y in
-              (x1 \<otimes> y1, x2 \<otimes> y2)"
-by default (simp_all add: split_paired_all mult_prod_def assoc)
-
-instance list :: (type) semigroup
-  "xs \<otimes> ys \<equiv> xs @ ys"
-proof
-  fix xs ys zs :: "'a list"
-  show "xs \<otimes> ys \<otimes> zs = xs \<otimes> (ys \<otimes> zs)"
-  proof -
-    from mult_list_def have "\<And>xs ys\<Colon>'a list. xs \<otimes> ys \<equiv> xs @ ys" .
-    thus ?thesis by simp
-  qed
-qed
-
-class monoidl = semigroup +
-  fixes one :: 'a ("\<one>")
-  assumes neutl: "\<one> \<otimes> x = x"
-
-instance nat :: monoidl and int :: monoidl
-  "\<one> \<equiv> (0\<Colon>nat)"
-  "\<one> \<equiv> (0\<Colon>int)"
-proof
-  fix n :: nat
-  from mult_nat_def one_nat_def show "\<one> \<otimes> n = n" by simp
-next
-  fix k :: int
-  from mult_int_def one_int_def show "\<one> \<otimes> k = k" by simp
-qed
-
-instance * :: (monoidl, monoidl) monoidl
-  one_prod_def: "\<one> \<equiv> (\<one>, \<one>)"
-by default (simp_all add: split_paired_all mult_prod_def one_prod_def neutl)
-
-instance list :: (type) monoidl
-  "\<one> \<equiv> []"
-proof
-  fix xs :: "'a list"
-  show "\<one> \<otimes> xs = xs"
-  proof -
-    from mult_list_def have "\<And>xs ys\<Colon>'a list. xs \<otimes> ys \<equiv> xs @ ys" .
-    moreover from one_list_def have "\<one> \<equiv> []\<Colon>'a list" by simp
-    ultimately show ?thesis by simp
-  qed
-qed  
-
-class monoid = monoidl +
-  assumes neutr: "x \<otimes> \<one> = x"
-begin
-
-definition
-  units :: "'a set" where
-  "units = {y. \<exists>x. x \<otimes> y = \<one> \<and> y \<otimes> x = \<one>}"
-
-lemma inv_obtain:
-  assumes "x \<in> units"
-  obtains y where "y \<otimes> x = \<one>" and "x \<otimes> y = \<one>"
-proof -
-  from assms units_def obtain y
-    where "y \<otimes> x = \<one>" and "x \<otimes> y = \<one>" by auto
-  thus ?thesis ..
-qed
-
-lemma inv_unique:
-  assumes "y \<otimes> x = \<one>" "x \<otimes> y' = \<one>"
-  shows "y = y'"
-proof -
-  from assms neutr have "y = y \<otimes> (x \<otimes> y')" by simp
-  also with assoc have "... = (y \<otimes> x) \<otimes> y'" by simp
-  also with assms neutl have "... = y'" by simp
-  finally show ?thesis .
-qed
-
-lemma units_inv_comm:
-  assumes inv: "x \<otimes> y = \<one>"
-    and G: "x \<in> units"
-  shows "y \<otimes> x = \<one>"
-proof -
-  from G inv_obtain obtain z
-    where z_choice: "z \<otimes> x = \<one>" by blast
-  from inv neutl neutr have "x \<otimes> y \<otimes> x = x \<otimes> \<one>" by simp
-  with assoc have "z \<otimes> x \<otimes> y \<otimes> x = z \<otimes> x \<otimes> \<one>" by simp
-  with neutl z_choice show ?thesis by simp
-qed
-
-fun
-  npow :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"
-where
-  "npow 0 x = \<one>"
-  | "npow (Suc n) x = x \<otimes> npow n x"
-
-abbreviation
-  npow_syn :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infix "\<up>" 75) where
-  "x \<up> n \<equiv> npow n x"
-
-lemma nat_pow_one:
-  "\<one> \<up> n = \<one>"
-using neutl by (induct n) simp_all
-
-lemma nat_pow_mult: "x \<up> n \<otimes> x \<up> m = x \<up> (n + m)"
-proof (induct n)
-  case 0 with neutl show ?case by simp
-next
-  case (Suc n) with Suc.hyps assoc show ?case by simp
-qed
-
-lemma nat_pow_pow: "(x \<up> m) \<up> n = x \<up> (n * m)"
-using nat_pow_mult by (induct n) simp_all
-
-end
-
-instance * :: (monoid, monoid) monoid
-by default (simp_all add: split_paired_all mult_prod_def one_prod_def neutr)
-
-instance list :: (type) monoid
-proof
-  fix xs :: "'a list"
-  show "xs \<otimes> \<one> = xs"
-  proof -
-    from mult_list_def have "\<And>xs ys\<Colon>'a list. xs \<otimes> ys \<equiv> xs @ ys" .
