src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy
changeset 63627 6ddb43c6b711
parent 63626 44ce6b524ff3
child 63631 2edc8da89edc
child 63633 2accfb71e33b
--- a/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy	Fri Aug 05 18:34:57 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,4164 +0,0 @@
-(*  Author:     John Harrison
-    Author:     Robert Himmelmann, TU Muenchen (Translation from HOL light) and LCP
-*)
-
-(* ========================================================================= *)
-(* Results connected with topological dimension.                             *)
-(*                                                                           *)
-(* At the moment this is just Brouwer's fixpoint theorem. The proof is from  *)
-(* Kuhn: "some combinatorial lemmas in topology", IBM J. v4. (1960) p. 518   *)
-(* See "http://www.research.ibm.com/journal/rd/045/ibmrd0405K.pdf".          *)
-(*                                                                           *)
-(* The script below is quite messy, but at least we avoid formalizing any    *)
-(* topological machinery; we don't even use barycentric subdivision; this is *)
-(* the big advantage of Kuhn's proof over the usual Sperner's lemma one.     *)
-(*                                                                           *)
-(*              (c) Copyright, John Harrison 1998-2008                       *)
-(* ========================================================================= *)
-
-section \<open>Results connected with topological dimension.\<close>
-
-theory Brouwer_Fixpoint
-imports Path_Connected Homeomorphism
-begin
-
-lemma bij_betw_singleton_eq:
-  assumes f: "bij_betw f A B" and g: "bij_betw g A B" and a: "a \<in> A"
-  assumes eq: "(\<And>x. x \<in> A \<Longrightarrow> x \<noteq> a \<Longrightarrow> f x = g x)"
-  shows "f a = g a"
-proof -
-  have "f ` (A - {a}) = g ` (A - {a})"
-    by (intro image_cong) (simp_all add: eq)
-  then have "B - {f a} = B - {g a}"
-    using f g a  by (auto simp: bij_betw_def inj_on_image_set_diff set_eq_iff Diff_subset)
-  moreover have "f a \<in> B" "g a \<in> B"
-    using f g a by (auto simp: bij_betw_def)
-  ultimately show ?thesis
-    by auto
-qed
-
-lemma swap_image:
-  "Fun.swap i j f ` A = (if i \<in> A then (if j \<in> A then f ` A else f ` ((A - {i}) \<union> {j}))
-                                  else (if j \<in> A then f ` ((A - {j}) \<union> {i}) else f ` A))"
-  apply (auto simp: Fun.swap_def image_iff)
-  apply metis
-  apply (metis member_remove remove_def)
-  apply (metis member_remove remove_def)
-  done
-
-lemmas swap_apply1 = swap_apply(1)
-lemmas swap_apply2 = swap_apply(2)
-lemmas lessThan_empty_iff = Iio_eq_empty_iff_nat
-lemmas Zero_notin_Suc = zero_notin_Suc_image
-lemmas atMost_Suc_eq_insert_0 = Iic_Suc_eq_insert_0
-
-lemma setsum_union_disjoint':
-  assumes "finite A"
-    and "finite B"
-    and "A \<inter> B = {}"
-    and "A \<union> B = C"
-  shows "setsum g C = setsum g A + setsum g B"
-  using setsum.union_disjoint[OF assms(1-3)] and assms(4) by auto
-
-lemma pointwise_minimal_pointwise_maximal:
-  fixes s :: "(nat \<Rightarrow> nat) set"
-  assumes "finite s"
-    and "s \<noteq> {}"
-    and "\<forall>x\<in>s. \<forall>y\<in>s. x \<le> y \<or> y \<le> x"
-  shows "\<exists>a\<in>s. \<forall>x\<in>s. a \<le> x"
-    and "\<exists>a\<in>s. \<forall>x\<in>s. x \<le> a"
-  using assms
-proof (induct s rule: finite_ne_induct)
-  case (insert b s)
-  assume *: "\<forall>x\<in>insert b s. \<forall>y\<in>insert b s. x \<le> y \<or> y \<le> x"
-  then obtain u l where "l \<in> s" "\<forall>b\<in>s. l \<le> b" "u \<in> s" "\<forall>b\<in>s. b \<le> u"
-    using insert by auto
-  with * show "\<exists>a\<in>insert b s. \<forall>x\<in>insert b s. a \<le> x" "\<exists>a\<in>insert b s. \<forall>x\<in>insert b s. x \<le> a"
-    using *[rule_format, of b u] *[rule_format, of b l] by (metis insert_iff order.trans)+
-qed auto
-
-lemma brouwer_compactness_lemma:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
-  assumes "compact s"
-    and "continuous_on s f"
-    and "\<not> (\<exists>x\<in>s. f x = 0)"
-  obtains d where "0 < d" and "\<forall>x\<in>s. d \<le> norm (f x)"
-proof (cases "s = {}")
-  case True
-  show thesis
-    by (rule that [of 1]) (auto simp: True)
-next
-  case False
-  have "continuous_on s (norm \<circ> f)"
-    by (rule continuous_intros continuous_on_norm assms(2))+
-  with False obtain x where x: "x \<in> s" "\<forall>y\<in>s. (norm \<circ> f) x \<le> (norm \<circ> f) y"
-    using continuous_attains_inf[OF assms(1), of "norm \<circ> f"]
-    unfolding o_def
-    by auto
-  have "(norm \<circ> f) x > 0"
-    using assms(3) and x(1)
-    by auto
-  then show ?thesis
-    by (rule that) (insert x(2), auto simp: o_def)
-qed
-
-lemma kuhn_labelling_lemma:
-  fixes P Q :: "'a::euclidean_space \<Rightarrow> bool"
-  assumes "\<forall>x. P x \<longrightarrow> P (f x)"
-    and "\<forall>x. P x \<longrightarrow> (\<forall>i\<in>Basis. Q i \<longrightarrow> 0 \<le> x\<bullet>i \<and> x\<bullet>i \<le> 1)"
-  shows "\<exists>l. (\<forall>x.\<forall>i\<in>Basis. l x i \<le> (1::nat)) \<and>
-             (\<forall>x.\<forall>i\<in>Basis. P x \<and> Q i \<and> (x\<bullet>i = 0) \<longrightarrow> (l x i = 0)) \<and>
-             (\<forall>x.\<forall>i\<in>Basis. P x \<and> Q i \<and> (x\<bullet>i = 1) \<longrightarrow> (l x i = 1)) \<and>
-             (\<forall>x.\<forall>i\<in>Basis. P x \<and> Q i \<and> (l x i = 0) \<longrightarrow> x\<bullet>i \<le> f x\<bullet>i) \<and>
-             (\<forall>x.\<forall>i\<in>Basis. P x \<and> Q i \<and> (l x i = 1) \<longrightarrow> f x\<bullet>i \<le> x\<bullet>i)"
-proof -
-  { fix x i
-    let ?R = "\<lambda>y. (P x \<and> Q i \<and> x \<bullet> i = 0 \<longrightarrow> y = (0::nat)) \<and>
-        (P x \<and> Q i \<and> x \<bullet> i = 1 \<longrightarrow> y = 1) \<and>
-        (P x \<and> Q i \<and> y = 0 \<longrightarrow> x \<bullet> i \<le> f x \<bullet> i) \<and>
-        (P x \<and> Q i \<and> y = 1 \<longrightarrow> f x \<bullet> i \<le> x \<bullet> i)"
-    { assume "P x" "Q i" "i \<in> Basis" with assms have "0 \<le> f x \<bullet> i \<and> f x \<bullet> i \<le> 1" by auto }
-    then have "i \<in> Basis \<Longrightarrow> ?R 0 \<or> ?R 1" by auto }
-  then show ?thesis
-    unfolding all_conj_distrib[symmetric] Ball_def (* FIXME: shouldn't this work by metis? *)
-    by (subst choice_iff[symmetric])+ blast
-qed
-
-
-subsection \<open>The key "counting" observation, somewhat abstracted.\<close>
-
-lemma kuhn_counting_lemma:
-  fixes bnd compo compo' face S F
-  defines "nF s == card {f\<in>F. face f s \<and> compo' f}"
-  assumes [simp, intro]: "finite F" \<comment> "faces" and [simp, intro]: "finite S" \<comment> "simplices"
-    and "\<And>f. f \<in> F \<Longrightarrow> bnd f \<Longrightarrow> card {s\<in>S. face f s} = 1"
-    and "\<And>f. f \<in> F \<Longrightarrow> \<not> bnd f \<Longrightarrow> card {s\<in>S. face f s} = 2"
-    and "\<And>s. s \<in> S \<Longrightarrow> compo s \<Longrightarrow> nF s = 1"
-    and "\<And>s. s \<in> S \<Longrightarrow> \<not> compo s \<Longrightarrow> nF s = 0 \<or> nF s = 2"
-    and "odd (card {f\<in>F. compo' f \<and> bnd f})"
-  shows "odd (card {s\<in>S. compo s})"
-proof -
-  have "(\<Sum>s | s \<in> S \<and> \<not> compo s. nF s) + (\<Sum>s | s \<in> S \<and> compo s. nF s) = (\<Sum>s\<in>S. nF s)"
-    by (subst setsum.union_disjoint[symmetric]) (auto intro!: setsum.cong)
-  also have "\<dots> = (\<Sum>s\<in>S. card {f \<in> {f\<in>F. compo' f \<and> bnd f}. face f s}) +
-                  (\<Sum>s\<in>S. card {f \<in> {f\<in>F. compo' f \<and> \<not> bnd f}. face f s})"
-    unfolding setsum.distrib[symmetric]
-    by (subst card_Un_disjoint[symmetric])
-       (auto simp: nF_def intro!: setsum.cong arg_cong[where f=card])
-  also have "\<dots> = 1 * card {f\<in>F. compo' f \<and> bnd f} + 2 * card {f\<in>F. compo' f \<and> \<not> bnd f}"
-    using assms(4,5) by (fastforce intro!: arg_cong2[where f="op +"] setsum_multicount)
-  finally have "odd ((\<Sum>s | s \<in> S \<and> \<not> compo s. nF s) + card {s\<in>S. compo s})"
-    using assms(6,8) by simp
-  moreover have "(\<Sum>s | s \<in> S \<and> \<not> compo s. nF s) =
-    (\<Sum>s | s \<in> S \<and> \<not> compo s \<and> nF s = 0. nF s) + (\<Sum>s | s \<in> S \<and> \<not> compo s \<and> nF s = 2. nF s)"
-    using assms(7) by (subst setsum.union_disjoint[symmetric]) (fastforce intro!: setsum.cong)+
-  ultimately show ?thesis
-    by auto
-qed
-
-subsection \<open>The odd/even result for faces of complete vertices, generalized.\<close>
-
-lemma kuhn_complete_lemma:
-  assumes [simp]: "finite simplices"
-    and face: "\<And>f s. face f s \<longleftrightarrow> (\<exists>a\<in>s. f = s - {a})"
-    and card_s[simp]:  "\<And>s. s \<in> simplices \<Longrightarrow> card s = n + 2"
-    and rl_bd: "\<And>s. s \<in> simplices \<Longrightarrow> rl ` s \<subseteq> {..Suc n}"
-    and bnd: "\<And>f s. s \<in> simplices \<Longrightarrow> face f s \<Longrightarrow> bnd f \<Longrightarrow> card {s\<in>simplices. face f s} = 1"
-    and nbnd: "\<And>f s. s \<in> simplices \<Longrightarrow> face f s \<Longrightarrow> \<not> bnd f \<Longrightarrow> card {s\<in>simplices. face f s} = 2"
-    and odd_card: "odd (card {f. (\<exists>s\<in>simplices. face f s) \<and> rl ` f = {..n} \<and> bnd f})"
-  shows "odd (card {s\<in>simplices. (rl ` s = {..Suc n})})"
-proof (rule kuhn_counting_lemma)
-  have finite_s[simp]: "\<And>s. s \<in> simplices \<Longrightarrow> finite s"
-    by (metis add_is_0 zero_neq_numeral card_infinite assms(3))
-
-  let ?F = "{f. \<exists>s\<in>simplices. face f s}"
-  have F_eq: "?F = (\<Union>s\<in>simplices. \<Union>a\<in>s. {s - {a}})"
-    by (auto simp: face)
-  show "finite ?F"
-    using \<open>finite simplices\<close> unfolding F_eq by auto
-
-  show "card {s \<in> simplices. face f s} = 1" if "f \<in> ?F" "bnd f" for f
-    using bnd that by auto
-
-  show "card {s \<in> simplices. face f s} = 2" if "f \<in> ?F" "\<not> bnd f" for f
-    using nbnd that by auto
-
-  show "odd (card {f \<in> {f. \<exists>s\<in>simplices. face f s}. rl ` f = {..n} \<and> bnd f})"
-    using odd_card by simp
-
-  fix s assume s[simp]: "s \<in> simplices"
-  let ?S = "{f \<in> {f. \<exists>s\<in>simplices. face f s}. face f s \<and> rl ` f = {..n}}"
-  have "?S = (\<lambda>a. s - {a}) ` {a\<in>s. rl ` (s - {a}) = {..n}}"
-    using s by (fastforce simp: face)
-  then have card_S: "card ?S = card {a\<in>s. rl ` (s - {a}) = {..n}}"
-    by (auto intro!: card_image inj_onI)
-
-  { assume rl: "rl ` s = {..Suc n}"
-    then have inj_rl: "inj_on rl s"
-      by (intro eq_card_imp_inj_on) auto
-    moreover obtain a where "rl a = Suc n" "a \<in> s"
-      by (metis atMost_iff image_iff le_Suc_eq rl)
-    ultimately have n: "{..n} = rl ` (s - {a})"
-      by (auto simp add: inj_on_image_set_diff Diff_subset rl)
-    have "{a\<in>s. rl ` (s - {a}) = {..n}} = {a}"
-      using inj_rl \<open>a \<in> s\<close> by (auto simp add: n inj_on_image_eq_iff[OF inj_rl] Diff_subset)
-    then show "card ?S = 1"
-      unfolding card_S by simp }
-
-  { assume rl: "rl ` s \<noteq> {..Suc n}"
-    show "card ?S = 0 \<or> card ?S = 2"
-    proof cases
-      assume *: "{..n} \<subseteq> rl ` s"
-      with rl rl_bd[OF s] have rl_s: "rl ` s = {..n}"
-        by (auto simp add: atMost_Suc subset_insert_iff split: if_split_asm)
-      then have "\<not> inj_on rl s"
-        by (intro pigeonhole) simp
-      then obtain a b where ab: "a \<in> s" "b \<in> s" "rl a = rl b" "a \<noteq> b"
-        by (auto simp: inj_on_def)
-      then have eq: "rl ` (s - {a}) = rl ` s"
-        by auto
-      with ab have inj: "inj_on rl (s - {a})"
-        by (intro eq_card_imp_inj_on) (auto simp add: rl_s card_Diff_singleton_if)
-
-      { fix x assume "x \<in> s" "x \<notin> {a, b}"
-        then have "rl ` s - {rl x} = rl ` ((s - {a}) - {x})"
-          by (auto simp: eq Diff_subset inj_on_image_set_diff[OF inj])
-        also have "\<dots> = rl ` (s - {x})"
-          using ab \<open>x \<notin> {a, b}\<close> by auto
-        also assume "\<dots> = rl ` s"
-        finally have False
-          using \<open>x\<in>s\<close> by auto }
-      moreover
-      { fix x assume "x \<in> {a, b}" with ab have "x \<in> s \<and> rl ` (s - {x}) = rl ` s"
-          by (simp add: set_eq_iff image_iff Bex_def) metis }
-      ultimately have "{a\<in>s. rl ` (s - {a}) = {..n}} = {a, b}"
-        unfolding rl_s[symmetric] by fastforce
-      with \<open>a \<noteq> b\<close> show "card ?S = 0 \<or> card ?S = 2"
-        unfolding card_S by simp
-    next
-      assume "\<not> {..n} \<subseteq> rl ` s"
-      then have "\<And>x. rl ` (s - {x}) \<noteq> {..n}"
-        by auto
-      then show "card ?S = 0 \<or> card ?S = 2"
-        unfolding card_S by simp
-    qed }
-qed fact
-
-locale kuhn_simplex =
-  fixes p n and base upd and s :: "(nat \<Rightarrow> nat) set"
-  assumes base: "base \<in> {..< n} \<rightarrow> {..< p}"
-  assumes base_out: "\<And>i. n \<le> i \<Longrightarrow> base i = p"
-  assumes upd: "bij_betw upd {..< n} {..< n}"
-  assumes s_pre: "s = (\<lambda>i j. if j \<in> upd`{..< i} then Suc (base j) else base j) ` {.. n}"
-begin
-
-definition "enum i j = (if j \<in> upd`{..< i} then Suc (base j) else base j)"
-
-lemma s_eq: "s = enum ` {.. n}"
-  unfolding s_pre enum_def[abs_def] ..
