src/HOL/Analysis/Uniform_Limit.thy
changeset 63627 6ddb43c6b711
parent 63594 bd218a9320b5
child 64267 b9a1486e79be
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/Uniform_Limit.thy	Mon Aug 08 14:13:14 2016 +0200
@@ -0,0 +1,570 @@
+(*  Title:      HOL/Analysis/Uniform_Limit.thy
+    Author:     Christoph Traut, TU München
+    Author:     Fabian Immler, TU München
+*)
+
+section \<open>Uniform Limit and Uniform Convergence\<close>
+
+theory Uniform_Limit
+imports Topology_Euclidean_Space Summation_Tests
+begin
+
+definition uniformly_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b::metric_space) \<Rightarrow> ('a \<Rightarrow> 'b) filter"
+  where "uniformly_on S l = (INF e:{0 <..}. principal {f. \<forall>x\<in>S. dist (f x) (l x) < e})"
+
+abbreviation
+  "uniform_limit S f l \<equiv> filterlim f (uniformly_on S l)"
+
+definition uniformly_convergent_on where
+  "uniformly_convergent_on X f \<longleftrightarrow> (\<exists>l. uniform_limit X f l sequentially)"
+
+definition uniformly_Cauchy_on where
+  "uniformly_Cauchy_on X f \<longleftrightarrow> (\<forall>e>0. \<exists>M. \<forall>x\<in>X. \<forall>(m::nat)\<ge>M. \<forall>n\<ge>M. dist (f m x) (f n x) < e)"
+
+lemma uniform_limit_iff:
+  "uniform_limit S f l F \<longleftrightarrow> (\<forall>e>0. \<forall>\<^sub>F n in F. \<forall>x\<in>S. dist (f n x) (l x) < e)"
+  unfolding filterlim_iff uniformly_on_def
+  by (subst eventually_INF_base)
+    (fastforce
+      simp: eventually_principal uniformly_on_def
+      intro: bexI[where x="min a b" for a b]
+      elim: eventually_mono)+
+
+lemma uniform_limitD:
+  "uniform_limit S f l F \<Longrightarrow> e > 0 \<Longrightarrow> \<forall>\<^sub>F n in F. \<forall>x\<in>S. dist (f n x) (l x) < e"
+  by (simp add: uniform_limit_iff)
+
+lemma uniform_limitI:
+  "(\<And>e. e > 0 \<Longrightarrow> \<forall>\<^sub>F n in F. \<forall>x\<in>S. dist (f n x) (l x) < e) \<Longrightarrow> uniform_limit S f l F"
+  by (simp add: uniform_limit_iff)
+
+lemma uniform_limit_sequentially_iff:
+  "uniform_limit S f l sequentially \<longleftrightarrow> (\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x \<in> S. dist (f n x) (l x) < e)"
+  unfolding uniform_limit_iff eventually_sequentially ..
+
+lemma uniform_limit_at_iff:
+  "uniform_limit S f l (at x) \<longleftrightarrow>
+    (\<forall>e>0. \<exists>d>0. \<forall>z. 0 < dist z x \<and> dist z x < d \<longrightarrow> (\<forall>x\<in>S. dist (f z x) (l x) < e))"
+  unfolding uniform_limit_iff eventually_at by simp
+
+lemma uniform_limit_at_le_iff:
+  "uniform_limit S f l (at x) \<longleftrightarrow>
+    (\<forall>e>0. \<exists>d>0. \<forall>z. 0 < dist z x \<and> dist z x < d \<longrightarrow> (\<forall>x\<in>S. dist (f z x) (l x) \<le> e))"
+  unfolding uniform_limit_iff eventually_at
+  by (fastforce dest: spec[where x = "e / 2" for e])
+
+lemma metric_uniform_limit_imp_uniform_limit:
+  assumes f: "uniform_limit S f a F"
+  assumes le: "eventually (\<lambda>x. \<forall>y\<in>S. dist (g x y) (b y) \<le> dist (f x y) (a y)) F"
+  shows "uniform_limit S g b F"
+proof (rule uniform_limitI)
+  fix e :: real assume "0 < e"