-    moreover from one_list_def have "\<one> \<equiv> []\<Colon>'a list" by simp
-    ultimately show ?thesis by simp
-  qed
-qed  
-
-class monoid_comm = monoid +
-  assumes comm: "x \<otimes> y = y \<otimes> x"
-
-instance nat :: monoid_comm and int :: monoid_comm
-proof
-  fix n :: nat
-  from mult_nat_def one_nat_def show "n \<otimes> \<one> = n" by simp
-next
-  fix n m :: nat
-  from mult_nat_def show "n \<otimes> m = m \<otimes> n" by simp
-next
-  fix k :: int
-  from mult_int_def one_int_def show "k \<otimes> \<one> = k" by simp
-next
-  fix k l :: int
-  from mult_int_def show "k \<otimes> l = l \<otimes> k" by simp
-qed
-
-instance * :: (monoid_comm, monoid_comm) monoid_comm
-by default (simp_all add: split_paired_all mult_prod_def comm)
-
-class group = monoidl +
-  fixes inv :: "'a \<Rightarrow> 'a" ("\<div> _" [81] 80)
-  assumes invl: "\<div> x \<otimes> x = \<one>"
-begin
-
-lemma cancel:
-  "(x \<otimes> y = x \<otimes> z) = (y = z)"
-proof
-  fix x y z :: 'a
-  assume eq: "x \<otimes> y = x \<otimes> z"
-  hence "\<div> x \<otimes> (x \<otimes> y) = \<div> x \<otimes> (x \<otimes> z)" by simp
-  with assoc have "\<div> x \<otimes> x \<otimes> y = \<div> x \<otimes> x \<otimes> z" by simp
-  with neutl invl show "y = z" by simp
-next
-  fix x y z :: 'a
-  assume eq: "y = z"
-  thus "x \<otimes> y = x \<otimes> z" by simp
-qed
-
-subclass monoid
-proof unfold_locales
-  fix x
-  from invl have "\<div> x \<otimes> x = \<one>" by simp
-  with assoc [symmetric] neutl invl have "\<div> x \<otimes> (x \<otimes> \<one>) = \<div> x \<otimes> x" by simp
-  with cancel show "x \<otimes> \<one> = x" by simp
-qed
-
-end context group begin
-
-find_theorems name: neut
-
-lemma invr:
-  "x \<otimes> \<div> x = \<one>"
-proof -
-  from neutl invl have "\<div> x \<otimes> x \<otimes> \<div> x = \<div> x" by simp
-  with neutr have "\<div> x \<otimes> x \<otimes> \<div> x = \<div> x \<otimes> \<one> " by simp
-  with assoc have "\<div> x \<otimes> (x \<otimes> \<div> x) = \<div> x \<otimes> \<one> " by simp
-  with cancel show ?thesis ..
-qed
-
-lemma all_inv [intro]:
-  "(x\<Colon>'a) \<in> units"
-  unfolding units_def
-proof -
-  fix x :: "'a"
-  from invl invr have "\<div> x \<otimes> x = \<one>" and "x \<otimes> \<div> x = \<one>" . 
-  then obtain y where "y \<otimes> x = \<one>" and "x \<otimes> y = \<one>" ..