-
-lemma upd_space: "i < n \<Longrightarrow> upd i < n"
-  using upd by (auto dest!: bij_betwE)
-
-lemma s_space: "s \<subseteq> {..< n} \<rightarrow> {.. p}"
-proof -
-  { fix i assume "i \<le> n" then have "enum i \<in> {..< n} \<rightarrow> {.. p}"
-    proof (induct i)
-      case 0 then show ?case
-        using base by (auto simp: Pi_iff less_imp_le enum_def)
-    next
-      case (Suc i) with base show ?case
-        by (auto simp: Pi_iff Suc_le_eq less_imp_le enum_def intro: upd_space)
-    qed }
-  then show ?thesis
-    by (auto simp: s_eq)
-qed
-
-lemma inj_upd: "inj_on upd {..< n}"
-  using upd by (simp add: bij_betw_def)
-
-lemma inj_enum: "inj_on enum {.. n}"
-proof -
-  { fix x y :: nat assume "x \<noteq> y" "x \<le> n" "y \<le> n"
-    with upd have "upd ` {..< x} \<noteq> upd ` {..< y}"
-      by (subst inj_on_image_eq_iff[where C="{..< n}"]) (auto simp: bij_betw_def)
-    then have "enum x \<noteq> enum y"
-      by (auto simp add: enum_def fun_eq_iff) }
-  then show ?thesis
-    by (auto simp: inj_on_def)
-qed
-
-lemma enum_0: "enum 0 = base"
-  by (simp add: enum_def[abs_def])
-
-lemma base_in_s: "base \<in> s"
-  unfolding s_eq by (subst enum_0[symmetric]) auto
-
-lemma enum_in: "i \<le> n \<Longrightarrow> enum i \<in> s"
-  unfolding s_eq by auto
-
-lemma one_step:
-  assumes a: "a \<in> s" "j < n"
-  assumes *: "\<And>a'. a' \<in> s \<Longrightarrow> a' \<noteq> a \<Longrightarrow> a' j = p'"
-  shows "a j \<noteq> p'"
-proof
-  assume "a j = p'"
-  with * a have "\<And>a'. a' \<in> s \<Longrightarrow> a' j = p'"
-    by auto
-  then have "\<And>i. i \<le> n \<Longrightarrow> enum i j = p'"
-    unfolding s_eq by auto
-  from this[of 0] this[of n] have "j \<notin> upd ` {..< n}"
-    by (auto simp: enum_def fun_eq_iff split: if_split_asm)
-  with upd \<open>j < n\<close> show False
-    by (auto simp: bij_betw_def)
-qed
-
-lemma upd_inj: "i < n \<Longrightarrow> j < n \<Longrightarrow> upd i = upd j \<longleftrightarrow> i = j"
-  using upd by (auto simp: bij_betw_def inj_on_eq_iff)
-
-lemma upd_surj: "upd ` {..< n} = {..< n}"
-  using upd by (auto simp: bij_betw_def)
-
-lemma in_upd_image: "A \<subseteq> {..< n} \<Longrightarrow> i < n \<Longrightarrow> upd i \<in> upd ` A \<longleftrightarrow> i \<in> A"
-  using inj_on_image_mem_iff[of upd "{..< n}"] upd
-  by (auto simp: bij_betw_def)
-
-lemma enum_inj: "i \<le> n \<Longrightarrow> j \<le> n \<Longrightarrow> enum i = enum j \<longleftrightarrow> i = j"
-  using inj_enum by (auto simp: inj_on_eq_iff)
-
-lemma in_enum_image: "A \<subseteq> {.. n} \<Longrightarrow> i \<le> n \<Longrightarrow> enum i \<in> enum ` A \<longleftrightarrow> i \<in> A"
-  using inj_on_image_mem_iff[OF inj_enum] by auto
-
-lemma enum_mono: "i \<le> n \<Longrightarrow> j \<le> n \<Longrightarrow> enum i \<le> enum j \<longleftrightarrow> i \<le> j"
-  by (auto simp: enum_def le_fun_def in_upd_image Ball_def[symmetric])
-
-lemma enum_strict_mono: "i \<le> n \<Longrightarrow> j \<le> n \<Longrightarrow> enum i < enum j \<longleftrightarrow> i < j"
-  using enum_mono[of i j] enum_inj[of i j] by (auto simp add: le_less)
-
-lemma chain: "a \<in> s \<Longrightarrow> b \<in> s \<Longrightarrow> a \<le> b \<or> b \<le> a"
-  by (auto simp: s_eq enum_mono)
-
-lemma less: "a \<in> s \<Longrightarrow> b \<in> s \<Longrightarrow> a i < b i \<Longrightarrow> a < b"
-  using chain[of a b] by (auto simp: less_fun_def le_fun_def not_le[symmetric])
-
-lemma enum_0_bot: "a \<in> s \<Longrightarrow> a = enum 0 \<longleftrightarrow> (\<forall>a'\<in>s. a \<le> a')"
-  unfolding s_eq by (auto simp: enum_mono Ball_def)
-
-lemma enum_n_top: "a \<in> s \<Longrightarrow> a = enum n \<longleftrightarrow> (\<forall>a'\<in>s. a' \<le> a)"
-  unfolding s_eq by (auto simp: enum_mono Ball_def)
-
-lemma enum_Suc: "i < n \<Longrightarrow> enum (Suc i) = (enum i)(upd i := Suc (enum i (upd i)))"
-  by (auto simp: fun_eq_iff enum_def upd_inj)
-
-lemma enum_eq_p: "i \<le> n \<Longrightarrow> n \<le> j \<Longrightarrow> enum i j = p"
-  by (induct i) (auto simp: enum_Suc enum_0 base_out upd_space not_less[symmetric])
-
-lemma out_eq_p: "a \<in> s \<Longrightarrow> n \<le> j \<Longrightarrow> a j = p"
-  unfolding s_eq by (auto simp add: enum_eq_p)
-
-lemma s_le_p: "a \<in> s \<Longrightarrow> a j \<le> p"
-  using out_eq_p[of a j] s_space by (cases "j < n") auto
-
-lemma le_Suc_base: "a \<in> s \<Longrightarrow> a j \<le> Suc (base j)"
-  unfolding s_eq by (auto simp: enum_def)
-
-lemma base_le: "a \<in> s \<Longrightarrow> base j \<le> a j"
-  unfolding s_eq by (auto simp: enum_def)
-
-lemma enum_le_p: "i \<le> n \<Longrightarrow> j < n \<Longrightarrow> enum i j \<le> p"
-  using enum_in[of i] s_space by auto
-
-lemma enum_less: "a \<in> s \<Longrightarrow> i < n \<Longrightarrow> enum i < a \<longleftrightarrow> enum (Suc i) \<le> a"
-  unfolding s_eq by (auto simp: enum_strict_mono enum_mono)
-
-lemma ksimplex_0:
-  "n = 0 \<Longrightarrow> s = {(\<lambda>x. p)}"
-  using s_eq enum_def base_out by auto
-
-lemma replace_0:
-  assumes "j < n" "a \<in> s" and p: "\<forall>x\<in>s - {a}. x j = 0" and "x \<in> s"
-  shows "x \<le> a"
-proof cases
-  assume "x \<noteq> a"
-  have "a j \<noteq> 0"
-    using assms by (intro one_step[where a=a]) auto
-  with less[OF \<open>x\<in>s\<close> \<open>a\<in>s\<close>, of j] p[rule_format, of x] \<open>x \<in> s\<close> \<open>x \<noteq> a\<close>
-  show ?thesis
-    by auto
-qed simp
-
-lemma replace_1:
-  assumes "j < n" "a \<in> s" and p: "\<forall>x\<in>s - {a}. x j = p" and "x \<in> s"
-  shows "a \<le> x"
-proof cases
-  assume "x \<noteq> a"
-  have "a j \<noteq> p"
-    using assms by (intro one_step[where a=a]) auto
-  with enum_le_p[of _ j] \<open>j < n\<close> \<open>a\<in>s\<close>
-  have "a j < p"
-    by (auto simp: less_le s_eq)
-  with less[OF \<open>a\<in>s\<close> \<open>x\<in>s\<close>, of j] p[rule_format, of x] \<open>x \<in> s\<close> \<open>x \<noteq> a\<close>
-  show ?thesis
-    by auto
-qed simp
-
-end
-
-locale kuhn_simplex_pair = s: kuhn_simplex p n b_s u_s s + t: kuhn_simplex p n b_t u_t t
-  for p n b_s u_s s b_t u_t t
-begin
-
-lemma enum_eq:
-  assumes l: "i \<le> l" "l \<le> j" and "j + d \<le> n"
-  assumes eq: "s.enum ` {i .. j} = t.enum ` {i + d .. j + d}"
-  shows "s.enum l = t.enum (l + d)"
-using l proof (induct l rule: dec_induct)
-  case base
-  then have s: "s.enum i \<in> t.enum ` {i + d .. j + d}" and t: "t.enum (i + d) \<in> s.enum ` {i .. j}"
-    using eq by auto
-  from t \<open>i \<le> j\<close> \<open>j + d \<le> n\<close> have "s.enum i \<le> t.enum (i + d)"
-    by (auto simp: s.enum_mono)
-  moreover from s \<open>i \<le> j\<close> \<open>j + d \<le> n\<close> have "t.enum (i + d) \<le> s.enum i"
-    by (auto simp: t.enum_mono)
-  ultimately show ?case
-    by auto
-next
-  case (step l)
-  moreover from step.prems \<open>j + d \<le> n\<close> have
-      "s.enum l < s.enum (Suc l)"
-      "t.enum (l + d) < t.enum (Suc l + d)"
-    by (simp_all add: s.enum_strict_mono t.enum_strict_mono)
-  moreover have
-      "s.enum (Suc l) \<in> t.enum ` {i + d .. j + d}"
-      "t.enum (Suc l + d) \<in> s.enum ` {i .. j}"
-    using step \<open>j + d \<le> n\<close> eq by (auto simp: s.enum_inj t.enum_inj)
-  ultimately have "s.enum (Suc l) = t.enum (Suc (l + d))"
-    using \<open>j + d \<le> n\<close>
-    by (intro antisym s.enum_less[THEN iffD1] t.enum_less[THEN iffD1])
-       (auto intro!: s.enum_in t.enum_in)
-  then show ?case by simp
-qed
-
-lemma ksimplex_eq_bot:
-  assumes a: "a \<in> s" "\<And>a'. a' \<in> s \<Longrightarrow> a \<le> a'"
-  assumes b: "b \<in> t" "\<And>b'. b' \<in> t \<Longrightarrow> b \<le> b'"
-  assumes eq: "s - {a} = t - {b}"
-  shows "s = t"
-proof cases
-  assume "n = 0" with s.ksimplex_0 t.ksimplex_0 show ?thesis by simp
-next
-  assume "n \<noteq> 0"
-  have "s.enum 0 = (s.enum (Suc 0)) (u_s 0 := s.enum (Suc 0) (u_s 0) - 1)"
-       "t.enum 0 = (t.enum (Suc 0)) (u_t 0 := t.enum (Suc 0) (u_t 0) - 1)"
-    using \<open>n \<noteq> 0\<close> by (simp_all add: s.enum_Suc t.enum_Suc)
-  moreover have e0: "a = s.enum 0" "b = t.enum 0"
-    using a b by (simp_all add: s.enum_0_bot t.enum_0_bot)
-  moreover
-  { fix j assume "0 < j" "j \<le> n"
-    moreover have "s - {a} = s.enum ` {Suc 0 .. n}" "t - {b} = t.enum ` {Suc 0 .. n}"
-      unfolding s.s_eq t.s_eq e0 by (auto simp: s.enum_inj t.enum_inj)
-    ultimately have "s.enum j = t.enum j"
-      using enum_eq[of "1" j n 0] eq by auto }
-  note enum_eq = this
-  then have "s.enum (Suc 0) = t.enum (Suc 0)"
-    using \<open>n \<noteq> 0\<close> by auto
-  moreover
-  { fix j assume "Suc j < n"
-    with enum_eq[of "Suc j"] enum_eq[of "Suc (Suc j)"]
-    have "u_s (Suc j) = u_t (Suc j)"
-      using s.enum_Suc[of "Suc j"] t.enum_Suc[of "Suc j"]
-      by (auto simp: fun_eq_iff split: if_split_asm) }
-  then have "\<And>j. 0 < j \<Longrightarrow> j < n \<Longrightarrow> u_s j = u_t j"
-    by (auto simp: gr0_conv_Suc)
-  with \<open>n \<noteq> 0\<close> have "u_t 0 = u_s 0"
-    by (intro bij_betw_singleton_eq[OF t.upd s.upd, of 0]) auto
-  ultimately have "a = b"
-    by simp
-  with assms show "s = t"
-    by auto
-qed
-
-lemma ksimplex_eq_top:
-  assumes a: "a \<in> s" "\<And>a'. a' \<in> s \<Longrightarrow> a' \<le> a"
-  assumes b: "b \<in> t" "\<And>b'. b' \<in> t \<Longrightarrow> b' \<le> b"
-  assumes eq: "s - {a} = t - {b}"
-  shows "s = t"
-proof (cases n)
-  assume "n = 0" with s.ksimplex_0 t.ksimplex_0 show ?thesis by simp
-next
-  case (Suc n')
-  have "s.enum n = (s.enum n') (u_s n' := Suc (s.enum n' (u_s n')))"
-       "t.enum n = (t.enum n') (u_t n' := Suc (t.enum n' (u_t n')))"
-    using Suc by (simp_all add: s.enum_Suc t.enum_Suc)
-  moreover have en: "a = s.enum n" "b = t.enum n"
-    using a b by (simp_all add: s.enum_n_top t.enum_n_top)
-  moreover
-  { fix j assume "j < n"
-    moreover have "s - {a} = s.enum ` {0 .. n'}" "t - {b} = t.enum ` {0 .. n'}"
-      unfolding s.s_eq t.s_eq en by (auto simp: s.enum_inj t.enum_inj Suc)
-    ultimately have "s.enum j = t.enum j"
-      using enum_eq[of "0" j n' 0] eq Suc by auto }
-  note enum_eq = this
-  then have "s.enum n' = t.enum n'"
-    using Suc by auto
-  moreover
-  { fix j assume "j < n'"
-    with enum_eq[of j] enum_eq[of "Suc j"]
-    have "u_s j = u_t j"
-      using s.enum_Suc[of j] t.enum_Suc[of j]
-      by (auto simp: Suc fun_eq_iff split: if_split_asm) }
-  then have "\<And>j. j < n' \<Longrightarrow> u_s j = u_t j"
-    by (auto simp: gr0_conv_Suc)
-  then have "u_t n' = u_s n'"
-    by (intro bij_betw_singleton_eq[OF t.upd s.upd, of n']) (auto simp: Suc)
-  ultimately have "a = b"
-    by simp
-  with assms show "s = t"
-    by auto
-qed
-
-end
-
-inductive ksimplex for p n :: nat where
-  ksimplex: "kuhn_simplex p n base upd s \<Longrightarrow> ksimplex p n s"
-
-lemma finite_ksimplexes: "finite {s. ksimplex p n s}"
-proof (rule finite_subset)
-  { fix a s assume "ksimplex p n s" "a \<in> s"
-    then obtain b u where "kuhn_simplex p n b u s" by (auto elim: ksimplex.cases)
-    then interpret kuhn_simplex p n b u s .
-    from s_space \<open>a \<in> s\<close> out_eq_p[OF \<open>a \<in> s\<close>]
-    have "a \<in> (\<lambda>f x. if n \<le> x then p else f x) ` ({..< n} \<rightarrow>\<^sub>E {.. p})"
-      by (auto simp: image_iff subset_eq Pi_iff split: if_split_asm
-               intro!: bexI[of _ "restrict a {..< n}"]) }
-  then show "{s. ksimplex p n s} \<subseteq> Pow ((\<lambda>f x. if n \<le> x then p else f x) ` ({..< n} \<rightarrow>\<^sub>E {.. p}))"
-    by auto
-qed (simp add: finite_PiE)
-
-lemma ksimplex_card:
-  assumes "ksimplex p n s" shows "card s = Suc n"
-using assms proof cases
-  case (ksimplex u b)
-  then interpret kuhn_simplex p n u b s .
-  show ?thesis
-    by (simp add: card_image s_eq inj_enum)
-qed
-
-lemma simplex_top_face:
-  assumes "0 < p" "\<forall>x\<in>s'. x n = p"
-  shows "ksimplex p n s' \<longleftrightarrow> (\<exists>s a. ksimplex p (Suc n) s \<and> a \<in> s \<and> s' = s - {a})"
-  using assms
-proof safe
-  fix s a assume "ksimplex p (Suc n) s" and a: "a \<in> s" and na: "\<forall>x\<in>s - {a}. x n = p"
-  then show "ksimplex p n (s - {a})"
-  proof cases
-    case (ksimplex base upd)
-    then interpret kuhn_simplex p "Suc n" base upd "s" .
-
-    have "a n < p"
-      using one_step[of a n p] na \<open>a\<in>s\<close> s_space by (auto simp: less_le)
-    then have "a = enum 0"
-      using \<open>a \<in> s\<close> na by (subst enum_0_bot) (auto simp: le_less intro!: less[of a _ n])
-    then have s_eq: "s - {a} = enum ` Suc ` {.. n}"
-      using s_eq by (simp add: atMost_Suc_eq_insert_0 insert_ident Zero_notin_Suc in_enum_image subset_eq)
-    then have "enum 1 \<in> s - {a}"
-      by auto
-    then have "upd 0 = n"
-      using \<open>a n < p\<close> \<open>a = enum 0\<close> na[rule_format, of "enum 1"]
-      by (auto simp: fun_eq_iff enum_Suc split: if_split_asm)
-    then have "bij_betw upd (Suc ` {..< n}) {..< n}"
-      using upd
-      by (subst notIn_Un_bij_betw3[where b=0])
-         (auto simp: lessThan_Suc[symmetric] lessThan_Suc_eq_insert_0)
-    then have "bij_betw (upd\<circ>Suc) {..<n} {..<n}"
-      by (rule bij_betw_trans[rotated]) (auto simp: bij_betw_def)
-
-    have "a n = p - 1"
-      using enum_Suc[of 0] na[rule_format, OF \<open>enum 1 \<in> s - {a}\<close>] \<open>a = enum 0\<close> by (auto simp: \<open>upd 0 = n\<close>)
-
-    show ?thesis
-    proof (rule ksimplex.intros, standard)
-      show "bij_betw (upd\<circ>Suc) {..< n} {..< n}" by fact
-      show "base(n := p) \<in> {..<n} \<rightarrow> {..<p}" "\<And>i. n\<le>i \<Longrightarrow> (base(n := p)) i = p"
-        using base base_out by (auto simp: Pi_iff)
-
-      have "\<And>i. Suc ` {..< i} = {..< Suc i} - {0}"
-        by (auto simp: image_iff Ball_def) arith
-      then have upd_Suc: "\<And>i. i \<le> n \<Longrightarrow> (upd\<circ>Suc) ` {..< i} = upd ` {..< Suc i} - {n}"
-        using \<open>upd 0 = n\<close> upd_inj
-        by (auto simp add: image_comp[symmetric] inj_on_image_set_diff[OF inj_upd])
-      have n_in_upd: "\<And>i. n \<in> upd ` {..< Suc i}"
-        using \<open>upd 0 = n\<close> by auto
-
-      define f' where "f' i j =
-        (if j \<in> (upd\<circ>Suc)`{..< i} then Suc ((base(n := p)) j) else (base(n := p)) j)" for i j
-      { fix x i assume i[arith]: "i \<le> n" then have "enum (Suc i) x = f' i x"
-          unfolding f'_def enum_def using \<open>a n < p\<close> \<open>a = enum 0\<close> \<open>upd 0 = n\<close> \<open>a n = p - 1\<close>
-          by (simp add: upd_Suc enum_0 n_in_upd) }
-      then show "s - {a} = f' ` {.. n}"
-        unfolding s_eq image_comp by (intro image_cong) auto
-    qed
-  qed
-next
-  assume "ksimplex p n s'" and *: "\<forall>x\<in>s'. x n = p"
-  then show "\<exists>s a. ksimplex p (Suc n) s \<and> a \<in> s \<and> s' = s - {a}"
-  proof cases
-    case (ksimplex base upd)
-    then interpret kuhn_simplex p n base upd s' .