+  from uniform_limitD[OF f this] le
+  show "\<forall>\<^sub>F x in F. \<forall>y\<in>S. dist (g x y) (b y) < e"
+    by eventually_elim force
+qed
+
+lemma swap_uniform_limit:
+  assumes f: "\<forall>\<^sub>F n in F. (f n \<longlongrightarrow> g n) (at x within S)"
+  assumes g: "(g \<longlongrightarrow> l) F"
+  assumes uc: "uniform_limit S f h F"
+  assumes "\<not>trivial_limit F"
+  shows "(h \<longlongrightarrow> l) (at x within S)"
+proof (rule tendstoI)
+  fix e :: real
+  define e' where "e' = e/3"
+  assume "0 < e"
+  then have "0 < e'" by (simp add: e'_def)
+  from uniform_limitD[OF uc \<open>0 < e'\<close>]
+  have "\<forall>\<^sub>F n in F. \<forall>x\<in>S. dist (h x) (f n x) < e'"
+    by (simp add: dist_commute)
+  moreover
+  from f
+  have "\<forall>\<^sub>F n in F. \<forall>\<^sub>F x in at x within S. dist (g n) (f n x) < e'"
+    by eventually_elim (auto dest!: tendstoD[OF _ \<open>0 < e'\<close>] simp: dist_commute)
+  moreover
+  from tendstoD[OF g \<open>0 < e'\<close>] have "\<forall>\<^sub>F x in F. dist l (g x) < e'"
+    by (simp add: dist_commute)
+  ultimately
+  have "\<forall>\<^sub>F _ in F. \<forall>\<^sub>F x in at x within S. dist (h x) l < e"
+  proof eventually_elim
+    case (elim n)
+    note fh = elim(1)
+    note gl = elim(3)
+    have "\<forall>\<^sub>F x in at x within S. x \<in> S"
+      by (auto simp: eventually_at_filter)
+    with elim(2)
+    show ?case
+    proof eventually_elim
+      case (elim x)
+      from fh[rule_format, OF \<open>x \<in> S\<close>] elim(1)
+      have "dist (h x) (g n) < e' + e'"
+        by (rule dist_triangle_lt[OF add_strict_mono])
+      from dist_triangle_lt[OF add_strict_mono, OF this gl]
+      show ?case by (simp add: e'_def)
+    qed
+  qed
+  thus "\<forall>\<^sub>F x in at x within S. dist (h x) l < e"
+    using eventually_happens by (metis \<open>\<not>trivial_limit F\<close>)
+qed
+
+lemma
+  tendsto_uniform_limitI:
+  assumes "uniform_limit S f l F"
+  assumes "x \<in> S"
+  shows "((\<lambda>y. f y x) \<longlongrightarrow> l x) F"
+  using assms
+  by (auto intro!: tendstoI simp: eventually_mono dest!: uniform_limitD)
+
+lemma uniform_limit_theorem:
+  assumes c: "\<forall>\<^sub>F n in F. continuous_on A (f n)"
+  assumes ul: "uniform_limit A f l F"
+  assumes "\<not> trivial_limit F"
+  shows "continuous_on A l"
+  unfolding continuous_on_def
+proof safe
+  fix x assume "x \<in> A"
+  then have "\<forall>\<^sub>F n in F. (f n \<longlongrightarrow> f n x) (at x within A)" "((\<lambda>n. f n x) \<longlongrightarrow> l x) F"
+    using c ul
+    by (auto simp: continuous_on_def eventually_mono tendsto_uniform_limitI)
+  then show "(l \<longlongrightarrow> l x) (at x within A)"
+    by (rule swap_uniform_limit) fact+
+qed
+
+lemma uniformly_Cauchy_onI:
+  assumes "\<And>e. e > 0 \<Longrightarrow> \<exists>M. \<forall>x\<in>X. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (f m x) (f n x) < e"
+  shows   "uniformly_Cauchy_on X f"
+  using assms unfolding uniformly_Cauchy_on_def by blast
+
+lemma uniformly_Cauchy_onI':
+  assumes "\<And>e. e > 0 \<Longrightarrow> \<exists>M. \<forall>x\<in>X. \<forall>m\<ge>M. \<forall>n>m. dist (f m x) (f n x) < e"