-  hence "\<exists>y\<Colon>'a. y \<otimes> x = \<one> \<and> x \<otimes> y = \<one>" by blast
-  thus "x \<in> {y\<Colon>'a. \<exists>x\<Colon>'a. x \<otimes> y = \<one> \<and> y \<otimes> x = \<one>}" by simp
-qed
-
-lemma cancer:
-  "(y \<otimes> x = z \<otimes> x) = (y = z)"
-proof
-  assume eq: "y \<otimes> x = z \<otimes> x"
-  with assoc [symmetric] have "y \<otimes> (x \<otimes> \<div> x) = z \<otimes> (x \<otimes> \<div> x)" by (simp del: invr)
-  with invr neutr show "y = z" by simp
-next
-  assume eq: "y = z"
-  thus "y \<otimes> x = z \<otimes> x" by simp
-qed
-
-lemma inv_one:
-  "\<div> \<one> = \<one>"
-proof -
-  from neutl have "\<div> \<one> = \<one> \<otimes> (\<div> \<one>)" ..
-  moreover from invr have "... = \<one>" by simp
-  finally show ?thesis .
-qed
-
-lemma inv_inv:
-  "\<div> (\<div> x) = x"
-proof -
-  from invl invr neutr
-    have "\<div> (\<div> x) \<otimes> \<div> x \<otimes> x = x \<otimes> \<div> x \<otimes> x" by simp
-  with assoc [symmetric]
-    have "\<div> (\<div> x) \<otimes> (\<div> x \<otimes> x) = x \<otimes> (\<div> x \<otimes> x)" by simp
-  with invl neutr show ?thesis by simp
-qed
-
-lemma inv_mult_group:
-  "\<div> (x \<otimes> y) = \<div> y \<otimes> \<div> x"
-proof -
-  from invl have "\<div> (x \<otimes> y) \<otimes> (x \<otimes> y) = \<one>" by simp
-  with assoc have "\<div> (x \<otimes> y) \<otimes> x \<otimes> y = \<one>" by simp
-  with neutl have "\<div> (x \<otimes> y) \<otimes> x \<otimes> y \<otimes> \<div> y \<otimes> \<div> x = \<div> y \<otimes> \<div> x" by simp
-  with assoc have "\<div> (x \<otimes> y) \<otimes> (x \<otimes> (y \<otimes> \<div> y) \<otimes> \<div> x) = \<div> y \<otimes> \<div> x" by simp
-  with invr neutr show ?thesis by simp
-qed
-
-lemma inv_comm:
-  "x \<otimes> \<div> x = \<div> x \<otimes> x"
-using invr invl by simp
-
-definition
-  pow :: "int \<Rightarrow> 'a \<Rightarrow> 'a"
-where
-  "pow k x = (if k < 0 then \<div> (npow (nat (-k)) x)
-    else (npow (nat k) x))"
-
-abbreviation
-  pow_syn :: "'a \<Rightarrow> int \<Rightarrow> 'a" (infix "\<up>\<up>" 75)
-where
-  "x \<up>\<up> k \<equiv> pow k x"
-
-lemma int_pow_zero:
-  "x \<up>\<up> (0\<Colon>int) = \<one>"
-using pow_def by simp
-
-lemma int_pow_one:
-  "\<one> \<up>\<up> (k\<Colon>int) = \<one>"
-using pow_def nat_pow_one inv_one by simp
-
-end
-
-instance * :: (group, group) group
-  inv_prod_def: "\<div> x \<equiv> let (x1, x2) = x in (\<div> x1, \<div> x2)"
-by default (simp_all add: split_paired_all mult_prod_def one_prod_def inv_prod_def invl)
-
-class group_comm = group + monoid_comm
-
-instance int :: group_comm
-  "\<div> k \<equiv> - (k\<Colon>int)"
-proof
-  fix k :: int
-  from mult_int_def one_int_def inv_int_def show "\<div> k \<otimes> k = \<one>" by simp
-qed
-
-instance * :: (group_comm, group_comm) group_comm
-by default (simp_all add: split_paired_all mult_prod_def comm)
-
-definition
-  "X a b c = (a \<otimes> \<one> \<otimes> b, a \<otimes> \<one> \<otimes> b, npow 3 [a, b] \<otimes> \<one> \<otimes> [a, b, c])"
-
-definition
-  "Y a b c = (a, \<div> a) \<otimes> \<one> \<otimes> \<div> (b, \<div> pow (-3) c)"
-
-definition "x1 = X (1::nat) 2 3"
-definition "x2 = X (1::int) 2 3"
-definition "y2 = Y (1::int) 2 3"
-
-export_code x1 x2 y2 pow in SML module_name Classpackage
-  in OCaml file -
-  in Haskell file -
-
-end