-    define b where "b = base (n := p - 1)"
-    define u where "u i = (case i of 0 \<Rightarrow> n | Suc i \<Rightarrow> upd i)" for i
-
-    have "ksimplex p (Suc n) (s' \<union> {b})"
-    proof (rule ksimplex.intros, standard)
-      show "b \<in> {..<Suc n} \<rightarrow> {..<p}"
-        using base \<open>0 < p\<close> unfolding lessThan_Suc b_def by (auto simp: PiE_iff)
-      show "\<And>i. Suc n \<le> i \<Longrightarrow> b i = p"
-        using base_out by (auto simp: b_def)
-
-      have "bij_betw u (Suc ` {..< n} \<union> {0}) ({..<n} \<union> {u 0})"
-        using upd
-        by (intro notIn_Un_bij_betw) (auto simp: u_def bij_betw_def image_comp comp_def inj_on_def)
-      then show "bij_betw u {..<Suc n} {..<Suc n}"
-        by (simp add: u_def lessThan_Suc[symmetric] lessThan_Suc_eq_insert_0)
-
-      define f' where "f' i j = (if j \<in> u`{..< i} then Suc (b j) else b j)" for i j
-
-      have u_eq: "\<And>i. i \<le> n \<Longrightarrow> u ` {..< Suc i} = upd ` {..< i} \<union> { n }"
-        by (auto simp: u_def image_iff upd_inj Ball_def split: nat.split) arith
-
-      { fix x have "x \<le> n \<Longrightarrow> n \<notin> upd ` {..<x}"
-          using upd_space by (simp add: image_iff neq_iff) }
-      note n_not_upd = this
-
-      have *: "f' ` {.. Suc n} = f' ` (Suc ` {.. n} \<union> {0})"
-        unfolding atMost_Suc_eq_insert_0 by simp
-      also have "\<dots> = (f' \<circ> Suc) ` {.. n} \<union> {b}"
-        by (auto simp: f'_def)
-      also have "(f' \<circ> Suc) ` {.. n} = s'"
-        using \<open>0 < p\<close> base_out[of n]
-        unfolding s_eq enum_def[abs_def] f'_def[abs_def] upd_space
-        by (intro image_cong) (simp_all add: u_eq b_def fun_eq_iff n_not_upd)
-      finally show "s' \<union> {b} = f' ` {.. Suc n}" ..
-    qed
-    moreover have "b \<notin> s'"
-      using * \<open>0 < p\<close> by (auto simp: b_def)
-    ultimately show ?thesis by auto
-  qed
-qed
-
-lemma ksimplex_replace_0:
-  assumes s: "ksimplex p n s" and a: "a \<in> s"
-  assumes j: "j < n" and p: "\<forall>x\<in>s - {a}. x j = 0"
-  shows "card {s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = 1"
-  using s
-proof cases
-  case (ksimplex b_s u_s)
-
-  { fix t b assume "ksimplex p n t"
-    then obtain b_t u_t where "kuhn_simplex p n b_t u_t t"
-      by (auto elim: ksimplex.cases)
-    interpret kuhn_simplex_pair p n b_s u_s s b_t u_t t
-      by intro_locales fact+
-
-    assume b: "b \<in> t" "t - {b} = s - {a}"
-    with a j p s.replace_0[of _ a] t.replace_0[of _ b] have "s = t"
-      by (intro ksimplex_eq_top[of a b]) auto }
-  then have "{s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = {s}"
-    using s \<open>a \<in> s\<close> by auto
-  then show ?thesis
-    by simp
-qed
-
-lemma ksimplex_replace_1:
-  assumes s: "ksimplex p n s" and a: "a \<in> s"
-  assumes j: "j < n" and p: "\<forall>x\<in>s - {a}. x j = p"
-  shows "card {s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = 1"
-  using s
-proof cases
-  case (ksimplex b_s u_s)
-
-  { fix t b assume "ksimplex p n t"
-    then obtain b_t u_t where "kuhn_simplex p n b_t u_t t"
-      by (auto elim: ksimplex.cases)
-    interpret kuhn_simplex_pair p n b_s u_s s b_t u_t t
-      by intro_locales fact+
-
-    assume b: "b \<in> t" "t - {b} = s - {a}"
-    with a j p s.replace_1[of _ a] t.replace_1[of _ b] have "s = t"
-      by (intro ksimplex_eq_bot[of a b]) auto }
-  then have "{s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = {s}"
-    using s \<open>a \<in> s\<close> by auto
-  then show ?thesis
-    by simp
-qed
-
-lemma card_2_exists: "card s = 2 \<longleftrightarrow> (\<exists>x\<in>s. \<exists>y\<in>s. x \<noteq> y \<and> (\<forall>z\<in>s. z = x \<or> z = y))"
-  by (auto simp add: card_Suc_eq eval_nat_numeral)
-
-lemma ksimplex_replace_2:
-  assumes s: "ksimplex p n s" and "a \<in> s" and "n \<noteq> 0"
-    and lb: "\<forall>j<n. \<exists>x\<in>s - {a}. x j \<noteq> 0"
-    and ub: "\<forall>j<n. \<exists>x\<in>s - {a}. x j \<noteq> p"
-  shows "card {s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = 2"
-  using s
-proof cases
-  case (ksimplex base upd)
-  then interpret kuhn_simplex p n base upd s .
-
-  from \<open>a \<in> s\<close> obtain i where "i \<le> n" "a = enum i"
-    unfolding s_eq by auto
-
-  from \<open>i \<le> n\<close> have "i = 0 \<or> i = n \<or> (0 < i \<and> i < n)"
-    by linarith
-  then have "\<exists>!s'. s' \<noteq> s \<and> ksimplex p n s' \<and> (\<exists>b\<in>s'. s - {a} = s'- {b})"
-  proof (elim disjE conjE)
-    assume "i = 0"
-    define rot where [abs_def]: "rot i = (if i + 1 = n then 0 else i + 1)" for i
-    let ?upd = "upd \<circ> rot"
-
-    have rot: "bij_betw rot {..< n} {..< n}"
-      by (auto simp: bij_betw_def inj_on_def image_iff Ball_def rot_def)
-         arith+
-    from rot upd have "bij_betw ?upd {..<n} {..<n}"
-      by (rule bij_betw_trans)
-
-    define f' where [abs_def]: "f' i j =
-      (if j \<in> ?upd`{..< i} then Suc (enum (Suc 0) j) else enum (Suc 0) j)" for i j
-
-    interpret b: kuhn_simplex p n "enum (Suc 0)" "upd \<circ> rot" "f' ` {.. n}"
-    proof
-      from \<open>a = enum i\<close> ub \<open>n \<noteq> 0\<close> \<open>i = 0\<close>
-      obtain i' where "i' \<le> n" "enum i' \<noteq> enum 0" "enum i' (upd 0) \<noteq> p"
-        unfolding s_eq by (auto intro: upd_space simp: enum_inj)
-      then have "enum 1 \<le> enum i'" "enum i' (upd 0) < p"
-        using enum_le_p[of i' "upd 0"] by (auto simp add: enum_inj enum_mono upd_space)
-      then have "enum 1 (upd 0) < p"
-        by (auto simp add: le_fun_def intro: le_less_trans)
-      then show "enum (Suc 0) \<in> {..<n} \<rightarrow> {..<p}"
-        using base \<open>n \<noteq> 0\<close> by (auto simp add: enum_0 enum_Suc PiE_iff extensional_def upd_space)
-
-      { fix i assume "n \<le> i" then show "enum (Suc 0) i = p"
-        using \<open>n \<noteq> 0\<close> by (auto simp: enum_eq_p) }
-      show "bij_betw ?upd {..<n} {..<n}" by fact
-    qed (simp add: f'_def)
-    have ks_f': "ksimplex p n (f' ` {.. n})"
-      by rule unfold_locales
-
-    have b_enum: "b.enum = f'" unfolding f'_def b.enum_def[abs_def] ..
-    with b.inj_enum have inj_f': "inj_on f' {.. n}" by simp
-
-    have [simp]: "\<And>j. j < n \<Longrightarrow> rot ` {..< j} = {0 <..< Suc j}"
-      by (auto simp: rot_def image_iff Ball_def)
-         arith
-
-    { fix j assume j: "j < n"
-      from j \<open>n \<noteq> 0\<close> have "f' j = enum (Suc j)"
-        by (auto simp add: f'_def enum_def upd_inj in_upd_image image_comp[symmetric] fun_eq_iff) }
-    note f'_eq_enum = this
-    then have "enum ` Suc ` {..< n} = f' ` {..< n}"
-      by (force simp: enum_inj)
-    also have "Suc ` {..< n} = {.. n} - {0}"
-      by (auto simp: image_iff Ball_def) arith
-    also have "{..< n} = {.. n} - {n}"
-      by auto
-    finally have eq: "s - {a} = f' ` {.. n} - {f' n}"
-      unfolding s_eq \<open>a = enum i\<close> \<open>i = 0\<close>
-      by (simp add: Diff_subset inj_on_image_set_diff[OF inj_enum] inj_on_image_set_diff[OF inj_f'])
-
-    have "enum 0 < f' 0"
-      using \<open>n \<noteq> 0\<close> by (simp add: enum_strict_mono f'_eq_enum)
-    also have "\<dots> < f' n"
-      using \<open>n \<noteq> 0\<close> b.enum_strict_mono[of 0 n] unfolding b_enum by simp
-    finally have "a \<noteq> f' n"
-      using \<open>a = enum i\<close> \<open>i = 0\<close> by auto
-
-    { fix t c assume "ksimplex p n t" "c \<in> t" and eq_sma: "s - {a} = t - {c}"
-      obtain b u where "kuhn_simplex p n b u t"
-        using \<open>ksimplex p n t\<close> by (auto elim: ksimplex.cases)
-      then interpret t: kuhn_simplex p n b u t .
-
-      { fix x assume "x \<in> s" "x \<noteq> a"
-         then have "x (upd 0) = enum (Suc 0) (upd 0)"
-           by (auto simp: \<open>a = enum i\<close> \<open>i = 0\<close> s_eq enum_def enum_inj) }
-      then have eq_upd0: "\<forall>x\<in>t-{c}. x (upd 0) = enum (Suc 0) (upd 0)"
-        unfolding eq_sma[symmetric] by auto
-      then have "c (upd 0) \<noteq> enum (Suc 0) (upd 0)"
-        using \<open>n \<noteq> 0\<close> by (intro t.one_step[OF \<open>c\<in>t\<close> ]) (auto simp: upd_space)
-      then have "c (upd 0) < enum (Suc 0) (upd 0) \<or> c (upd 0) > enum (Suc 0) (upd 0)"
-        by auto
-      then have "t = s \<or> t = f' ` {..n}"
-      proof (elim disjE conjE)
-        assume *: "c (upd 0) < enum (Suc 0) (upd 0)"
-        interpret st: kuhn_simplex_pair p n base upd s b u t ..
-        { fix x assume "x \<in> t" with * \<open>c\<in>t\<close> eq_upd0[rule_format, of x] have "c \<le> x"
-            by (auto simp: le_less intro!: t.less[of _ _ "upd 0"]) }
-        note top = this
-        have "s = t"
-          using \<open>a = enum i\<close> \<open>i = 0\<close> \<open>c \<in> t\<close>
-          by (intro st.ksimplex_eq_bot[OF _ _ _ _ eq_sma])
-             (auto simp: s_eq enum_mono t.s_eq t.enum_mono top)
-        then show ?thesis by simp
-      next
-        assume *: "c (upd 0) > enum (Suc 0) (upd 0)"
-        interpret st: kuhn_simplex_pair p n "enum (Suc 0)" "upd \<circ> rot" "f' ` {.. n}" b u t ..
-        have eq: "f' ` {..n} - {f' n} = t - {c}"
-          using eq_sma eq by simp
-        { fix x assume "x \<in> t" with * \<open>c\<in>t\<close> eq_upd0[rule_format, of x] have "x \<le> c"
-            by (auto simp: le_less intro!: t.less[of _ _ "upd 0"]) }
-        note top = this
-        have "f' ` {..n} = t"
-          using \<open>a = enum i\<close> \<open>i = 0\<close> \<open>c \<in> t\<close>
-          by (intro st.ksimplex_eq_top[OF _ _ _ _ eq])
-             (auto simp: b.s_eq b.enum_mono t.s_eq t.enum_mono b_enum[symmetric] top)
-        then show ?thesis by simp
-      qed }
-    with ks_f' eq \<open>a \<noteq> f' n\<close> \<open>n \<noteq> 0\<close> show ?thesis
-      apply (intro ex1I[of _ "f' ` {.. n}"])
-      apply auto []
-      apply metis
-      done
-  next
-    assume "i = n"
-    from \<open>n \<noteq> 0\<close> obtain n' where n': "n = Suc n'"
-      by (cases n) auto
-
-    define rot where "rot i = (case i of 0 \<Rightarrow> n' | Suc i \<Rightarrow> i)" for i
-    let ?upd = "upd \<circ> rot"
-
-    have rot: "bij_betw rot {..< n} {..< n}"
-      by (auto simp: bij_betw_def inj_on_def image_iff Bex_def rot_def n' split: nat.splits)
-         arith
-    from rot upd have "bij_betw ?upd {..<n} {..<n}"
-      by (rule bij_betw_trans)
-
-    define b where "b = base (upd n' := base (upd n') - 1)"
-    define f' where [abs_def]: "f' i j = (if j \<in> ?upd`{..< i} then Suc (b j) else b j)" for i j
-
-    interpret b: kuhn_simplex p n b "upd \<circ> rot" "f' ` {.. n}"
-    proof
-      { fix i assume "n \<le> i" then show "b i = p"
-          using base_out[of i] upd_space[of n'] by (auto simp: b_def n') }
-      show "b \<in> {..<n} \<rightarrow> {..<p}"
-        using base \<open>n \<noteq> 0\<close> upd_space[of n']
-        by (auto simp: b_def PiE_def Pi_iff Ball_def upd_space extensional_def n')
-
-      show "bij_betw ?upd {..<n} {..<n}" by fact
-    qed (simp add: f'_def)
-    have f': "b.enum = f'" unfolding f'_def b.enum_def[abs_def] ..
-    have ks_f': "ksimplex p n (b.enum ` {.. n})"
-      unfolding f' by rule unfold_locales
-
-    have "0 < n"
-      using \<open>n \<noteq> 0\<close> by auto
-
-    { from \<open>a = enum i\<close> \<open>n \<noteq> 0\<close> \<open>i = n\<close> lb upd_space[of n']
-      obtain i' where "i' \<le> n" "enum i' \<noteq> enum n" "0 < enum i' (upd n')"
-        unfolding s_eq by (auto simp: enum_inj n')
-      moreover have "enum i' (upd n') = base (upd n')"
-        unfolding enum_def using \<open>i' \<le> n\<close> \<open>enum i' \<noteq> enum n\<close> by (auto simp: n' upd_inj enum_inj)
-      ultimately have "0 < base (upd n')"
-        by auto }
-    then have benum1: "b.enum (Suc 0) = base"
-      unfolding b.enum_Suc[OF \<open>0<n\<close>] b.enum_0 by (auto simp: b_def rot_def)
-
-    have [simp]: "\<And>j. Suc j < n \<Longrightarrow> rot ` {..< Suc j} = {n'} \<union> {..< j}"
-      by (auto simp: rot_def image_iff Ball_def split: nat.splits)
-    have rot_simps: "\<And>j. rot (Suc j) = j" "rot 0 = n'"
-      by (simp_all add: rot_def)
-
-    { fix j assume j: "Suc j \<le> n" then have "b.enum (Suc j) = enum j"
-        by (induct j) (auto simp add: benum1 enum_0 b.enum_Suc enum_Suc rot_simps) }
-    note b_enum_eq_enum = this
-    then have "enum ` {..< n} = b.enum ` Suc ` {..< n}"
-      by (auto simp add: image_comp intro!: image_cong)
-    also have "Suc ` {..< n} = {.. n} - {0}"
-      by (auto simp: image_iff Ball_def) arith
-    also have "{..< n} = {.. n} - {n}"
-      by auto
-    finally have eq: "s - {a} = b.enum ` {.. n} - {b.enum 0}"
-      unfolding s_eq \<open>a = enum i\<close> \<open>i = n\<close>
-      using inj_on_image_set_diff[OF inj_enum Diff_subset, of "{n}"]
-            inj_on_image_set_diff[OF b.inj_enum Diff_subset, of "{0}"]
-      by (simp add: comp_def )
-
-    have "b.enum 0 \<le> b.enum n"
-      by (simp add: b.enum_mono)
-    also have "b.enum n < enum n"
-      using \<open>n \<noteq> 0\<close> by (simp add: enum_strict_mono b_enum_eq_enum n')
-    finally have "a \<noteq> b.enum 0"
-      using \<open>a = enum i\<close> \<open>i = n\<close> by auto
-
-    { fix t c assume "ksimplex p n t" "c \<in> t" and eq_sma: "s - {a} = t - {c}"
-      obtain b' u where "kuhn_simplex p n b' u t"
-        using \<open>ksimplex p n t\<close> by (auto elim: ksimplex.cases)
-      then interpret t: kuhn_simplex p n b' u t .
-
-      { fix x assume "x \<in> s" "x \<noteq> a"
-         then have "x (upd n') = enum n' (upd n')"
-           by (auto simp: \<open>a = enum i\<close> n' \<open>i = n\<close> s_eq enum_def enum_inj in_upd_image) }
-      then have eq_upd0: "\<forall>x\<in>t-{c}. x (upd n') = enum n' (upd n')"
-        unfolding eq_sma[symmetric] by auto
-      then have "c (upd n') \<noteq> enum n' (upd n')"
-        using \<open>n \<noteq> 0\<close> by (intro t.one_step[OF \<open>c\<in>t\<close> ]) (auto simp: n' upd_space[unfolded n'])
-      then have "c (upd n') < enum n' (upd n') \<or> c (upd n') > enum n' (upd n')"
-        by auto
-      then have "t = s \<or> t = b.enum ` {..n}"
-      proof (elim disjE conjE)
-        assume *: "c (upd n') > enum n' (upd n')"
-        interpret st: kuhn_simplex_pair p n base upd s b' u t ..