+  shows   "uniformly_Cauchy_on X f"
+proof (rule uniformly_Cauchy_onI)
+  fix e :: real assume e: "e > 0"
+  from assms[OF this] obtain M
+    where M: "\<And>x m n. x \<in> X \<Longrightarrow> m \<ge> M \<Longrightarrow> n > m \<Longrightarrow> dist (f m x) (f n x) < e" by fast
+  {
+    fix x m n assume x: "x \<in> X" and m: "m \<ge> M" and n: "n \<ge> M"
+    with M[OF this(1,2), of n] M[OF this(1,3), of m] e have "dist (f m x) (f n x) < e"
+      by (cases m n rule: linorder_cases) (simp_all add: dist_commute)
+  }
+  thus "\<exists>M. \<forall>x\<in>X. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (f m x) (f n x) < e" by fast
+qed
+
+lemma uniformly_Cauchy_imp_Cauchy:
+  "uniformly_Cauchy_on X f \<Longrightarrow> x \<in> X \<Longrightarrow> Cauchy (\<lambda>n. f n x)"
+  unfolding Cauchy_def uniformly_Cauchy_on_def by fast
+
+lemma uniform_limit_cong:
+  fixes f g :: "'a \<Rightarrow> 'b \<Rightarrow> ('c :: metric_space)" and h i :: "'b \<Rightarrow> 'c"
+  assumes "eventually (\<lambda>y. \<forall>x\<in>X. f y x = g y x) F"
+  assumes "\<And>x. x \<in> X \<Longrightarrow> h x = i x"
+  shows   "uniform_limit X f h F \<longleftrightarrow> uniform_limit X g i F"
+proof -
+  {
+    fix f g :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" and h i :: "'b \<Rightarrow> 'c"
+    assume C: "uniform_limit X f h F" and A: "eventually (\<lambda>y. \<forall>x\<in>X. f y x = g y x) F"
+       and B: "\<And>x. x \<in> X \<Longrightarrow> h x = i x"
+    {
+      fix e ::real assume "e > 0"
+      with C have "eventually (\<lambda>y. \<forall>x\<in>X. dist (f y x) (h x) < e) F"
+        unfolding uniform_limit_iff by blast
+      with A have "eventually (\<lambda>y. \<forall>x\<in>X. dist (g y x) (i x) < e) F"
+        by eventually_elim (insert B, simp_all)
+    }
+    hence "uniform_limit X g i F" unfolding uniform_limit_iff by blast
+  } note A = this
+  show ?thesis by (rule iffI) (erule A; insert assms; simp add: eq_commute)+
+qed
+
+lemma uniform_limit_cong':
+  fixes f g :: "'a \<Rightarrow> 'b \<Rightarrow> ('c :: metric_space)" and h i :: "'b \<Rightarrow> 'c"
+  assumes "\<And>y x. x \<in> X \<Longrightarrow> f y x = g y x"
+  assumes "\<And>x. x \<in> X \<Longrightarrow> h x = i x"
+  shows   "uniform_limit X f h F \<longleftrightarrow> uniform_limit X g i F"
+  using assms by (intro uniform_limit_cong always_eventually) blast+
+
+lemma uniformly_convergent_uniform_limit_iff:
+  "uniformly_convergent_on X f \<longleftrightarrow> uniform_limit X f (\<lambda>x. lim (\<lambda>n. f n x)) sequentially"
+proof
+  assume "uniformly_convergent_on X f"
+  then obtain l where l: "uniform_limit X f l sequentially"
+    unfolding uniformly_convergent_on_def by blast
+  from l have "uniform_limit X f (\<lambda>x. lim (\<lambda>n. f n x)) sequentially \<longleftrightarrow>
+                      uniform_limit X f l sequentially"
+    by (intro uniform_limit_cong' limI tendsto_uniform_limitI[of f X l]) simp_all
+  also note l
+  finally show "uniform_limit X f (\<lambda>x. lim (\<lambda>n. f n x)) sequentially" .