-        { fix x assume "x \<in> t" with * \<open>c\<in>t\<close> eq_upd0[rule_format, of x] have "x \<le> c"
-            by (auto simp: le_less intro!: t.less[of _ _ "upd n'"]) }
-        note top = this
-        have "s = t"
-          using \<open>a = enum i\<close> \<open>i = n\<close> \<open>c \<in> t\<close>
-          by (intro st.ksimplex_eq_top[OF _ _ _ _ eq_sma])
-             (auto simp: s_eq enum_mono t.s_eq t.enum_mono top)
-        then show ?thesis by simp
-      next
-        assume *: "c (upd n') < enum n' (upd n')"
-        interpret st: kuhn_simplex_pair p n b "upd \<circ> rot" "f' ` {.. n}" b' u t ..
-        have eq: "f' ` {..n} - {b.enum 0} = t - {c}"
-          using eq_sma eq f' by simp
-        { fix x assume "x \<in> t" with * \<open>c\<in>t\<close> eq_upd0[rule_format, of x] have "c \<le> x"
-            by (auto simp: le_less intro!: t.less[of _ _ "upd n'"]) }
-        note bot = this
-        have "f' ` {..n} = t"
-          using \<open>a = enum i\<close> \<open>i = n\<close> \<open>c \<in> t\<close>
-          by (intro st.ksimplex_eq_bot[OF _ _ _ _ eq])
-             (auto simp: b.s_eq b.enum_mono t.s_eq t.enum_mono bot)
-        with f' show ?thesis by simp
-      qed }
-    with ks_f' eq \<open>a \<noteq> b.enum 0\<close> \<open>n \<noteq> 0\<close> show ?thesis
-      apply (intro ex1I[of _ "b.enum ` {.. n}"])
-      apply auto []
-      apply metis
-      done
-  next
-    assume i: "0 < i" "i < n"
-    define i' where "i' = i - 1"
-    with i have "Suc i' < n"
-      by simp
-    with i have Suc_i': "Suc i' = i"
-      by (simp add: i'_def)
-
-    let ?upd = "Fun.swap i' i upd"
-    from i upd have "bij_betw ?upd {..< n} {..< n}"
-      by (subst bij_betw_swap_iff) (auto simp: i'_def)
-
-    define f' where [abs_def]: "f' i j = (if j \<in> ?upd`{..< i} then Suc (base j) else base j)"
-      for i j
-    interpret b: kuhn_simplex p n base ?upd "f' ` {.. n}"
-    proof
-      show "base \<in> {..<n} \<rightarrow> {..<p}" by fact
-      { fix i assume "n \<le> i" then show "base i = p" by fact }
-      show "bij_betw ?upd {..<n} {..<n}" by fact
-    qed (simp add: f'_def)
-    have f': "b.enum = f'" unfolding f'_def b.enum_def[abs_def] ..
-    have ks_f': "ksimplex p n (b.enum ` {.. n})"
-      unfolding f' by rule unfold_locales
-
-    have "{i} \<subseteq> {..n}"
-      using i by auto
-    { fix j assume "j \<le> n"
-      moreover have "j < i \<or> i = j \<or> i < j" by arith
-      moreover note i
-      ultimately have "enum j = b.enum j \<longleftrightarrow> j \<noteq> i"
-        unfolding enum_def[abs_def] b.enum_def[abs_def]
-        by (auto simp add: fun_eq_iff swap_image i'_def
-                           in_upd_image inj_on_image_set_diff[OF inj_upd]) }
-    note enum_eq_benum = this
-    then have "enum ` ({.. n} - {i}) = b.enum ` ({.. n} - {i})"
-      by (intro image_cong) auto
-    then have eq: "s - {a} = b.enum ` {.. n} - {b.enum i}"
-      unfolding s_eq \<open>a = enum i\<close>
-      using inj_on_image_set_diff[OF inj_enum Diff_subset \<open>{i} \<subseteq> {..n}\<close>]
-            inj_on_image_set_diff[OF b.inj_enum Diff_subset \<open>{i} \<subseteq> {..n}\<close>]
-      by (simp add: comp_def)
-
-    have "a \<noteq> b.enum i"
-      using \<open>a = enum i\<close> enum_eq_benum i by auto
-
-    { fix t c assume "ksimplex p n t" "c \<in> t" and eq_sma: "s - {a} = t - {c}"
-      obtain b' u where "kuhn_simplex p n b' u t"
-        using \<open>ksimplex p n t\<close> by (auto elim: ksimplex.cases)
-      then interpret t: kuhn_simplex p n b' u t .
-      have "enum i' \<in> s - {a}" "enum (i + 1) \<in> s - {a}"
-        using \<open>a = enum i\<close> i enum_in by (auto simp: enum_inj i'_def)
-      then obtain l k where
-        l: "t.enum l = enum i'" "l \<le> n" "t.enum l \<noteq> c" and
-        k: "t.enum k = enum (i + 1)" "k \<le> n" "t.enum k \<noteq> c"
-        unfolding eq_sma by (auto simp: t.s_eq)
-      with i have "t.enum l < t.enum k"
-        by (simp add: enum_strict_mono i'_def)
-      with \<open>l \<le> n\<close> \<open>k \<le> n\<close> have "l < k"
-        by (simp add: t.enum_strict_mono)
-      { assume "Suc l = k"
-        have "enum (Suc (Suc i')) = t.enum (Suc l)"
-          using i by (simp add: k \<open>Suc l = k\<close> i'_def)
-        then have False
-          using \<open>l < k\<close> \<open>k \<le> n\<close> \<open>Suc i' < n\<close>
-          by (auto simp: t.enum_Suc enum_Suc l upd_inj fun_eq_iff split: if_split_asm)
-             (metis Suc_lessD n_not_Suc_n upd_inj) }
-      with \<open>l < k\<close> have "Suc l < k"
-        by arith
-      have c_eq: "c = t.enum (Suc l)"
-      proof (rule ccontr)
-        assume "c \<noteq> t.enum (Suc l)"
-        then have "t.enum (Suc l) \<in> s - {a}"
-          using \<open>l < k\<close> \<open>k \<le> n\<close> by (simp add: t.s_eq eq_sma)
-        then obtain j where "t.enum (Suc l) = enum j" "j \<le> n" "enum j \<noteq> enum i"
-          unfolding s_eq \<open>a = enum i\<close> by auto
-        with i have "t.enum (Suc l) \<le> t.enum l \<or> t.enum k \<le> t.enum (Suc l)"
-          by (auto simp add: i'_def enum_mono enum_inj l k)
-        with \<open>Suc l < k\<close> \<open>k \<le> n\<close> show False
-          by (simp add: t.enum_mono)
-      qed
-
-      { have "t.enum (Suc (Suc l)) \<in> s - {a}"
-          unfolding eq_sma c_eq t.s_eq using \<open>Suc l < k\<close> \<open>k \<le> n\<close> by (auto simp: t.enum_inj)
-        then obtain j where eq: "t.enum (Suc (Suc l)) = enum j" and "j \<le> n" "j \<noteq> i"
-          by (auto simp: s_eq \<open>a = enum i\<close>)
-        moreover have "enum i' < t.enum (Suc (Suc l))"
-          unfolding l(1)[symmetric] using \<open>Suc l < k\<close> \<open>k \<le> n\<close> by (auto simp: t.enum_strict_mono)
-        ultimately have "i' < j"
-          using i by (simp add: enum_strict_mono i'_def)
-        with \<open>j \<noteq> i\<close> \<open>j \<le> n\<close> have "t.enum k \<le> t.enum (Suc (Suc l))"
-          unfolding i'_def by (simp add: enum_mono k eq)
-        then have "k \<le> Suc (Suc l)"
-          using \<open>k \<le> n\<close> \<open>Suc l < k\<close> by (simp add: t.enum_mono) }
-      with \<open>Suc l < k\<close> have "Suc (Suc l) = k" by simp
-      then have "enum (Suc (Suc i')) = t.enum (Suc (Suc l))"
-        using i by (simp add: k i'_def)
-      also have "\<dots> = (enum i') (u l := Suc (enum i' (u l)), u (Suc l) := Suc (enum i' (u (Suc l))))"
-        using \<open>Suc l < k\<close> \<open>k \<le> n\<close> by (simp add: t.enum_Suc l t.upd_inj)
-      finally have "(u l = upd i' \<and> u (Suc l) = upd (Suc i')) \<or>
-        (u l = upd (Suc i') \<and> u (Suc l) = upd i')"
-        using \<open>Suc i' < n\<close> by (auto simp: enum_Suc fun_eq_iff split: if_split_asm)
-
-      then have "t = s \<or> t = b.enum ` {..n}"
-      proof (elim disjE conjE)
-        assume u: "u l = upd i'"
-        have "c = t.enum (Suc l)" unfolding c_eq ..
-        also have "t.enum (Suc l) = enum (Suc i')"
-          using u \<open>l < k\<close> \<open>k \<le> n\<close> \<open>Suc i' < n\<close> by (simp add: enum_Suc t.enum_Suc l)
-        also have "\<dots> = a"
-          using \<open>a = enum i\<close> i by (simp add: i'_def)
-        finally show ?thesis
-          using eq_sma \<open>a \<in> s\<close> \<open>c \<in> t\<close> by auto
-      next
-        assume u: "u l = upd (Suc i')"
-        define B where "B = b.enum ` {..n}"
-        have "b.enum i' = enum i'"
-          using enum_eq_benum[of i'] i by (auto simp add: i'_def gr0_conv_Suc)
-        have "c = t.enum (Suc l)" unfolding c_eq ..
-        also have "t.enum (Suc l) = b.enum (Suc i')"
-          using u \<open>l < k\<close> \<open>k \<le> n\<close> \<open>Suc i' < n\<close>
-          by (simp_all add: enum_Suc t.enum_Suc l b.enum_Suc \<open>b.enum i' = enum i'\<close> swap_apply1)
-             (simp add: Suc_i')
-        also have "\<dots> = b.enum i"
-          using i by (simp add: i'_def)
-        finally have "c = b.enum i" .
-        then have "t - {c} = B - {c}" "c \<in> B"
-          unfolding eq_sma[symmetric] eq B_def using i by auto
-        with \<open>c \<in> t\<close> have "t = B"
-          by auto
-        then show ?thesis
-          by (simp add: B_def)
-      qed }
-    with ks_f' eq \<open>a \<noteq> b.enum i\<close> \<open>n \<noteq> 0\<close> \<open>i \<le> n\<close> show ?thesis
-      apply (intro ex1I[of _ "b.enum ` {.. n}"])
-      apply auto []
-      apply metis
-      done
-  qed
-  then show ?thesis
-    using s \<open>a \<in> s\<close> by (simp add: card_2_exists Ex1_def) metis
-qed
-
-text \<open>Hence another step towards concreteness.\<close>
-
-lemma kuhn_simplex_lemma:
-  assumes "\<forall>s. ksimplex p (Suc n) s \<longrightarrow> rl ` s \<subseteq> {.. Suc n}"
-    and "odd (card {f. \<exists>s a. ksimplex p (Suc n) s \<and> a \<in> s \<and> (f = s - {a}) \<and>
-      rl ` f = {..n} \<and> ((\<exists>j\<le>n. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<le>n. \<forall>x\<in>f. x j = p))})"
-  shows "odd (card {s. ksimplex p (Suc n) s \<and> rl ` s = {..Suc n}})"
-proof (rule kuhn_complete_lemma[OF finite_ksimplexes refl, unfolded mem_Collect_eq,
-    where bnd="\<lambda>f. (\<exists>j\<in>{..n}. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{..n}. \<forall>x\<in>f. x j = p)"],
-    safe del: notI)
-
-  have *: "\<And>x y. x = y \<Longrightarrow> odd (card x) \<Longrightarrow> odd (card y)"
-    by auto
-  show "odd (card {f. (\<exists>s\<in>{s. ksimplex p (Suc n) s}. \<exists>a\<in>s. f = s - {a}) \<and>
-    rl ` f = {..n} \<and> ((\<exists>j\<in>{..n}. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{..n}. \<forall>x\<in>f. x j = p))})"
-    apply (rule *[OF _ assms(2)])
-    apply (auto simp: atLeast0AtMost)
-    done
-
-next
-
-  fix s assume s: "ksimplex p (Suc n) s"
-  then show "card s = n + 2"
-    by (simp add: ksimplex_card)
-
-  fix a assume a: "a \<in> s" then show "rl a \<le> Suc n"
-    using assms(1) s by (auto simp: subset_eq)
-
-  let ?S = "{t. ksimplex p (Suc n) t \<and> (\<exists>b\<in>t. s - {a} = t - {b})}"
-  { fix j assume j: "j \<le> n" "\<forall>x\<in>s - {a}. x j = 0"
-    with s a show "card ?S = 1"
-      using ksimplex_replace_0[of p "n + 1" s a j]
-      by (subst eq_commute) simp }
-
-  { fix j assume j: "j \<le> n" "\<forall>x\<in>s - {a}. x j = p"
-    with s a show "card ?S = 1"
-      using ksimplex_replace_1[of p "n + 1" s a j]
-      by (subst eq_commute) simp }
-
-  { assume "card ?S \<noteq> 2" "\<not> (\<exists>j\<in>{..n}. \<forall>x\<in>s - {a}. x j = p)"
-    with s a show "\<exists>j\<in>{..n}. \<forall>x\<in>s - {a}. x j = 0"
-      using ksimplex_replace_2[of p "n + 1" s a]
-      by (subst (asm) eq_commute) auto }
-qed
-
-subsection \<open>Reduced labelling\<close>
-
-definition reduced :: "nat \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> nat" where "reduced n x = (LEAST k. k = n \<or> x k \<noteq> 0)"
-
-lemma reduced_labelling:
-  shows "reduced n x \<le> n"
-    and "\<forall>i<reduced n x. x i = 0"
-    and "reduced n x = n \<or> x (reduced n x) \<noteq> 0"
-proof -
-  show "reduced n x \<le> n"
-    unfolding reduced_def by (rule LeastI2_wellorder[where a=n]) auto
-  show "\<forall>i<reduced n x. x i = 0"
-    unfolding reduced_def by (rule LeastI2_wellorder[where a=n]) fastforce+
-  show "reduced n x = n \<or> x (reduced n x) \<noteq> 0"
-    unfolding reduced_def by (rule LeastI2_wellorder[where a=n]) fastforce+
-qed
-
-lemma reduced_labelling_unique:
-  "r \<le> n \<Longrightarrow> \<forall>i<r. x i = 0 \<Longrightarrow> r = n \<or> x r \<noteq> 0 \<Longrightarrow> reduced n x = r"
- unfolding reduced_def by (rule LeastI2_wellorder[where a=n]) (metis le_less not_le)+
-
-lemma reduced_labelling_zero: "j < n \<Longrightarrow> x j = 0 \<Longrightarrow> reduced n x \<noteq> j"
-  using reduced_labelling[of n x] by auto
-
-lemma reduce_labelling_zero[simp]: "reduced 0 x = 0"
-  by (rule reduced_labelling_unique) auto
-
-lemma reduced_labelling_nonzero: "j < n \<Longrightarrow> x j \<noteq> 0 \<Longrightarrow> reduced n x \<le> j"
-  using reduced_labelling[of n x] by (elim allE[where x=j]) auto
-
-lemma reduced_labelling_Suc: "reduced (Suc n) x \<noteq> Suc n \<Longrightarrow> reduced (Suc n) x = reduced n x"
-  using reduced_labelling[of "Suc n" x]
-  by (intro reduced_labelling_unique[symmetric]) auto
-
-lemma complete_face_top:
-  assumes "\<forall>x\<in>f. \<forall>j\<le>n. x j = 0 \<longrightarrow> lab x j = 0"
-    and "\<forall>x\<in>f. \<forall>j\<le>n. x j = p \<longrightarrow> lab x j = 1"
-    and eq: "(reduced (Suc n) \<circ> lab) ` f = {..n}"
-  shows "((\<exists>j\<le>n. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<le>n. \<forall>x\<in>f. x j = p)) \<longleftrightarrow> (\<forall>x\<in>f. x n = p)"
-proof (safe del: disjCI)
-  fix x j assume j: "j \<le> n" "\<forall>x\<in>f. x j = 0"
-  { fix x assume "x \<in> f" with assms j have "reduced (Suc n) (lab x) \<noteq> j"
-      by (intro reduced_labelling_zero) auto }
-  moreover have "j \<in> (reduced (Suc n) \<circ> lab) ` f"
-    using j eq by auto
-  ultimately show "x n = p"
-    by force
-next
-  fix x j assume j: "j \<le> n" "\<forall>x\<in>f. x j = p" and x: "x \<in> f"
-  have "j = n"
-  proof (rule ccontr)
-    assume "\<not> ?thesis"
-    { fix x assume "x \<in> f"
-      with assms j have "reduced (Suc n) (lab x) \<le> j"
-        by (intro reduced_labelling_nonzero) auto
-      then have "reduced (Suc n) (lab x) \<noteq> n"
-        using \<open>j \<noteq> n\<close> \<open>j \<le> n\<close> by simp }
-    moreover
-    have "n \<in> (reduced (Suc n) \<circ> lab) ` f"
-      using eq by auto
-    ultimately show False
-      by force
-  qed
-  moreover have "j \<in> (reduced (Suc n) \<circ> lab) ` f"
-    using j eq by auto
-  ultimately show "x n = p"
-    using j x by auto
-qed auto
-
-text \<open>Hence we get just about the nice induction.\<close>
-
-lemma kuhn_induction:
-  assumes "0 < p"
-    and lab_0: "\<forall>x. \<forall>j\<le>n. (\<forall>j. x j \<le> p) \<and> x j = 0 \<longrightarrow> lab x j = 0"
-    and lab_1: "\<forall>x. \<forall>j\<le>n. (\<forall>j. x j \<le> p) \<and> x j = p \<longrightarrow> lab x j = 1"
-    and odd: "odd (card {s. ksimplex p n s \<and> (reduced n\<circ>lab) ` s = {..n}})"
-  shows "odd (card {s. ksimplex p (Suc n) s \<and> (reduced (Suc n)\<circ>lab) ` s = {..Suc n}})"
-proof -
-  let ?rl = "reduced (Suc n) \<circ> lab" and ?ext = "\<lambda>f v. \<exists>j\<le>n. \<forall>x\<in>f. x j = v"
-  let ?ext = "\<lambda>s. (\<exists>j\<le>n. \<forall>x\<in>s. x j = 0) \<or> (\<exists>j\<le>n. \<forall>x\<in>s. x j = p)"
-  have "\<forall>s. ksimplex p (Suc n) s \<longrightarrow> ?rl ` s \<subseteq> {..Suc n}"
-    by (simp add: reduced_labelling subset_eq)
-  moreover
-  have "{s. ksimplex p n s \<and> (reduced n \<circ> lab) ` s = {..n}} =
-        {f. \<exists>s a. ksimplex p (Suc n) s \<and> a \<in> s \<and> f = s - {a} \<and> ?rl ` f = {..n} \<and> ?ext f}"
-  proof (intro set_eqI, safe del: disjCI equalityI disjE)
-    fix s assume s: "ksimplex p n s" and rl: "(reduced n \<circ> lab) ` s = {..n}"
-    from s obtain u b where "kuhn_simplex p n u b s" by (auto elim: ksimplex.cases)
-    then interpret kuhn_simplex p n u b s .
-    have all_eq_p: "\<forall>x\<in>s. x n = p"
-      by (auto simp: out_eq_p)
-    moreover
-    { fix x assume "x \<in> s"
-      with lab_1[rule_format, of n x] all_eq_p s_le_p[of x]
-      have "?rl x \<le> n"
-        by (auto intro!: reduced_labelling_nonzero)
-      then have "?rl x = reduced n (lab x)"
-        by (auto intro!: reduced_labelling_Suc) }
-    then have "?rl ` s = {..n}"
-      using rl by (simp cong: image_cong)
-    moreover
-    obtain t a where "ksimplex p (Suc n) t" "a \<in> t" "s = t - {a}"
-      using s unfolding simplex_top_face[OF \<open>0 < p\<close> all_eq_p] by auto
-    ultimately
-    show "\<exists>t a. ksimplex p (Suc n) t \<and> a \<in> t \<and> s = t - {a} \<and> ?rl ` s = {..n} \<and> ?ext s"
-      by auto
-  next
-    fix x s a assume s: "ksimplex p (Suc n) s" and rl: "?rl ` (s - {a}) = {.. n}"
-      and a: "a \<in> s" and "?ext (s - {a})"
-    from s obtain u b where "kuhn_simplex p (Suc n) u b s" by (auto elim: ksimplex.cases)
-    then interpret kuhn_simplex p "Suc n" u b s .
-    have all_eq_p: "\<forall>x\<in>s. x (Suc n) = p"
-      by (auto simp: out_eq_p)
-
-    { fix x assume "x \<in> s - {a}"
-      then have "?rl x \<in> ?rl ` (s - {a})"
-        by auto
-      then have "?rl x \<le> n"
-        unfolding rl by auto
-      then have "?rl x = reduced n (lab x)"
-        by (auto intro!: reduced_labelling_Suc) }
-    then show rl': "(reduced n\<circ>lab) ` (s - {a}) = {..n}"
-      unfolding rl[symmetric] by (intro image_cong) auto
-
-    from \<open>?ext (s - {a})\<close>
-    have all_eq_p: "\<forall>x\<in>s - {a}. x n = p"
-    proof (elim disjE exE conjE)
-      fix j assume "j \<le> n" "\<forall>x\<in>s - {a}. x j = 0"
-      with lab_0[rule_format, of j] all_eq_p s_le_p
-      have "\<And>x. x \<in> s - {a} \<Longrightarrow> reduced (Suc n) (lab x) \<noteq> j"
-        by (intro reduced_labelling_zero) auto
-      moreover have "j \<in> ?rl ` (s - {a})"
-        using \<open>j \<le> n\<close> unfolding rl by auto
-      ultimately show ?thesis
-        by force
-    next
-      fix j assume "j \<le> n" and eq_p: "\<forall>x\<in>s - {a}. x j = p"
-      show ?thesis
-      proof cases
-        assume "j = n" with eq_p show ?thesis by simp
-      next
-        assume "j \<noteq> n"
-        { fix x assume x: "x \<in> s - {a}"
-          have "reduced n (lab x) \<le> j"
-          proof (rule reduced_labelling_nonzero)
-            show "lab x j \<noteq> 0"
-              using lab_1[rule_format, of j x] x s_le_p[of x] eq_p \<open>j \<le> n\<close> by auto
-            show "j < n"
-              using \<open>j \<le> n\<close> \<open>j \<noteq> n\<close> by simp
-          qed
-          then have "reduced n (lab x) \<noteq> n"
-            using \<open>j \<le> n\<close> \<open>j \<noteq> n\<close> by simp }
-        moreover have "n \<in> (reduced n\<circ>lab) ` (s - {a})"
-          unfolding rl' by auto
-        ultimately show ?thesis
-          by force
-      qed
-    qed
-    show "ksimplex p n (s - {a})"
-      unfolding simplex_top_face[OF \<open>0 < p\<close> all_eq_p] using s a by auto
-  qed
-  ultimately show ?thesis
-    using assms by (intro kuhn_simplex_lemma) auto
-qed
-
-text \<open>And so we get the final combinatorial result.\<close>
-
-lemma ksimplex_0: "ksimplex p 0 s \<longleftrightarrow> s = {(\<lambda>x. p)}"
-proof
-  assume "ksimplex p 0 s" then show "s = {(\<lambda>x. p)}"
-    by (blast dest: kuhn_simplex.ksimplex_0 elim: ksimplex.cases)
-next
-  assume s: "s = {(\<lambda>x. p)}"
-  show "ksimplex p 0 s"
-  proof (intro ksimplex, unfold_locales)
-    show "(\<lambda>_. p) \<in> {..<0::nat} \<rightarrow> {..<p}" by auto
-    show "bij_betw id {..<0} {..<0}"
-      by simp
-  qed (auto simp: s)
-qed
-
-lemma kuhn_combinatorial:
-  assumes "0 < p"
-    and "\<forall>x j. (\<forall>j. x j \<le> p) \<and> j < n \<and> x j = 0 \<longrightarrow> lab x j = 0"
-    and "\<forall>x j. (\<forall>j. x j \<le> p) \<and> j < n  \<and> x j = p \<longrightarrow> lab x j = 1"
-  shows "odd (card {s. ksimplex p n s \<and> (reduced n\<circ>lab) ` s = {..n}})"
-    (is "odd (card (?M n))")
-  using assms
-proof (induct n)
-  case 0 then show ?case
-    by (simp add: ksimplex_0 cong: conj_cong)
-next
-  case (Suc n)
-  then have "odd (card (?M n))"
-    by force
-  with Suc show ?case
-    using kuhn_induction[of p n] by (auto simp: comp_def)
-qed
-
-lemma kuhn_lemma:
-  fixes n p :: nat
-  assumes "0 < p"
-    and "\<forall>x. (\<forall>i<n. x i \<le> p) \<longrightarrow> (\<forall>i<n. label x i = (0::nat) \<or> label x i = 1)"
-    and "\<forall>x. (\<forall>i<n. x i \<le> p) \<longrightarrow> (\<forall>i<n. x i = 0 \<longrightarrow> label x i = 0)"
-    and "\<forall>x. (\<forall>i<n. x i \<le> p) \<longrightarrow> (\<forall>i<n. x i = p \<longrightarrow> label x i = 1)"
-  obtains q where "\<forall>i<n. q i < p"
-    and "\<forall>i<n. \<exists>r s. (\<forall>j<n. q j \<le> r j \<and> r j \<le> q j + 1) \<and> (\<forall>j<n. q j \<le> s j \<and> s j \<le> q j + 1) \<and> label r i \<noteq> label s i"
-proof -
-  let ?rl = "reduced n \<circ> label"
-  let ?A = "{s. ksimplex p n s \<and> ?rl ` s = {..n}}"
-  have "odd (card ?A)"
-    using assms by (intro kuhn_combinatorial[of p n label]) auto
-  then have "?A \<noteq> {}"
-    by fastforce
-  then obtain s b u where "kuhn_simplex p n b u s" and rl: "?rl ` s = {..n}"
-    by (auto elim: ksimplex.cases)
-  interpret kuhn_simplex p n b u s by fact
-
-  show ?thesis
-  proof (intro that[of b] allI impI)
-    fix i
-    assume "i < n"
-    then show "b i < p"
-      using base by auto
-  next
-    fix i
-    assume "i < n"
-    then have "i \<in> {.. n}" "Suc i \<in> {.. n}"
-      by auto
-    then obtain u v where u: "u \<in> s" "Suc i = ?rl u" and v: "v \<in> s" "i = ?rl v"
-      unfolding rl[symmetric] by blast
-
-    have "label u i \<noteq> label v i"
-      using reduced_labelling [of n "label u"] reduced_labelling [of n "label v"]
-        u(2)[symmetric] v(2)[symmetric] \<open>i < n\<close>
-      by auto
-    moreover
-    have "b j \<le> u j" "u j \<le> b j + 1" "b j \<le> v j" "v j \<le> b j + 1" if "j < n" for j
-      using that base_le[OF \<open>u\<in>s\<close>] le_Suc_base[OF \<open>u\<in>s\<close>] base_le[OF \<open>v\<in>s\<close>] le_Suc_base[OF \<open>v\<in>s\<close>]
-      by auto
-    ultimately show "\<exists>r s. (\<forall>j<n. b j \<le> r j \<and> r j \<le> b j + 1) \<and>
-        (\<forall>j<n. b j \<le> s j \<and> s j \<le> b j + 1) \<and> label r i \<noteq> label s i"
-      by blast
-  qed
-qed
-
-subsection \<open>The main result for the unit cube\<close>
-
-lemma kuhn_labelling_lemma':
-  assumes "(\<forall>x::nat\<Rightarrow>real. P x \<longrightarrow> P (f x))"
-    and "\<forall>x. P x \<longrightarrow> (\<forall>i::nat. Q i \<longrightarrow> 0 \<le> x i \<and> x i \<le> 1)"
-  shows "\<exists>l. (\<forall>x i. l x i \<le> (1::nat)) \<and>
-             (\<forall>x i. P x \<and> Q i \<and> x i = 0 \<longrightarrow> l x i = 0) \<and>
-             (\<forall>x i. P x \<and> Q i \<and> x i = 1 \<longrightarrow> l x i = 1) \<and>
-             (\<forall>x i. P x \<and> Q i \<and> l x i = 0 \<longrightarrow> x i \<le> f x i) \<and>
-             (\<forall>x i. P x \<and> Q i \<and> l x i = 1 \<longrightarrow> f x i \<le> x i)"
-proof -
-  have and_forall_thm: "\<And>P Q. (\<forall>x. P x) \<and> (\<forall>x. Q x) \<longleftrightarrow> (\<forall>x. P x \<and> Q x)"
-    by auto
-  have *: "\<forall>x y::real. 0 \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1 \<longrightarrow> x \<noteq> 1 \<and> x \<le> y \<or> x \<noteq> 0 \<and> y \<le> x"
-    by auto
-  show ?thesis
-    unfolding and_forall_thm
-    apply (subst choice_iff[symmetric])+
-    apply rule
-    apply rule
-  proof -
-    fix x x'
-    let ?R = "\<lambda>y::nat.
-      (P x \<and> Q x' \<and> x x' = 0 \<longrightarrow> y = 0) \<and>
-      (P x \<and> Q x' \<and> x x' = 1 \<longrightarrow> y = 1) \<and>
-      (P x \<and> Q x' \<and> y = 0 \<longrightarrow> x x' \<le> (f x) x') \<and>
-      (P x \<and> Q x' \<and> y = 1 \<longrightarrow> (f x) x' \<le> x x')"
-    have "0 \<le> f x x' \<and> f x x' \<le> 1" if "P x" "Q x'"
-      using assms(2)[rule_format,of "f x" x'] that
-      apply (drule_tac assms(1)[rule_format])
-      apply auto
-      done
-    then have "?R 0 \<or> ?R 1"
-      by auto
-    then show "\<exists>y\<le>1. ?R y"
-      by auto
-  qed
-qed
-
-definition unit_cube :: "'a::euclidean_space set"
-  where "unit_cube = {x. \<forall>i\<in>Basis. 0 \<le> x \<bullet> i \<and> x \<bullet> i \<le> 1}"
-
-lemma mem_unit_cube: "x \<in> unit_cube \<longleftrightarrow> (\<forall>i\<in>Basis. 0 \<le> x \<bullet> i \<and> x \<bullet> i \<le> 1)"
-  unfolding unit_cube_def by simp
-
-lemma bounded_unit_cube: "bounded unit_cube"
-  unfolding bounded_def
-proof (intro exI ballI)
-  fix y :: 'a assume y: "y \<in> unit_cube"
-  have "dist 0 y = norm y" by (rule dist_0_norm)
-  also have "\<dots> = norm (\<Sum>i\<in>Basis. (y \<bullet> i) *\<^sub>R i)" unfolding euclidean_representation ..
-  also have "\<dots> \<le> (\<Sum>i\<in>Basis. norm ((y \<bullet> i) *\<^sub>R i))" by (rule norm_setsum)
-  also have "\<dots> \<le> (\<Sum>i::'a\<in>Basis. 1)"
-    by (rule setsum_mono, simp add: y [unfolded mem_unit_cube])
-  finally show "dist 0 y \<le> (\<Sum>i::'a\<in>Basis. 1)" .
-qed
-
-lemma closed_unit_cube: "closed unit_cube"
-  unfolding unit_cube_def Collect_ball_eq Collect_conj_eq
-  by (rule closed_INT, auto intro!: closed_Collect_le continuous_on_inner continuous_on_const continuous_on_id)
-
-lemma compact_unit_cube: "compact unit_cube" (is "compact ?C")
-  unfolding compact_eq_seq_compact_metric
-  using bounded_unit_cube closed_unit_cube
-  by (rule bounded_closed_imp_seq_compact)
-
-lemma brouwer_cube:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'a"
-  assumes "continuous_on unit_cube f"
-    and "f ` unit_cube \<subseteq> unit_cube"
-  shows "\<exists>x\<in>unit_cube. f x = x"
-proof (rule ccontr)
-  define n where "n = DIM('a)"
-  have n: "1 \<le> n" "0 < n" "n \<noteq> 0"
-    unfolding n_def by (auto simp add: Suc_le_eq DIM_positive)
-  assume "\<not> ?thesis"
-  then have *: "\<not> (\<exists>x\<in>unit_cube. f x - x = 0)"
-    by auto
-  obtain d where
-      d: "d > 0" "\<And>x. x \<in> unit_cube \<Longrightarrow> d \<le> norm (f x - x)"
-    apply (rule brouwer_compactness_lemma[OF compact_unit_cube _ *])
-    apply (rule continuous_intros assms)+
-    apply blast
-    done
-  have *: "\<forall>x. x \<in> unit_cube \<longrightarrow> f x \<in> unit_cube"
-    "\<forall>x. x \<in> (unit_cube::'a set) \<longrightarrow> (\<forall>i\<in>Basis. True \<longrightarrow> 0 \<le> x \<bullet> i \<and> x \<bullet> i \<le> 1)"
-    using assms(2)[unfolded image_subset_iff Ball_def]
-    unfolding mem_unit_cube
-    by auto
-  obtain label :: "'a \<Rightarrow> 'a \<Rightarrow> nat" where
-    "\<forall>x. \<forall>i\<in>Basis. label x i \<le> 1"
-    "\<forall>x. \<forall>i\<in>Basis. x \<in> unit_cube \<and> True \<and> x \<bullet> i = 0 \<longrightarrow> label x i = 0"
-    "\<forall>x. \<forall>i\<in>Basis. x \<in> unit_cube \<and> True \<and> x \<bullet> i = 1 \<longrightarrow> label x i = 1"
-    "\<forall>x. \<forall>i\<in>Basis. x \<in> unit_cube \<and> True \<and> label x i = 0 \<longrightarrow> x \<bullet> i \<le> f x \<bullet> i"
-    "\<forall>x. \<forall>i\<in>Basis. x \<in> unit_cube \<and> True \<and> label x i = 1 \<longrightarrow> f x \<bullet> i \<le> x \<bullet> i"
-    using kuhn_labelling_lemma[OF *] by blast
-  note label = this [rule_format]
-  have lem1: "\<forall>x\<in>unit_cube. \<forall>y\<in>unit_cube. \<forall>i\<in>Basis. label x i \<noteq> label y i \<longrightarrow>
-    \<bar>f x \<bullet> i - x \<bullet> i\<bar> \<le> norm (f y - f x) + norm (y - x)"
-  proof safe
-    fix x y :: 'a
-    assume x: "x \<in> unit_cube"
-    assume y: "y \<in> unit_cube"
-    fix i
-    assume i: "label x i \<noteq> label y i" "i \<in> Basis"
-    have *: "\<And>x y fx fy :: real. x \<le> fx \<and> fy \<le> y \<or> fx \<le> x \<and> y \<le> fy \<Longrightarrow>
-      \<bar>fx - x\<bar> \<le> \<bar>fy - fx\<bar> + \<bar>y - x\<bar>" by auto
-    have "\<bar>(f x - x) \<bullet> i\<bar> \<le> \<bar>(f y - f x)\<bullet>i\<bar> + \<bar>(y - x)\<bullet>i\<bar>"
-      unfolding inner_simps
-      apply (rule *)
-      apply (cases "label x i = 0")
-      apply (rule disjI1)
-      apply rule
-      prefer 3
-      apply (rule disjI2)
-      apply rule
-    proof -
-      assume lx: "label x i = 0"
-      then have ly: "label y i = 1"
-        using i label(1)[of i y]
-        by auto
-      show "x \<bullet> i \<le> f x \<bullet> i"
-        apply (rule label(4)[rule_format])
-        using x y lx i(2)
-        apply auto
-        done
-      show "f y \<bullet> i \<le> y \<bullet> i"
-        apply (rule label(5)[rule_format])
-        using x y ly i(2)
-        apply auto
-        done
-    next
-      assume "label x i \<noteq> 0"
-      then have l: "label x i = 1" "label y i = 0"
-        using i label(1)[of i x] label(1)[of i y]
-        by auto
-      show "f x \<bullet> i \<le> x \<bullet> i"
-        apply (rule label(5)[rule_format])
-        using x y l i(2)
-        apply auto
-        done
-      show "y \<bullet> i \<le> f y \<bullet> i"
-        apply (rule label(4)[rule_format])
-        using x y l i(2)
-        apply auto
-        done
-    qed
-    also have "\<dots> \<le> norm (f y - f x) + norm (y - x)"
-      apply (rule add_mono)
-      apply (rule Basis_le_norm[OF i(2)])+
-      done
-    finally show "\<bar>f x \<bullet> i - x \<bullet> i\<bar> \<le> norm (f y - f x) + norm (y - x)"
-      unfolding inner_simps .