+qed (auto simp: uniformly_convergent_on_def)
+
+lemma uniformly_convergentI: "uniform_limit X f l sequentially \<Longrightarrow> uniformly_convergent_on X f"
+  unfolding uniformly_convergent_on_def by blast
+
+lemma uniformly_convergent_on_empty [iff]: "uniformly_convergent_on {} f"
+  by (simp add: uniformly_convergent_on_def uniform_limit_sequentially_iff)
+
+lemma Cauchy_uniformly_convergent:
+  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b :: complete_space"
+  assumes "uniformly_Cauchy_on X f"
+  shows   "uniformly_convergent_on X f"
+unfolding uniformly_convergent_uniform_limit_iff uniform_limit_iff
+proof safe
+  let ?f = "\<lambda>x. lim (\<lambda>n. f n x)"
+  fix e :: real assume e: "e > 0"
+  hence "e/2 > 0" by simp
+  with assms obtain N where N: "\<And>x m n. x \<in> X \<Longrightarrow> m \<ge> N \<Longrightarrow> n \<ge> N \<Longrightarrow> dist (f m x) (f n x) < e/2"
+    unfolding uniformly_Cauchy_on_def by fast
+  show "eventually (\<lambda>n. \<forall>x\<in>X. dist (f n x) (?f x) < e) sequentially"
+    using eventually_ge_at_top[of N]
+  proof eventually_elim
+    fix n assume n: "n \<ge> N"
+    show "\<forall>x\<in>X. dist (f n x) (?f x) < e"
+    proof
+      fix x assume x: "x \<in> X"
+      with assms have "(\<lambda>n. f n x) \<longlonglongrightarrow> ?f x"
+        by (auto dest!: Cauchy_convergent uniformly_Cauchy_imp_Cauchy simp: convergent_LIMSEQ_iff)
+      with \<open>e/2 > 0\<close> have "eventually (\<lambda>m. m \<ge> N \<and> dist (f m x) (?f x) < e/2) sequentially"
+        by (intro tendstoD eventually_conj eventually_ge_at_top)
+      then obtain m where m: "m \<ge> N" "dist (f m x) (?f x) < e/2"
+        unfolding eventually_at_top_linorder by blast
+      have "dist (f n x) (?f x) \<le> dist (f n x) (f m x) + dist (f m x) (?f x)"
+          by (rule dist_triangle)
+      also from x n have "... < e/2 + e/2" by (intro add_strict_mono N m)
+      finally show "dist (f n x) (?f x) < e" by simp
+    qed
+  qed
+qed
+
+lemma uniformly_convergent_imp_convergent:
+  "uniformly_convergent_on X f \<Longrightarrow> x \<in> X \<Longrightarrow> convergent (\<lambda>n. f n x)"
+  unfolding uniformly_convergent_on_def convergent_def
+  by (auto dest: tendsto_uniform_limitI)
+
+lemma weierstrass_m_test_ev:
+fixes f :: "_ \<Rightarrow> _ \<Rightarrow> _ :: banach"
+assumes "eventually (\<lambda>n. \<forall>x\<in>A. norm (f n x) \<le> M n) sequentially"
+assumes "summable M"
+shows "uniform_limit A (\<lambda>n x. \<Sum>i<n. f i x) (\<lambda>x. suminf (\<lambda>i. f i x)) sequentially"
+proof (rule uniform_limitI)
+  fix e :: real
+  assume "0 < e"
+  from suminf_exist_split[OF \<open>0 < e\<close> \<open>summable M\<close>]
+  have "\<forall>\<^sub>F k in sequentially. norm (\<Sum>i. M (i + k)) < e"
+    by (auto simp: eventually_sequentially)
+  with eventually_all_ge_at_top[OF assms(1)]
+    show "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>A. dist (\<Sum>i<n. f i x) (\<Sum>i. f i x) < e"
+  proof eventually_elim
+    case (elim k)
+    show ?case
+    proof safe
+      fix x assume "x \<in> A"
+      have "\<exists>N. \<forall>n\<ge>N. norm (f n x) \<le> M n"
+        using assms(1) \<open>x \<in> A\<close> by (force simp: eventually_at_top_linorder)
+      hence summable_norm_f: "summable (\<lambda>n. norm (f n x))"
+        by(rule summable_norm_comparison_test[OF _ \<open>summable M\<close>])
+      have summable_f: "summable (\<lambda>n. f n x)"
+        using summable_norm_cancel[OF summable_norm_f] .
+      have summable_norm_f_plus_k: "summable (\<lambda>i. norm (f (i + k) x))"
+        using summable_ignore_initial_segment[OF summable_norm_f]
+        by auto
+      have summable_M_plus_k: "summable (\<lambda>i. M (i + k))"
+        using summable_ignore_initial_segment[OF \<open>summable M\<close>]
+        by auto
+
+      have "dist (\<Sum>i<k. f i x) (\<Sum>i. f i x) = norm ((\<Sum>i. f i x) - (\<Sum>i<k. f i x))"
+        using dist_norm dist_commute by (subst dist_commute)
+      also have "... = norm (\<Sum>i. f (i + k) x)"
+        using suminf_minus_initial_segment[OF summable_f, where k=k] by simp
+      also have "... \<le> (\<Sum>i. norm (f (i + k) x))"
+        using summable_norm[OF summable_norm_f_plus_k] .
+      also have "... \<le> (\<Sum>i. M (i + k))"
+        by (rule suminf_le[OF _ summable_norm_f_plus_k summable_M_plus_k])
+           (insert elim(1) \<open>x \<in> A\<close>, simp)
+      finally show "dist (\<Sum>i<k. f i x) (\<Sum>i. f i x) < e"
+        using elim by auto
+    qed
+  qed
+qed
+
+text\<open>Alternative version, formulated as in HOL Light\<close>
+corollary series_comparison_uniform:
+  fixes f :: "_ \<Rightarrow> nat \<Rightarrow> _ :: banach"
+  assumes g: "summable g" and le: "\<And>n x. N \<le> n \<and> x \<in> A \<Longrightarrow> norm(f x n) \<le> g n"
+    shows "\<exists>l. \<forall>e. 0 < e \<longrightarrow> (\<exists>N. \<forall>n x. N \<le> n \<and> x \<in> A \<longrightarrow> dist(setsum (f x) {..<n}) (l x) < e)"
+proof -
+  have 1: "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>A. norm (f x n) \<le> g n"
+    using le eventually_sequentially by auto
+  show ?thesis
+    apply (rule_tac x="(\<lambda>x. \<Sum>i. f x i)" in exI)
+    apply (metis (no_types, lifting) eventually_sequentially uniform_limitD [OF weierstrass_m_test_ev [OF 1 g]])
+    done
+qed
+
+corollary weierstrass_m_test:
+  fixes f :: "_ \<Rightarrow> _ \<Rightarrow> _ :: banach"
+  assumes "\<And>n x. x \<in> A \<Longrightarrow> norm (f n x) \<le> M n"
+  assumes "summable M"
+  shows "uniform_limit A (\<lambda>n x. \<Sum>i<n. f i x) (\<lambda>x. suminf (\<lambda>i. f i x)) sequentially"
+  using assms by (intro weierstrass_m_test_ev always_eventually) auto
+
+corollary weierstrass_m_test'_ev:
+  fixes f :: "_ \<Rightarrow> _ \<Rightarrow> _ :: banach"
+  assumes "eventually (\<lambda>n. \<forall>x\<in>A. norm (f n x) \<le> M n) sequentially" "summable M"
+  shows   "uniformly_convergent_on A (\<lambda>n x. \<Sum>i<n. f i x)"
+  unfolding uniformly_convergent_on_def by (rule exI, rule weierstrass_m_test_ev[OF assms])
+
+corollary weierstrass_m_test':
+  fixes f :: "_ \<Rightarrow> _ \<Rightarrow> _ :: banach"
+  assumes "\<And>n x. x \<in> A \<Longrightarrow> norm (f n x) \<le> M n" "summable M"
+  shows   "uniformly_convergent_on A (\<lambda>n x. \<Sum>i<n. f i x)"
+  unfolding uniformly_convergent_on_def by (rule exI, rule weierstrass_m_test[OF assms])
+
+lemma uniform_limit_eq_rhs: "uniform_limit X f l F \<Longrightarrow> l = m \<Longrightarrow> uniform_limit X f m F"
+  by simp
+
+named_theorems uniform_limit_intros "introduction rules for uniform_limit"
+setup \<open>
+  Global_Theory.add_thms_dynamic (@{binding uniform_limit_eq_intros},
+    fn context =>
+      Named_Theorems.get (Context.proof_of context) @{named_theorems uniform_limit_intros}
+      |> map_filter (try (fn thm => @{thm uniform_limit_eq_rhs} OF [thm])))
+\<close>
+
+lemma (in bounded_linear) uniform_limit[uniform_limit_intros]:
+  assumes "uniform_limit X g l F"
+  shows "uniform_limit X (\<lambda>a b. f (g a b)) (\<lambda>a. f (l a)) F"
+proof (rule uniform_limitI)
+  fix e::real
+  from pos_bounded obtain K
+    where K: "\<And>x y. dist (f x) (f y) \<le> K * dist x y" "K > 0"
+    by (auto simp: ac_simps dist_norm diff[symmetric])
+  assume "0 < e" with \<open>K > 0\<close> have "e / K > 0" by simp
+  from uniform_limitD[OF assms this]
+  show "\<forall>\<^sub>F n in F. \<forall>x\<in>X. dist (f (g n x)) (f (l x)) < e"
+    by eventually_elim (metis le_less_trans mult.commute pos_less_divide_eq K)
+qed
+
+lemmas bounded_linear_uniform_limit_intros[uniform_limit_intros] =
+  bounded_linear.uniform_limit[OF bounded_linear_Im]