-  qed
-  have "\<exists>e>0. \<forall>x\<in>unit_cube. \<forall>y\<in>unit_cube. \<forall>z\<in>unit_cube. \<forall>i\<in>Basis.
-    norm (x - z) < e \<and> norm (y - z) < e \<and> label x i \<noteq> label y i \<longrightarrow>
-      \<bar>(f(z) - z)\<bullet>i\<bar> < d / (real n)"
-  proof -
-    have d': "d / real n / 8 > 0"
-      using d(1) by (simp add: n_def DIM_positive)
-    have *: "uniformly_continuous_on unit_cube f"
-      by (rule compact_uniformly_continuous[OF assms(1) compact_unit_cube])
-    obtain e where e:
-        "e > 0"
-        "\<And>x x'. x \<in> unit_cube \<Longrightarrow>
-          x' \<in> unit_cube \<Longrightarrow>
-          norm (x' - x) < e \<Longrightarrow>
-          norm (f x' - f x) < d / real n / 8"
-      using *[unfolded uniformly_continuous_on_def,rule_format,OF d']
-      unfolding dist_norm
-      by blast
-    show ?thesis
-      apply (rule_tac x="min (e/2) (d/real n/8)" in exI)
-      apply safe
-    proof -
-      show "0 < min (e / 2) (d / real n / 8)"
-        using d' e by auto
-      fix x y z i
-      assume as:
-        "x \<in> unit_cube" "y \<in> unit_cube" "z \<in> unit_cube"
-        "norm (x - z) < min (e / 2) (d / real n / 8)"
-        "norm (y - z) < min (e / 2) (d / real n / 8)"
-        "label x i \<noteq> label y i"
-      assume i: "i \<in> Basis"
-      have *: "\<And>z fz x fx n1 n2 n3 n4 d4 d :: real. \<bar>fx - x\<bar> \<le> n1 + n2 \<Longrightarrow>
-        \<bar>fx - fz\<bar> \<le> n3 \<Longrightarrow> \<bar>x - z\<bar> \<le> n4 \<Longrightarrow>
-        n1 < d4 \<Longrightarrow> n2 < 2 * d4 \<Longrightarrow> n3 < d4 \<Longrightarrow> n4 < d4 \<Longrightarrow>
-        (8 * d4 = d) \<Longrightarrow> \<bar>fz - z\<bar> < d"
-        by auto
-      show "\<bar>(f z - z) \<bullet> i\<bar> < d / real n"
-        unfolding inner_simps
-      proof (rule *)
-        show "\<bar>f x \<bullet> i - x \<bullet> i\<bar> \<le> norm (f y -f x) + norm (y - x)"
-          apply (rule lem1[rule_format])
-          using as i
-          apply auto
-          done
-        show "\<bar>f x \<bullet> i - f z \<bullet> i\<bar> \<le> norm (f x - f z)" "\<bar>x \<bullet> i - z \<bullet> i\<bar> \<le> norm (x - z)"
-          unfolding inner_diff_left[symmetric]
-          by (rule Basis_le_norm[OF i])+
-        have tria: "norm (y - x) \<le> norm (y - z) + norm (x - z)"
-          using dist_triangle[of y x z, unfolded dist_norm]
-          unfolding norm_minus_commute
-          by auto
-        also have "\<dots> < e / 2 + e / 2"
-          apply (rule add_strict_mono)
-          using as(4,5)
-          apply auto
-          done
-        finally show "norm (f y - f x) < d / real n / 8"
-          apply -
-          apply (rule e(2))
-          using as
-          apply auto
-          done
-        have "norm (y - z) + norm (x - z) < d / real n / 8 + d / real n / 8"
-          apply (rule add_strict_mono)
-          using as
-          apply auto
-          done
-        then show "norm (y - x) < 2 * (d / real n / 8)"
-          using tria
-          by auto
-        show "norm (f x - f z) < d / real n / 8"
-          apply (rule e(2))
-          using as e(1)
-          apply auto
-          done
-      qed (insert as, auto)
-    qed
-  qed
-  then
-  obtain e where e:
-    "e > 0"
-    "\<And>x y z i. x \<in> unit_cube \<Longrightarrow>
-      y \<in> unit_cube \<Longrightarrow>
-      z \<in> unit_cube \<Longrightarrow>
-      i \<in> Basis \<Longrightarrow>
-      norm (x - z) < e \<and> norm (y - z) < e \<and> label x i \<noteq> label y i \<Longrightarrow>
-      \<bar>(f z - z) \<bullet> i\<bar> < d / real n"
-    by blast
-  obtain p :: nat where p: "1 + real n / e \<le> real p"
-    using real_arch_simple ..
-  have "1 + real n / e > 0"
-    using e(1) n by (simp add: add_pos_pos)
-  then have "p > 0"
-    using p by auto
-
-  obtain b :: "nat \<Rightarrow> 'a" where b: "bij_betw b {..< n} Basis"
-    by atomize_elim (auto simp: n_def intro!: finite_same_card_bij)
-  define b' where "b' = inv_into {..< n} b"
-  then have b': "bij_betw b' Basis {..< n}"
-    using bij_betw_inv_into[OF b] by auto
-  then have b'_Basis: "\<And>i. i \<in> Basis \<Longrightarrow> b' i \<in> {..< n}"
-    unfolding bij_betw_def by (auto simp: set_eq_iff)
-  have bb'[simp]:"\<And>i. i \<in> Basis \<Longrightarrow> b (b' i) = i"
-    unfolding b'_def
-    using b
-    by (auto simp: f_inv_into_f bij_betw_def)
-  have b'b[simp]:"\<And>i. i < n \<Longrightarrow> b' (b i) = i"
-    unfolding b'_def
-    using b
-    by (auto simp: inv_into_f_eq bij_betw_def)
-  have *: "\<And>x :: nat. x = 0 \<or> x = 1 \<longleftrightarrow> x \<le> 1"
-    by auto
-  have b'': "\<And>j. j < n \<Longrightarrow> b j \<in> Basis"
-    using b unfolding bij_betw_def by auto
-  have q1: "0 < p" "\<forall>x. (\<forall>i<n. x i \<le> p) \<longrightarrow>
-    (\<forall>i<n. (label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 0 \<or>
-           (label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 1)"
-    unfolding *
-    using \<open>p > 0\<close> \<open>n > 0\<close>
-    using label(1)[OF b'']
-    by auto
-  { fix x :: "nat \<Rightarrow> nat" and i assume "\<forall>i<n. x i \<le> p" "i < n" "x i = p \<or> x i = 0"
-    then have "(\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<in> (unit_cube::'a set)"
-      using b'_Basis
-      by (auto simp add: mem_unit_cube inner_simps bij_betw_def zero_le_divide_iff divide_le_eq_1) }
-  note cube = this
-  have q2: "\<forall>x. (\<forall>i<n. x i \<le> p) \<longrightarrow> (\<forall>i<n. x i = 0 \<longrightarrow>
-      (label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 0)"
-    unfolding o_def using cube \<open>p > 0\<close> by (intro allI impI label(2)) (auto simp add: b'')
-  have q3: "\<forall>x. (\<forall>i<n. x i \<le> p) \<longrightarrow> (\<forall>i<n. x i = p \<longrightarrow>
-      (label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 1)"
-    using cube \<open>p > 0\<close> unfolding o_def by (intro allI impI label(3)) (auto simp add: b'')
-  obtain q where q:
-      "\<forall>i<n. q i < p"
-      "\<forall>i<n.
-         \<exists>r s. (\<forall>j<n. q j \<le> r j \<and> r j \<le> q j + 1) \<and>
-               (\<forall>j<n. q j \<le> s j \<and> s j \<le> q j + 1) \<and>
-               (label (\<Sum>i\<in>Basis. (real (r (b' i)) / real p) *\<^sub>R i) \<circ> b) i \<noteq>
-               (label (\<Sum>i\<in>Basis. (real (s (b' i)) / real p) *\<^sub>R i) \<circ> b) i"
-    by (rule kuhn_lemma[OF q1 q2 q3])
-  define z :: 'a where "z = (\<Sum>i\<in>Basis. (real (q (b' i)) / real p) *\<^sub>R i)"
-  have "\<exists>i\<in>Basis. d / real n \<le> \<bar>(f z - z)\<bullet>i\<bar>"
-  proof (rule ccontr)
-    have "\<forall>i\<in>Basis. q (b' i) \<in> {0..p}"
-      using q(1) b'
-      by (auto intro: less_imp_le simp: bij_betw_def)
-    then have "z \<in> unit_cube"
-      unfolding z_def mem_unit_cube
-      using b'_Basis
-      by (auto simp add: bij_betw_def zero_le_divide_iff divide_le_eq_1)
-    then have d_fz_z: "d \<le> norm (f z - z)"
-      by (rule d)
-    assume "\<not> ?thesis"
-    then have as: "\<forall>i\<in>Basis. \<bar>f z \<bullet> i - z \<bullet> i\<bar> < d / real n"
-      using \<open>n > 0\<close>
-      by (auto simp add: not_le inner_diff)
-    have "norm (f z - z) \<le> (\<Sum>i\<in>Basis. \<bar>f z \<bullet> i - z \<bullet> i\<bar>)"
-      unfolding inner_diff_left[symmetric]
-      by (rule norm_le_l1)
-    also have "\<dots> < (\<Sum>(i::'a) \<in> Basis. d / real n)"
-      apply (rule setsum_strict_mono)
-      using as
-      apply auto
-      done
-    also have "\<dots> = d"
-      using DIM_positive[where 'a='a]
-      by (auto simp: n_def)
-    finally show False
-      using d_fz_z by auto
-  qed
-  then obtain i where i: "i \<in> Basis" "d / real n \<le> \<bar>(f z - z) \<bullet> i\<bar>" ..
-  have *: "b' i < n"
-    using i and b'[unfolded bij_betw_def]
-    by auto
-  obtain r s where rs:
-    "\<And>j. j < n \<Longrightarrow> q j \<le> r j \<and> r j \<le> q j + 1"
-    "\<And>j. j < n \<Longrightarrow> q j \<le> s j \<and> s j \<le> q j + 1"
-    "(label (\<Sum>i\<in>Basis. (real (r (b' i)) / real p) *\<^sub>R i) \<circ> b) (b' i) \<noteq>
-      (label (\<Sum>i\<in>Basis. (real (s (b' i)) / real p) *\<^sub>R i) \<circ> b) (b' i)"
-    using q(2)[rule_format,OF *] by blast
-  have b'_im: "\<And>i. i \<in> Basis \<Longrightarrow>  b' i < n"
-    using b' unfolding bij_betw_def by auto
-  define r' ::'a where "r' = (\<Sum>i\<in>Basis. (real (r (b' i)) / real p) *\<^sub>R i)"
-  have "\<And>i. i \<in> Basis \<Longrightarrow> r (b' i) \<le> p"
-    apply (rule order_trans)
-    apply (rule rs(1)[OF b'_im,THEN conjunct2])
-    using q(1)[rule_format,OF b'_im]
-    apply (auto simp add: Suc_le_eq)
-    done
-  then have "r' \<in> unit_cube"
-    unfolding r'_def mem_unit_cube
-    using b'_Basis
-    by (auto simp add: bij_betw_def zero_le_divide_iff divide_le_eq_1)
-  define s' :: 'a where "s' = (\<Sum>i\<in>Basis. (real (s (b' i)) / real p) *\<^sub>R i)"
-  have "\<And>i. i \<in> Basis \<Longrightarrow> s (b' i) \<le> p"
-    apply (rule order_trans)
-    apply (rule rs(2)[OF b'_im, THEN conjunct2])
-    using q(1)[rule_format,OF b'_im]
-    apply (auto simp add: Suc_le_eq)
-    done
-  then have "s' \<in> unit_cube"
-    unfolding s'_def mem_unit_cube
-    using b'_Basis
-    by (auto simp add: bij_betw_def zero_le_divide_iff divide_le_eq_1)
-  have "z \<in> unit_cube"
-    unfolding z_def mem_unit_cube
-    using b'_Basis q(1)[rule_format,OF b'_im] \<open>p > 0\<close>
-    by (auto simp add: bij_betw_def zero_le_divide_iff divide_le_eq_1 less_imp_le)
-  have *: "\<And>x. 1 + real x = real (Suc x)"
-    by auto
-  {
-    have "(\<Sum>i\<in>Basis. \<bar>real (r (b' i)) - real (q (b' i))\<bar>) \<le> (\<Sum>(i::'a)\<in>Basis. 1)"
-      apply (rule setsum_mono)
-      using rs(1)[OF b'_im]
-      apply (auto simp add:* field_simps simp del: of_nat_Suc)
-      done
-    also have "\<dots> < e * real p"
-      using p \<open>e > 0\<close> \<open>p > 0\<close>
-      by (auto simp add: field_simps n_def)
-    finally have "(\<Sum>i\<in>Basis. \<bar>real (r (b' i)) - real (q (b' i))\<bar>) < e * real p" .
-  }
-  moreover
-  {
-    have "(\<Sum>i\<in>Basis. \<bar>real (s (b' i)) - real (q (b' i))\<bar>) \<le> (\<Sum>(i::'a)\<in>Basis. 1)"
-      apply (rule setsum_mono)
-      using rs(2)[OF b'_im]
-      apply (auto simp add:* field_simps simp del: of_nat_Suc)
-      done
-    also have "\<dots> < e * real p"
-      using p \<open>e > 0\<close> \<open>p > 0\<close>
-      by (auto simp add: field_simps n_def)
-    finally have "(\<Sum>i\<in>Basis. \<bar>real (s (b' i)) - real (q (b' i))\<bar>) < e * real p" .
-  }
-  ultimately
-  have "norm (r' - z) < e" and "norm (s' - z) < e"
-    unfolding r'_def s'_def z_def
-    using \<open>p > 0\<close>
-    apply (rule_tac[!] le_less_trans[OF norm_le_l1])
-    apply (auto simp add: field_simps setsum_divide_distrib[symmetric] inner_diff_left)
-    done
-  then have "\<bar>(f z - z) \<bullet> i\<bar> < d / real n"
-    using rs(3) i
-    unfolding r'_def[symmetric] s'_def[symmetric] o_def bb'
-    by (intro e(2)[OF \<open>r'\<in>unit_cube\<close> \<open>s'\<in>unit_cube\<close> \<open>z\<in>unit_cube\<close>]) auto
-  then show False
-    using i by auto
-qed
-
-
-subsection \<open>Retractions\<close>
-
-definition "retraction s t r \<longleftrightarrow> t \<subseteq> s \<and> continuous_on s r \<and> r ` s \<subseteq> t \<and> (\<forall>x\<in>t. r x = x)"
-
-definition retract_of (infixl "retract'_of" 50)
-  where "(t retract_of s) \<longleftrightarrow> (\<exists>r. retraction s t r)"
-
-lemma retraction_idempotent: "retraction s t r \<Longrightarrow> x \<in> s \<Longrightarrow>  r (r x) = r x"
-  unfolding retraction_def by auto
-
-subsection \<open>Preservation of fixpoints under (more general notion of) retraction\<close>
-
-lemma invertible_fixpoint_property:
-  fixes s :: "'a::euclidean_space set"
-    and t :: "'b::euclidean_space set"
-  assumes "continuous_on t i"
-    and "i ` t \<subseteq> s"
-    and "continuous_on s r"
-    and "r ` s \<subseteq> t"
-    and "\<forall>y\<in>t. r (i y) = y"
-    and "\<forall>f. continuous_on s f \<and> f ` s \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. f x = x)"
-    and "continuous_on t g"
-    and "g ` t \<subseteq> t"
-  obtains y where "y \<in> t" and "g y = y"
-proof -
-  have "\<exists>x\<in>s. (i \<circ> g \<circ> r) x = x"
-    apply (rule assms(6)[rule_format])
-    apply rule
-    apply (rule continuous_on_compose assms)+
-    apply ((rule continuous_on_subset)?, rule assms)+
-    using assms(2,4,8)
-    apply auto
-    apply blast
-    done
-  then obtain x where x: "x \<in> s" "(i \<circ> g \<circ> r) x = x" ..
-  then have *: "g (r x) \<in> t"
-    using assms(4,8) by auto
-  have "r ((i \<circ> g \<circ> r) x) = r x"
-    using x by auto
-  then show ?thesis
-    apply (rule_tac that[of "r x"])
-    using x
-    unfolding o_def
-    unfolding assms(5)[rule_format,OF *]
-    using assms(4)
-    apply auto
-    done
-qed
-
-lemma homeomorphic_fixpoint_property:
-  fixes s :: "'a::euclidean_space set"
-    and t :: "'b::euclidean_space set"
-  assumes "s homeomorphic t"
-  shows "(\<forall>f. continuous_on s f \<and> f ` s \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. f x = x)) \<longleftrightarrow>
-    (\<forall>g. continuous_on t g \<and> g ` t \<subseteq> t \<longrightarrow> (\<exists>y\<in>t. g y = y))"
-proof -
-  obtain r i where
-      "\<forall>x\<in>s. i (r x) = x"
-      "r ` s = t"
-      "continuous_on s r"
-      "\<forall>y\<in>t. r (i y) = y"
-      "i ` t = s"
-      "continuous_on t i"
-    using assms
-    unfolding homeomorphic_def homeomorphism_def
-    by blast
-  then show ?thesis
-    apply -
-    apply rule
-    apply (rule_tac[!] allI impI)+
-    apply (rule_tac g=g in invertible_fixpoint_property[of t i s r])
-    prefer 10
-    apply (rule_tac g=f in invertible_fixpoint_property[of s r t i])
-    apply auto
-    done
-qed
-
-lemma retract_fixpoint_property:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-    and s :: "'a set"
-  assumes "t retract_of s"
-    and "\<forall>f. continuous_on s f \<and> f ` s \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. f x = x)"
-    and "continuous_on t g"
-    and "g ` t \<subseteq> t"
-  obtains y where "y \<in> t" and "g y = y"
-proof -
-  obtain h where "retraction s t h"
-    using assms(1) unfolding retract_of_def ..