+  bounded_linear.uniform_limit[OF bounded_linear_Re]
+  bounded_linear.uniform_limit[OF bounded_linear_cnj]
+  bounded_linear.uniform_limit[OF bounded_linear_fst]
+  bounded_linear.uniform_limit[OF bounded_linear_snd]
+  bounded_linear.uniform_limit[OF bounded_linear_zero]
+  bounded_linear.uniform_limit[OF bounded_linear_of_real]
+  bounded_linear.uniform_limit[OF bounded_linear_inner_left]
+  bounded_linear.uniform_limit[OF bounded_linear_inner_right]
+  bounded_linear.uniform_limit[OF bounded_linear_divide]
+  bounded_linear.uniform_limit[OF bounded_linear_scaleR_right]
+  bounded_linear.uniform_limit[OF bounded_linear_mult_left]
+  bounded_linear.uniform_limit[OF bounded_linear_mult_right]
+  bounded_linear.uniform_limit[OF bounded_linear_scaleR_left]
+
+lemmas uniform_limit_uminus[uniform_limit_intros] =
+  bounded_linear.uniform_limit[OF bounded_linear_minus[OF bounded_linear_ident]]
+
+lemma uniform_limit_const[uniform_limit_intros]: "uniform_limit S (\<lambda>x y. c) (\<lambda>x. c) f"
+  by (auto intro!: uniform_limitI)
+
+lemma uniform_limit_add[uniform_limit_intros]:
+  fixes f g::"'a \<Rightarrow> 'b \<Rightarrow> 'c::real_normed_vector"
+  assumes "uniform_limit X f l F"
+  assumes "uniform_limit X g m F"
+  shows "uniform_limit X (\<lambda>a b. f a b + g a b) (\<lambda>a. l a + m a) F"
+proof (rule uniform_limitI)
+  fix e::real
+  assume "0 < e"
+  hence "0 < e / 2" by simp
+  from
+    uniform_limitD[OF assms(1) this]
+    uniform_limitD[OF assms(2) this]
+  show "\<forall>\<^sub>F n in F. \<forall>x\<in>X. dist (f n x + g n x) (l x + m x) < e"
+    by eventually_elim (simp add: dist_triangle_add_half)
+qed
+
+lemma uniform_limit_minus[uniform_limit_intros]:
+  fixes f g::"'a \<Rightarrow> 'b \<Rightarrow> 'c::real_normed_vector"
+  assumes "uniform_limit X f l F"
+  assumes "uniform_limit X g m F"
+  shows "uniform_limit X (\<lambda>a b. f a b - g a b) (\<lambda>a. l a - m a) F"
+  unfolding diff_conv_add_uminus
+  by (rule uniform_limit_intros assms)+
+
+lemma uniform_limit_norm[uniform_limit_intros]:
+  assumes "uniform_limit S g l f"
+  shows "uniform_limit S (\<lambda>x y. norm (g x y)) (\<lambda>x. norm (l x)) f"
+  using assms
+  apply (rule metric_uniform_limit_imp_uniform_limit)
+  apply (rule eventuallyI)
+  by (metis dist_norm norm_triangle_ineq3 real_norm_def)
+
+lemma (in bounded_bilinear) bounded_uniform_limit[uniform_limit_intros]:
+  assumes "uniform_limit X f l F"
+  assumes "uniform_limit X g m F"
+  assumes "bounded (m ` X)"
+  assumes "bounded (l ` X)"
+  shows "uniform_limit X (\<lambda>a b. prod (f a b) (g a b)) (\<lambda>a. prod (l a) (m a)) F"
+proof (rule uniform_limitI)
+  fix e::real
+  from pos_bounded obtain K where K:
+    "0 < K" "\<And>a b. norm (prod a b) \<le> norm a * norm b * K"
+    by auto
+  hence "sqrt (K*4) > 0" by simp
+
+  from assms obtain Km Kl
+  where Km: "Km > 0" "\<And>x. x \<in> X \<Longrightarrow> norm (m x) \<le> Km"
+    and Kl: "Kl > 0" "\<And>x. x \<in> X \<Longrightarrow> norm (l x) \<le> Kl"
+    by (auto simp: bounded_pos)
+  hence "K * Km * 4 > 0" "K * Kl * 4 > 0"
+    using \<open>K > 0\<close>
+    by simp_all
+  assume "0 < e"
+
+  hence "sqrt e > 0" by simp
+  from uniform_limitD[OF assms(1) divide_pos_pos[OF this \<open>sqrt (K*4) > 0\<close>]]
+    uniform_limitD[OF assms(2) divide_pos_pos[OF this \<open>sqrt (K*4) > 0\<close>]]
+    uniform_limitD[OF assms(1) divide_pos_pos[OF \<open>e > 0\<close> \<open>K * Km * 4 > 0\<close>]]
+    uniform_limitD[OF assms(2) divide_pos_pos[OF \<open>e > 0\<close> \<open>K * Kl * 4 > 0\<close>]]
+  show "\<forall>\<^sub>F n in F. \<forall>x\<in>X. dist (prod (f n x) (g n x)) (prod (l x) (m x)) < e"
+  proof eventually_elim
+    case (elim n)
+    show ?case
+    proof safe
+      fix x assume "x \<in> X"
+      have "dist (prod (f n x) (g n x)) (prod (l x) (m x)) \<le>
+        norm (prod (f n x - l x) (g n x - m x)) +
+        norm (prod (f n x - l x) (m x)) +
+        norm (prod (l x) (g n x - m x))"
+        by (auto simp: dist_norm prod_diff_prod intro: order_trans norm_triangle_ineq add_mono)
+      also note K(2)[of "f n x - l x" "g n x - m x"]
+      also from elim(1)[THEN bspec, OF \<open>_ \<in> X\<close>, unfolded dist_norm]
+      have "norm (f n x - l x) \<le> sqrt e / sqrt (K * 4)"
+        by simp
+      also from elim(2)[THEN bspec, OF \<open>_ \<in> X\<close>, unfolded dist_norm]
+      have "norm (g n x - m x) \<le> sqrt e / sqrt (K * 4)"
+        by simp
+      also have "sqrt e / sqrt (K * 4) * (sqrt e / sqrt (K * 4)) * K = e / 4"
+        using \<open>K > 0\<close> \<open>e > 0\<close> by auto
+      also note K(2)[of "f n x - l x" "m x"]
+      also note K(2)[of "l x" "g n x - m x"]
+      also from elim(3)[THEN bspec, OF \<open>_ \<in> X\<close>, unfolded dist_norm]
+      have "norm (f n x - l x) \<le> e / (K * Km * 4)"
+        by simp
+      also from elim(4)[THEN bspec, OF \<open>_ \<in> X\<close>, unfolded dist_norm]
+      have "norm (g n x - m x) \<le> e / (K * Kl * 4)"
+        by simp
+      also note Kl(2)[OF \<open>_ \<in> X\<close>]
+      also note Km(2)[OF \<open>_ \<in> X\<close>]
+      also have "e / (K * Km * 4) * Km * K = e / 4"
+        using \<open>K > 0\<close> \<open>Km > 0\<close> by simp
+      also have " Kl * (e / (K * Kl * 4)) * K = e / 4"
+        using \<open>K > 0\<close> \<open>Kl > 0\<close> by simp
+      also have "e / 4 + e / 4 + e / 4 < e" using \<open>e > 0\<close> by simp
+      finally show "dist (prod (f n x) (g n x)) (prod (l x) (m x)) < e"
+        using \<open>K > 0\<close> \<open>Kl > 0\<close> \<open>Km > 0\<close> \<open>e > 0\<close>
+        by (simp add: algebra_simps mult_right_mono divide_right_mono)
+    qed
+  qed
+qed
+
+lemmas bounded_bilinear_bounded_uniform_limit_intros[uniform_limit_intros] =
+  bounded_bilinear.bounded_uniform_limit[OF Inner_Product.bounded_bilinear_inner]
+  bounded_bilinear.bounded_uniform_limit[OF Real_Vector_Spaces.bounded_bilinear_mult]
+  bounded_bilinear.bounded_uniform_limit[OF Real_Vector_Spaces.bounded_bilinear_scaleR]
+
+lemma uniform_limit_null_comparison:
+  assumes "\<forall>\<^sub>F x in F. \<forall>a\<in>S. norm (f x a) \<le> g x a"
+  assumes "uniform_limit S g (\<lambda>_. 0) F"
+  shows "uniform_limit S f (\<lambda>_. 0) F"
+  using assms(2)
+proof (rule metric_uniform_limit_imp_uniform_limit)
+  show "\<forall>\<^sub>F x in F. \<forall>y\<in>S. dist (f x y) 0 \<le> dist (g x y) 0"
+    using assms(1) by (rule eventually_mono) (force simp add: dist_norm)
+qed
+
+lemma uniform_limit_on_union:
+  "uniform_limit I f g F \<Longrightarrow> uniform_limit J f g F \<Longrightarrow> uniform_limit (I \<union> J) f g F"
+  by (auto intro!: uniform_limitI dest!: uniform_limitD elim: eventually_elim2)
+
+lemma uniform_limit_on_empty [iff]:
+  "uniform_limit {} f g F"
+  by (auto intro!: uniform_limitI)
+
+lemma uniform_limit_on_UNION:
+  assumes "finite S"