-  then show ?thesis
-    unfolding retraction_def
-    apply -
-    apply (rule invertible_fixpoint_property[OF continuous_on_id _ _ _ _ assms(2), of t h g])
-    prefer 7
-    apply (rule_tac y = y in that)
-    using assms
-    apply auto
-    done
-qed
-
-
-subsection \<open>The Brouwer theorem for any set with nonempty interior\<close>
-
-lemma convex_unit_cube: "convex unit_cube"
-  apply (rule is_interval_convex)
-  apply (clarsimp simp add: is_interval_def mem_unit_cube)
-  apply (drule (1) bspec)+
-  apply auto
-  done
-
-lemma brouwer_weak:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'a"
-  assumes "compact s"
-    and "convex s"
-    and "interior s \<noteq> {}"
-    and "continuous_on s f"
-    and "f ` s \<subseteq> s"
-  obtains x where "x \<in> s" and "f x = x"
-proof -
-  let ?U = "unit_cube :: 'a set"
-  have "\<Sum>Basis /\<^sub>R 2 \<in> interior ?U"
-  proof (rule interiorI)
-    let ?I = "(\<Inter>i\<in>Basis. {x::'a. 0 < x \<bullet> i} \<inter> {x. x \<bullet> i < 1})"
-    show "open ?I"
-      by (intro open_INT finite_Basis ballI open_Int, auto intro: open_Collect_less simp: continuous_on_inner continuous_on_const continuous_on_id)
-    show "\<Sum>Basis /\<^sub>R 2 \<in> ?I"
-      by simp
-    show "?I \<subseteq> unit_cube"
-      unfolding unit_cube_def by force
-  qed
-  then have *: "interior ?U \<noteq> {}" by fast
-  have *: "?U homeomorphic s"
-    using homeomorphic_convex_compact[OF convex_unit_cube compact_unit_cube * assms(2,1,3)] .
-  have "\<forall>f. continuous_on ?U f \<and> f ` ?U \<subseteq> ?U \<longrightarrow>
-    (\<exists>x\<in>?U. f x = x)"
-    using brouwer_cube by auto
-  then show ?thesis
-    unfolding homeomorphic_fixpoint_property[OF *]
-    using assms
-    by (auto simp: intro: that)
-qed
-
-
-text \<open>And in particular for a closed ball.\<close>
-
-lemma brouwer_ball:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'a"
-  assumes "e > 0"
-    and "continuous_on (cball a e) f"
-    and "f ` cball a e \<subseteq> cball a e"
-  obtains x where "x \<in> cball a e" and "f x = x"
-  using brouwer_weak[OF compact_cball convex_cball, of a e f]
-  unfolding interior_cball ball_eq_empty
-  using assms by auto
-
-text \<open>Still more general form; could derive this directly without using the
-  rather involved \<open>HOMEOMORPHIC_CONVEX_COMPACT\<close> theorem, just using
-  a scaling and translation to put the set inside the unit cube.\<close>
-
-lemma brouwer:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'a"
-  assumes "compact s"
-    and "convex s"
-    and "s \<noteq> {}"
-    and "continuous_on s f"
-    and "f ` s \<subseteq> s"
-  obtains x where "x \<in> s" and "f x = x"
-proof -
-  have "\<exists>e>0. s \<subseteq> cball 0 e"
-    using compact_imp_bounded[OF assms(1)]
-    unfolding bounded_pos
-    apply (erule_tac exE)
-    apply (rule_tac x=b in exI)
-    apply (auto simp add: dist_norm)
-    done
-  then obtain e where e: "e > 0" "s \<subseteq> cball 0 e"
-    by blast
-  have "\<exists>x\<in> cball 0 e. (f \<circ> closest_point s) x = x"
-    apply (rule_tac brouwer_ball[OF e(1), of 0 "f \<circ> closest_point s"])
-    apply (rule continuous_on_compose )
-    apply (rule continuous_on_closest_point[OF assms(2) compact_imp_closed[OF assms(1)] assms(3)])
-    apply (rule continuous_on_subset[OF assms(4)])
-    apply (insert closest_point_in_set[OF compact_imp_closed[OF assms(1)] assms(3)])
-    using assms(5)[unfolded subset_eq]
-    using e(2)[unfolded subset_eq mem_cball]
-    apply (auto simp add: dist_norm)
-    done
-  then obtain x where x: "x \<in> cball 0 e" "(f \<circ> closest_point s) x = x" ..
-  have *: "closest_point s x = x"
-    apply (rule closest_point_self)
-    apply (rule assms(5)[unfolded subset_eq,THEN bspec[where x="x"], unfolded image_iff])
-    apply (rule_tac x="closest_point s x" in bexI)
-    using x
-    unfolding o_def
-    using closest_point_in_set[OF compact_imp_closed[OF assms(1)] assms(3), of x]
-    apply auto
-    done
-  show thesis
-    apply (rule_tac x="closest_point s x" in that)
-    unfolding x(2)[unfolded o_def]
-    apply (rule closest_point_in_set[OF compact_imp_closed[OF assms(1)] assms(3)])
-    using *
-    apply auto
-    done
-qed
-
-text \<open>So we get the no-retraction theorem.\<close>
-
-lemma no_retraction_cball:
-  fixes a :: "'a::euclidean_space"
-  assumes "e > 0"
-  shows "\<not> (frontier (cball a e) retract_of (cball a e))"
-proof
-  assume *: "frontier (cball a e) retract_of (cball a e)"
-  have **: "\<And>xa. a - (2 *\<^sub>R a - xa) = - (a - xa)"
-    using scaleR_left_distrib[of 1 1 a] by auto
-  obtain x where x:
-      "x \<in> {x. norm (a - x) = e}"
-      "2 *\<^sub>R a - x = x"
-    apply (rule retract_fixpoint_property[OF *, of "\<lambda>x. scaleR 2 a - x"])
-    apply (blast intro: brouwer_ball[OF assms])
-    apply (intro continuous_intros)
-    unfolding frontier_cball subset_eq Ball_def image_iff dist_norm sphere_def
-    apply (auto simp add: ** norm_minus_commute)
-    done
-  then have "scaleR 2 a = scaleR 1 x + scaleR 1 x"
-    by (auto simp add: algebra_simps)
-  then have "a = x"
-    unfolding scaleR_left_distrib[symmetric]
-    by auto
-  then show False
-    using x assms by auto
-qed
-
-subsection\<open>Retractions\<close>
-
-lemma retraction:
-   "retraction s t r \<longleftrightarrow>
-    t \<subseteq> s \<and> continuous_on s r \<and> r ` s = t \<and> (\<forall>x \<in> t. r x = x)"
-by (force simp: retraction_def)
-
-lemma retract_of_imp_extensible:
-  assumes "s retract_of t" and "continuous_on s f" and "f ` s \<subseteq> u"
-  obtains g where "continuous_on t g" "g ` t \<subseteq> u" "\<And>x. x \<in> s \<Longrightarrow> g x = f x"
-using assms
-apply (clarsimp simp add: retract_of_def retraction)
-apply (rule_tac g = "f o r" in that)
-apply (auto simp: continuous_on_compose2)
-done
-
-lemma idempotent_imp_retraction:
-  assumes "continuous_on s f" and "f ` s \<subseteq> s" and "\<And>x. x \<in> s \<Longrightarrow> f(f x) = f x"
-    shows "retraction s (f ` s) f"
-by (simp add: assms retraction)
-
-lemma retraction_subset:
-  assumes "retraction s t r" and "t \<subseteq> s'" and "s' \<subseteq> s"
-    shows "retraction s' t r"
-apply (simp add: retraction_def)
-by (metis assms continuous_on_subset image_mono retraction)
-
-lemma retract_of_subset:
-  assumes "t retract_of s" and "t \<subseteq> s'" and "s' \<subseteq> s"
-    shows "t retract_of s'"
-by (meson assms retract_of_def retraction_subset)
-
-lemma retraction_refl [simp]: "retraction s s (\<lambda>x. x)"
-by (simp add: continuous_on_id retraction)
-
-lemma retract_of_refl [iff]: "s retract_of s"
-  using continuous_on_id retract_of_def retraction_def by fastforce
-
-lemma retract_of_imp_subset:
-   "s retract_of t \<Longrightarrow> s \<subseteq> t"
-by (simp add: retract_of_def retraction_def)
-
-lemma retract_of_empty [simp]:
-     "({} retract_of s) \<longleftrightarrow> s = {}"  "(s retract_of {}) \<longleftrightarrow> s = {}"
-by (auto simp: retract_of_def retraction_def)
-
-lemma retract_of_singleton [iff]: "({x} retract_of s) \<longleftrightarrow> x \<in> s"
-  using continuous_on_const
-  by (auto simp: retract_of_def retraction_def)
-
-lemma retraction_comp:
-   "\<lbrakk>retraction s t f; retraction t u g\<rbrakk>
-        \<Longrightarrow> retraction s u (g o f)"
-apply (auto simp: retraction_def intro: continuous_on_compose2)
-by blast
-
-lemma retract_of_trans [trans]:
-  assumes "s retract_of t" and "t retract_of u"
-    shows "s retract_of u"
-using assms by (auto simp: retract_of_def intro: retraction_comp)
-
-lemma closedin_retract:
-  fixes s :: "'a :: real_normed_vector set"
-  assumes "s retract_of t"
-    shows "closedin (subtopology euclidean t) s"
-proof -
-  obtain r where "s \<subseteq> t" "continuous_on t r" "r ` t \<subseteq> s" "\<And>x. x \<in> s \<Longrightarrow> r x = x"
-    using assms by (auto simp: retract_of_def retraction_def)
-  then have s: "s = {x \<in> t. (norm(r x - x)) = 0}" by auto
-  show ?thesis
-    apply (subst s)
-    apply (rule continuous_closedin_preimage_constant)
-    by (simp add: \<open>continuous_on t r\<close> continuous_on_diff continuous_on_id continuous_on_norm)
-qed
-
-lemma closedin_self [simp]:
-    fixes S :: "'a :: real_normed_vector set"
-    shows "closedin (subtopology euclidean S) S"
-  by (simp add: closedin_retract)
-
-lemma retract_of_contractible:
-  assumes "contractible t" "s retract_of t"
-    shows "contractible s"
-using assms
-apply (clarsimp simp add: retract_of_def contractible_def retraction_def homotopic_with)
-apply (rule_tac x="r a" in exI)
-apply (rule_tac x="r o h" in exI)
-apply (intro conjI continuous_intros continuous_on_compose)
-apply (erule continuous_on_subset | force)+
-done
-
-lemma retract_of_compact:
-     "\<lbrakk>compact t; s retract_of t\<rbrakk> \<Longrightarrow> compact s"
-  by (metis compact_continuous_image retract_of_def retraction)
-
-lemma retract_of_closed:
-    fixes s :: "'a :: real_normed_vector set"
-    shows "\<lbrakk>closed t; s retract_of t\<rbrakk> \<Longrightarrow> closed s"
-  by (metis closedin_retract closedin_closed_eq)
-
-lemma retract_of_connected:
-    "\<lbrakk>connected t; s retract_of t\<rbrakk> \<Longrightarrow> connected s"
-  by (metis Topological_Spaces.connected_continuous_image retract_of_def retraction)
-
-lemma retract_of_path_connected:
-    "\<lbrakk>path_connected t; s retract_of t\<rbrakk> \<Longrightarrow> path_connected s"
-  by (metis path_connected_continuous_image retract_of_def retraction)
-
-lemma retract_of_simply_connected:
-    "\<lbrakk>simply_connected t; s retract_of t\<rbrakk> \<Longrightarrow> simply_connected s"
-apply (simp add: retract_of_def retraction_def, clarify)
-apply (rule simply_connected_retraction_gen)
-apply (force simp: continuous_on_id elim!: continuous_on_subset)+
-done
-
-lemma retract_of_homotopically_trivial:
-  assumes ts: "t retract_of s"
-      and hom: "\<And>f g. \<lbrakk>continuous_on u f; f ` u \<subseteq> s;
-                       continuous_on u g; g ` u \<subseteq> s\<rbrakk>
-                       \<Longrightarrow> homotopic_with (\<lambda>x. True) u s f g"
-      and "continuous_on u f" "f ` u \<subseteq> t"
-      and "continuous_on u g" "g ` u \<subseteq> t"
-    shows "homotopic_with (\<lambda>x. True) u t f g"
-proof -
-  obtain r where "r ` s \<subseteq> s" "continuous_on s r" "\<forall>x\<in>s. r (r x) = r x" "t = r ` s"
-    using ts by (auto simp: retract_of_def retraction)
-  then obtain k where "Retracts s r t k"
-    unfolding Retracts_def
-    by (metis continuous_on_subset dual_order.trans image_iff image_mono)
-  then show ?thesis
-    apply (rule Retracts.homotopically_trivial_retraction_gen)
-    using assms
-    apply (force simp: hom)+
-    done
-qed
-
-lemma retract_of_homotopically_trivial_null:
-  assumes ts: "t retract_of s"
-      and hom: "\<And>f. \<lbrakk>continuous_on u f; f ` u \<subseteq> s\<rbrakk>
-                     \<Longrightarrow> \<exists>c. homotopic_with (\<lambda>x. True) u s f (\<lambda>x. c)"
-      and "continuous_on u f" "f ` u \<subseteq> t"
-  obtains c where "homotopic_with (\<lambda>x. True) u t f (\<lambda>x. c)"
-proof -
-  obtain r where "r ` s \<subseteq> s" "continuous_on s r" "\<forall>x\<in>s. r (r x) = r x" "t = r ` s"
-    using ts by (auto simp: retract_of_def retraction)
-  then obtain k where "Retracts s r t k"
-    unfolding Retracts_def
-    by (metis continuous_on_subset dual_order.trans image_iff image_mono)
-  then show ?thesis
-    apply (rule Retracts.homotopically_trivial_retraction_null_gen)
-    apply (rule TrueI refl assms that | assumption)+
-    done
-qed
-
-lemma retraction_imp_quotient_map:
-   "retraction s t r
-    \<Longrightarrow> u \<subseteq> t
-            \<Longrightarrow> (openin (subtopology euclidean s) {x. x \<in> s \<and> r x \<in> u} \<longleftrightarrow>
-                 openin (subtopology euclidean t) u)"
-apply (clarsimp simp add: retraction)
-apply (rule continuous_right_inverse_imp_quotient_map [where g=r])
-apply (auto simp: elim: continuous_on_subset)
-done
-
-lemma retract_of_locally_compact:
-    fixes s :: "'a :: {heine_borel,real_normed_vector} set"
-    shows  "\<lbrakk> locally compact s; t retract_of s\<rbrakk> \<Longrightarrow> locally compact t"
-  by (metis locally_compact_closedin closedin_retract)
-
-lemma retract_of_Times:
-   "\<lbrakk>s retract_of s'; t retract_of t'\<rbrakk> \<Longrightarrow> (s \<times> t) retract_of (s' \<times> t')"
-apply (simp add: retract_of_def retraction_def Sigma_mono, clarify)
-apply (rename_tac f g)
-apply (rule_tac x="\<lambda>z. ((f o fst) z, (g o snd) z)" in exI)
-apply (rule conjI continuous_intros | erule continuous_on_subset | force)+
-done
-
-lemma homotopic_into_retract:
-   "\<lbrakk>f ` s \<subseteq> t; g ` s \<subseteq> t; t retract_of u;
-        homotopic_with (\<lambda>x. True) s u f g\<rbrakk>
-        \<Longrightarrow> homotopic_with (\<lambda>x. True) s t f g"
-apply (subst (asm) homotopic_with_def)
-apply (simp add: homotopic_with retract_of_def retraction_def, clarify)
-apply (rule_tac x="r o h" in exI)
-apply (rule conjI continuous_intros | erule continuous_on_subset | force simp: image_subset_iff)+
-done
-
-lemma retract_of_locally_connected:
-  assumes "locally connected T" "S retract_of T"
-    shows "locally connected S"
-  using assms
-  by (auto simp: retract_of_def retraction intro!: retraction_imp_quotient_map elim!: locally_connected_quotient_image)
-
-lemma retract_of_locally_path_connected:
-  assumes "locally path_connected T" "S retract_of T"
-    shows "locally path_connected S"
-  using assms
-  by (auto simp: retract_of_def retraction intro!: retraction_imp_quotient_map elim!: locally_path_connected_quotient_image)
-
-subsection\<open>Punctured affine hulls, etc.\<close>
-
-lemma continuous_on_compact_surface_projection_aux:
-  fixes S :: "'a::t2_space set"
-  assumes "compact S" "S \<subseteq> T" "image q T \<subseteq> S"
-      and contp: "continuous_on T p"
-      and "\<And>x. x \<in> S \<Longrightarrow> q x = x"
-      and [simp]: "\<And>x. x \<in> T \<Longrightarrow> q(p x) = q x"
-      and "\<And>x. x \<in> T \<Longrightarrow> p(q x) = p x"
-    shows "continuous_on T q"
-proof -
-  have *: "image p T = image p S"
-    using assms by auto (metis imageI subset_iff)
-  have contp': "continuous_on S p"
-    by (rule continuous_on_subset [OF contp \<open>S \<subseteq> T\<close>])
-  have "continuous_on T (q \<circ> p)"
-    apply (rule continuous_on_compose [OF contp])
-    apply (simp add: *)
-    apply (rule continuous_on_inv [OF contp' \<open>compact S\<close>])
-    using assms by auto
-  then show ?thesis
-    apply (rule continuous_on_eq [of _ "q o p"])
-    apply (simp add: o_def)
-    done
-qed
-
-lemma continuous_on_compact_surface_projection:
-  fixes S :: "'a::real_normed_vector set"
-  assumes "compact S"
-      and S: "S \<subseteq> V - {0}" and "cone V"
-      and iff: "\<And>x k. x \<in> V - {0} \<Longrightarrow> 0 < k \<and> (k *\<^sub>R x) \<in> S \<longleftrightarrow> d x = k"
-  shows "continuous_on (V - {0}) (\<lambda>x. d x *\<^sub>R x)"
-proof (rule continuous_on_compact_surface_projection_aux [OF \<open>compact S\<close> S])
-  show "(\<lambda>x. d x *\<^sub>R x) ` (V - {0}) \<subseteq> S"
-    using iff by auto
-  show "continuous_on (V - {0}) (\<lambda>x. inverse(norm x) *\<^sub>R x)"
-    by (intro continuous_intros) force
-  show "\<And>x. x \<in> S \<Longrightarrow> d x *\<^sub>R x = x"
-    by (metis S zero_less_one local.iff scaleR_one subset_eq)
-  show "d (x /\<^sub>R norm x) *\<^sub>R (x /\<^sub>R norm x) = d x *\<^sub>R x" if "x \<in> V - {0}" for x
-    using iff [of "inverse(norm x) *\<^sub>R x" "norm x * d x", symmetric] iff that \<open>cone V\<close>
-    by (simp add: field_simps cone_def zero_less_mult_iff)
-  show "d x *\<^sub>R x /\<^sub>R norm (d x *\<^sub>R x) = x /\<^sub>R norm x" if "x \<in> V - {0}" for x
-  proof -
-    have "0 < d x"
-      using local.iff that by blast
-    then show ?thesis
-      by simp
-  qed
-qed
-
-proposition rel_frontier_deformation_retract_of_punctured_convex:
-  fixes S :: "'a::euclidean_space set"
-  assumes "convex S" "convex T" "bounded S"
-      and arelS: "a \<in> rel_interior S"
-      and relS: "rel_frontier S \<subseteq> T"
-      and affS: "T \<subseteq> affine hull S"
-  obtains r where "homotopic_with (\<lambda>x. True) (T - {a}) (T - {a}) id r"
-                  "retraction (T - {a}) (rel_frontier S) r"
-proof -
-  have "\<exists>d. 0 < d \<and> (a + d *\<^sub>R l) \<in> rel_frontier S \<and>
-            (\<forall>e. 0 \<le> e \<and> e < d \<longrightarrow> (a + e *\<^sub>R l) \<in> rel_interior S)"
-       if "(a + l) \<in> affine hull S" "l \<noteq> 0" for l
-    apply (rule ray_to_rel_frontier [OF \<open>bounded S\<close> arelS])
-    apply (rule that)+
-    by metis
-  then obtain dd
-    where dd1: "\<And>l. \<lbrakk>(a + l) \<in> affine hull S; l \<noteq> 0\<rbrakk> \<Longrightarrow> 0 < dd l \<and> (a + dd l *\<^sub>R l) \<in> rel_frontier S"
-      and dd2: "\<And>l e. \<lbrakk>(a + l) \<in> affine hull S; e < dd l; 0 \<le> e; l \<noteq> 0\<rbrakk>
-                      \<Longrightarrow> (a + e *\<^sub>R l) \<in> rel_interior S"
-    by metis+
-  have aaffS: "a \<in> affine hull S"
-    by (meson arelS subsetD hull_inc rel_interior_subset)
-  have "((\<lambda>z. z - a) ` (affine hull S - {a})) = ((\<lambda>z. z - a) ` (affine hull S)) - {0}"
-    by (auto simp: )
-  moreover have "continuous_on (((\<lambda>z. z - a) ` (affine hull S)) - {0}) (\<lambda>x. dd x *\<^sub>R x)"
-  proof (rule continuous_on_compact_surface_projection)
-    show "compact (rel_frontier ((\<lambda>z. z - a) ` S))"
-      by (simp add: \<open>bounded S\<close> bounded_translation_minus compact_rel_frontier_bounded)
-    have releq: "rel_frontier ((\<lambda>z. z - a) ` S) = (\<lambda>z. z - a) ` rel_frontier S"
-      using rel_frontier_translation [of "-a"] add.commute by simp
-    also have "... \<subseteq> (\<lambda>z. z - a) ` (affine hull S) - {0}"
-      using rel_frontier_affine_hull arelS rel_frontier_def by fastforce
-    finally show "rel_frontier ((\<lambda>z. z - a) ` S) \<subseteq> (\<lambda>z. z - a) ` (affine hull S) - {0}" .