+  assumes "\<And>s. s \<in> S \<Longrightarrow> uniform_limit (h s) f g F"
+  shows "uniform_limit (UNION S h) f g F"
+  using assms
+  by induct (auto intro: uniform_limit_on_empty uniform_limit_on_union)
+
+lemma uniform_limit_on_Union:
+  assumes "finite I"
+  assumes "\<And>J. J \<in> I \<Longrightarrow> uniform_limit J f g F"
+  shows "uniform_limit (Union I) f g F"
+  by (metis SUP_identity_eq assms uniform_limit_on_UNION)
+
+lemma uniform_limit_on_subset:
+  "uniform_limit J f g F \<Longrightarrow> I \<subseteq> J \<Longrightarrow> uniform_limit I f g F"
+  by (auto intro!: uniform_limitI dest!: uniform_limitD intro: eventually_mono)
+
+lemma uniformly_convergent_add:
+  "uniformly_convergent_on A f \<Longrightarrow> uniformly_convergent_on A g\<Longrightarrow>
+      uniformly_convergent_on A (\<lambda>k x. f k x + g k x :: 'a :: {real_normed_algebra})"
+  unfolding uniformly_convergent_on_def by (blast dest: uniform_limit_add)
+
+lemma uniformly_convergent_minus:
+  "uniformly_convergent_on A f \<Longrightarrow> uniformly_convergent_on A g\<Longrightarrow>
+      uniformly_convergent_on A (\<lambda>k x. f k x - g k x :: 'a :: {real_normed_algebra})"
+  unfolding uniformly_convergent_on_def by (blast dest: uniform_limit_minus)
+
+lemma uniformly_convergent_mult:
+  "uniformly_convergent_on A f \<Longrightarrow>
+      uniformly_convergent_on A (\<lambda>k x. c * f k x :: 'a :: {real_normed_algebra})"
+  unfolding uniformly_convergent_on_def
+  by (blast dest: bounded_linear_uniform_limit_intros(13))
+
+
+subsection\<open>Power series and uniform convergence\<close>
+
+proposition powser_uniformly_convergent:
+  fixes a :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
+  assumes "r < conv_radius a"
+  shows "uniformly_convergent_on (cball \<xi> r) (\<lambda>n x. \<Sum>i<n. a i * (x - \<xi>) ^ i)"
+proof (cases "0 \<le> r")
+  case True
+  then have *: "summable (\<lambda>n. norm (a n) * r ^ n)"
+    using abs_summable_in_conv_radius [of "of_real r" a] assms
+    by (simp add: norm_mult norm_power)
+  show ?thesis
+    by (simp add: weierstrass_m_test'_ev [OF _ *] norm_mult norm_power
+              mult_left_mono power_mono dist_norm norm_minus_commute)
+next
+  case False then show ?thesis by (simp add: not_le)
+qed
+
+lemma powser_uniform_limit:
+  fixes a :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
+  assumes "r < conv_radius a"
+  shows "uniform_limit (cball \<xi> r) (\<lambda>n x. \<Sum>i<n. a i * (x - \<xi>) ^ i) (\<lambda>x. suminf (\<lambda>i. a i * (x - \<xi>) ^ i)) sequentially"
+using powser_uniformly_convergent [OF assms]
+by (simp add: Uniform_Limit.uniformly_convergent_uniform_limit_iff Series.suminf_eq_lim)
+
+lemma powser_continuous_suminf:
+  fixes a :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
+  assumes "r < conv_radius a"
+  shows "continuous_on (cball \<xi> r) (\<lambda>x. suminf (\<lambda>i. a i * (x - \<xi>) ^ i))"
+apply (rule uniform_limit_theorem [OF _ powser_uniform_limit])
+apply (rule eventuallyI continuous_intros assms)+
+apply (simp add:)
+done
+
+lemma powser_continuous_sums:
+  fixes a :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
+  assumes r: "r < conv_radius a"
+      and sm: "\<And>x. x \<in> cball \<xi> r \<Longrightarrow> (\<lambda>n. a n * (x - \<xi>) ^ n) sums (f x)"
+  shows "continuous_on (cball \<xi> r) f"
+apply (rule continuous_on_cong [THEN iffD1, OF refl _ powser_continuous_suminf [OF r]])
+using sm sums_unique by fastforce
+
+end
+