-    show "cone ((\<lambda>z. z - a) ` (affine hull S))"
-      apply (rule subspace_imp_cone)
-      using aaffS
-      apply (simp add: subspace_affine image_comp o_def affine_translation_aux [of a])
-      done
-    show "(0 < k \<and> k *\<^sub>R x \<in> rel_frontier ((\<lambda>z. z - a) ` S)) \<longleftrightarrow> (dd x = k)"
-         if x: "x \<in> (\<lambda>z. z - a) ` (affine hull S) - {0}" for k x
-    proof
-      show "dd x = k \<Longrightarrow> 0 < k \<and> k *\<^sub>R x \<in> rel_frontier ((\<lambda>z. z - a) ` S)"
-      using dd1 [of x] that image_iff by (fastforce simp add: releq)
-    next
-      assume k: "0 < k \<and> k *\<^sub>R x \<in> rel_frontier ((\<lambda>z. z - a) ` S)"
-      have False if "dd x < k"
-      proof -
-        have "k \<noteq> 0" "a + k *\<^sub>R x \<in> closure S"
-          using k closure_translation [of "-a"]
-          by (auto simp: rel_frontier_def)
-        then have segsub: "open_segment a (a + k *\<^sub>R x) \<subseteq> rel_interior S"
-          by (metis rel_interior_closure_convex_segment [OF \<open>convex S\<close> arelS])
-        have "x \<noteq> 0" and xaffS: "a + x \<in> affine hull S"
-          using x by (auto simp: )
-        then have "0 < dd x" and inS: "a + dd x *\<^sub>R x \<in> rel_frontier S"
-          using dd1 by auto
-        moreover have "a + dd x *\<^sub>R x \<in> open_segment a (a + k *\<^sub>R x)"
-          using k \<open>x \<noteq> 0\<close> \<open>0 < dd x\<close>
-          apply (simp add: in_segment)
-          apply (rule_tac x = "dd x / k" in exI)
-          apply (simp add: field_simps that)
-          apply (simp add: vector_add_divide_simps algebra_simps)
-          apply (metis (no_types) \<open>k \<noteq> 0\<close> divide_inverse_commute inverse_eq_divide mult.left_commute right_inverse)
-          done
-        ultimately show ?thesis
-          using segsub by (auto simp add: rel_frontier_def)
-      qed
-      moreover have False if "k < dd x"
-        using x k that rel_frontier_def
-        by (fastforce simp: algebra_simps releq dest!: dd2)
-      ultimately show "dd x = k"
-        by fastforce
-    qed
-  qed
-  ultimately have *: "continuous_on ((\<lambda>z. z - a) ` (affine hull S - {a})) (\<lambda>x. dd x *\<^sub>R x)"
-    by auto
-  have "continuous_on (affine hull S - {a}) ((\<lambda>x. a + dd x *\<^sub>R x) \<circ> (\<lambda>z. z - a))"
-    by (intro * continuous_intros continuous_on_compose)
-  with affS have contdd: "continuous_on (T - {a}) ((\<lambda>x. a + dd x *\<^sub>R x) \<circ> (\<lambda>z. z - a))"
-    by (blast intro: continuous_on_subset elim: )
-  show ?thesis
-  proof
-    show "homotopic_with (\<lambda>x. True) (T - {a}) (T - {a}) id (\<lambda>x. a + dd (x - a) *\<^sub>R (x - a))"
-    proof (rule homotopic_with_linear)
-      show "continuous_on (T - {a}) id"
-        by (intro continuous_intros continuous_on_compose)
-      show "continuous_on (T - {a}) (\<lambda>x. a + dd (x - a) *\<^sub>R (x - a))"
-        using contdd by (simp add: o_def)
-      show "closed_segment (id x) (a + dd (x - a) *\<^sub>R (x - a)) \<subseteq> T - {a}"
-           if "x \<in> T - {a}" for x
-      proof (clarsimp simp: in_segment, intro conjI)
-        fix u::real assume u: "0 \<le> u" "u \<le> 1"
-        show "(1 - u) *\<^sub>R x + u *\<^sub>R (a + dd (x - a) *\<^sub>R (x - a)) \<in> T"
-          apply (rule convexD [OF \<open>convex T\<close>])
-          using that u apply (auto simp add: )
-          apply (metis add.commute affS dd1 diff_add_cancel eq_iff_diff_eq_0 relS subsetD)
-          done
-        have iff: "(1 - u) *\<^sub>R x + u *\<^sub>R (a + d *\<^sub>R (x - a)) = a \<longleftrightarrow>
-                  (1 - u + u * d) *\<^sub>R (x - a) = 0" for d
-          by (auto simp: algebra_simps)
-        have "x \<in> T" "x \<noteq> a" using that by auto
-        then have axa: "a + (x - a) \<in> affine hull S"
-           by (metis (no_types) add.commute affS diff_add_cancel set_rev_mp)
-        then have "\<not> dd (x - a) \<le> 0 \<and> a + dd (x - a) *\<^sub>R (x - a) \<in> rel_frontier S"
-          using \<open>x \<noteq> a\<close> dd1 by fastforce
-        with \<open>x \<noteq> a\<close> show "(1 - u) *\<^sub>R x + u *\<^sub>R (a + dd (x - a) *\<^sub>R (x - a)) \<noteq> a"
-          apply (auto simp: iff)
-          using less_eq_real_def mult_le_0_iff not_less u by fastforce
-      qed
-    qed
-    show "retraction (T - {a}) (rel_frontier S) (\<lambda>x. a + dd (x - a) *\<^sub>R (x - a))"
-    proof (simp add: retraction_def, intro conjI ballI)
-      show "rel_frontier S \<subseteq> T - {a}"
-        using arelS relS rel_frontier_def by fastforce
-      show "continuous_on (T - {a}) (\<lambda>x. a + dd (x - a) *\<^sub>R (x - a))"
-        using contdd by (simp add: o_def)
-      show "(\<lambda>x. a + dd (x - a) *\<^sub>R (x - a)) ` (T - {a}) \<subseteq> rel_frontier S"
-        apply (auto simp: rel_frontier_def)
-        apply (metis Diff_subset add.commute affS dd1 diff_add_cancel eq_iff_diff_eq_0 rel_frontier_def subset_iff)
-        by (metis DiffE add.commute affS dd1 diff_add_cancel eq_iff_diff_eq_0 rel_frontier_def rev_subsetD)
-      show "a + dd (x - a) *\<^sub>R (x - a) = x" if x: "x \<in> rel_frontier S" for x
-      proof -
-        have "x \<noteq> a"
-          using that arelS by (auto simp add: rel_frontier_def)
-        have False if "dd (x - a) < 1"
-        proof -
-          have "x \<in> closure S"
-            using x by (auto simp: rel_frontier_def)
-          then have segsub: "open_segment a x \<subseteq> rel_interior S"
-            by (metis rel_interior_closure_convex_segment [OF \<open>convex S\<close> arelS])
-          have  xaffS: "x \<in> affine hull S"
-            using affS relS x by auto
-          then have "0 < dd (x - a)" and inS: "a + dd (x - a) *\<^sub>R (x - a) \<in> rel_frontier S"
-            using dd1 by (auto simp add: \<open>x \<noteq> a\<close>)
-          moreover have "a + dd (x - a) *\<^sub>R (x - a) \<in> open_segment a x"
-            using  \<open>x \<noteq> a\<close> \<open>0 < dd (x - a)\<close>
-            apply (simp add: in_segment)
-            apply (rule_tac x = "dd (x - a)" in exI)
-            apply (simp add: algebra_simps that)
-            done
-          ultimately show ?thesis
-            using segsub by (auto simp add: rel_frontier_def)
-        qed
-        moreover have False if "1 < dd (x - a)"
-          using x that dd2 [of "x - a" 1] \<open>x \<noteq> a\<close> closure_affine_hull
-          by (auto simp: rel_frontier_def)
-        ultimately have "dd (x - a) = 1" --\<open>similar to another proof above\<close>
-          by fastforce
-        with that show ?thesis
-          by (simp add: rel_frontier_def)
-      qed
-    qed
-  qed
-qed
-
-corollary rel_frontier_retract_of_punctured_affine_hull:
-  fixes S :: "'a::euclidean_space set"
-  assumes "bounded S" "convex S" "a \<in> rel_interior S"
-    shows "rel_frontier S retract_of (affine hull S - {a})"
-apply (rule rel_frontier_deformation_retract_of_punctured_convex [of S "affine hull S" a])
-apply (auto simp add: affine_imp_convex rel_frontier_affine_hull retract_of_def assms)
-done
-
-corollary rel_boundary_retract_of_punctured_affine_hull:
-  fixes S :: "'a::euclidean_space set"
-  assumes "compact S" "convex S" "a \<in> rel_interior S"
-    shows "(S - rel_interior S) retract_of (affine hull S - {a})"
-by (metis assms closure_closed compact_eq_bounded_closed rel_frontier_def
-          rel_frontier_retract_of_punctured_affine_hull)
-
-subsection\<open>Borsuk-style characterization of separation\<close>
-
-lemma continuous_on_Borsuk_map:
-   "a \<notin> s \<Longrightarrow>  continuous_on s (\<lambda>x. inverse(norm (x - a)) *\<^sub>R (x - a))"
-by (rule continuous_intros | force)+
-
-lemma Borsuk_map_into_sphere:
-   "(\<lambda>x. inverse(norm (x - a)) *\<^sub>R (x - a)) ` s \<subseteq> sphere 0 1 \<longleftrightarrow> (a \<notin> s)"
-  by auto (metis eq_iff_diff_eq_0 left_inverse norm_eq_zero)
-
-lemma Borsuk_maps_homotopic_in_path_component:
-  assumes "path_component (- s) a b"
-    shows "homotopic_with (\<lambda>x. True) s (sphere 0 1)
-                   (\<lambda>x. inverse(norm(x - a)) *\<^sub>R (x - a))
-                   (\<lambda>x. inverse(norm(x - b)) *\<^sub>R (x - b))"
-proof -
-  obtain g where "path g" "path_image g \<subseteq> -s" "pathstart g = a" "pathfinish g = b"
-    using assms by (auto simp: path_component_def)
-  then show ?thesis
-    apply (simp add: path_def path_image_def pathstart_def pathfinish_def homotopic_with_def)
-    apply (rule_tac x = "\<lambda>z. inverse(norm(snd z - (g o fst)z)) *\<^sub>R (snd z - (g o fst)z)" in exI)
-    apply (intro conjI continuous_intros)
-    apply (rule continuous_intros | erule continuous_on_subset | fastforce simp: divide_simps sphere_def)+
-    done
-qed
-
-lemma non_extensible_Borsuk_map:
-  fixes a :: "'a :: euclidean_space"
-  assumes "compact s" and cin: "c \<in> components(- s)" and boc: "bounded c" and "a \<in> c"
-    shows "~ (\<exists>g. continuous_on (s \<union> c) g \<and>
-                  g ` (s \<union> c) \<subseteq> sphere 0 1 \<and>
-                  (\<forall>x \<in> s. g x = inverse(norm(x - a)) *\<^sub>R (x - a)))"
-proof -
-  have "closed s" using assms by (simp add: compact_imp_closed)
-  have "c \<subseteq> -s"
-    using assms by (simp add: in_components_subset)
-  with \<open>a \<in> c\<close> have "a \<notin> s" by blast
-  then have ceq: "c = connected_component_set (- s) a"
-    by (metis \<open>a \<in> c\<close> cin components_iff connected_component_eq)
-  then have "bounded (s \<union> connected_component_set (- s) a)"
-    using \<open>compact s\<close> boc compact_imp_bounded by auto
-  with bounded_subset_ballD obtain r where "0 < r" and r: "(s \<union> connected_component_set (- s) a) \<subseteq> ball a r"
-    by blast
-  { fix g
-    assume "continuous_on (s \<union> c) g"
-            "g ` (s \<union> c) \<subseteq> sphere 0 1"
-       and [simp]: "\<And>x. x \<in> s \<Longrightarrow> g x = (x - a) /\<^sub>R norm (x - a)"
-    then have [simp]: "\<And>x. x \<in> s \<union> c \<Longrightarrow> norm (g x) = 1"
-      by force
-    have cb_eq: "cball a r = (s \<union> connected_component_set (- s) a) \<union>
-                      (cball a r - connected_component_set (- s) a)"
-      using ball_subset_cball [of a r] r by auto
-    have cont1: "continuous_on (s \<union> connected_component_set (- s) a)
-                     (\<lambda>x. a + r *\<^sub>R g x)"
-      apply (rule continuous_intros)+
-      using \<open>continuous_on (s \<union> c) g\<close> ceq by blast
-    have cont2: "continuous_on (cball a r - connected_component_set (- s) a)
-            (\<lambda>x. a + r *\<^sub>R ((x - a) /\<^sub>R norm (x - a)))"
-      by (rule continuous_intros | force simp: \<open>a \<notin> s\<close>)+
-    have 1: "continuous_on (cball a r)
-             (\<lambda>x. if connected_component (- s) a x
-                  then a + r *\<^sub>R g x
-                  else a + r *\<^sub>R ((x - a) /\<^sub>R norm (x - a)))"
-      apply (subst cb_eq)
-      apply (rule continuous_on_cases [OF _ _ cont1 cont2])
-        using ceq cin
-      apply (auto intro: closed_Un_complement_component
-                  simp: \<open>closed s\<close> open_Compl open_connected_component)
-      done
-    have 2: "(\<lambda>x. a + r *\<^sub>R g x) ` (cball a r \<inter> connected_component_set (- s) a)
-             \<subseteq> sphere a r "
-      using \<open>0 < r\<close> by (force simp: dist_norm ceq)
-    have "retraction (cball a r) (sphere a r)
-            (\<lambda>x. if x \<in> connected_component_set (- s) a
-                 then a + r *\<^sub>R g x
-                 else a + r *\<^sub>R ((x - a) /\<^sub>R norm (x - a)))"
-      using  \<open>0 < r\<close>
-      apply (simp add: retraction_def dist_norm 1 2, safe)
-      apply (force simp: dist_norm abs_if mult_less_0_iff divide_simps \<open>a \<notin> s\<close>)
-      using r
-      by (auto simp: dist_norm norm_minus_commute)
-    then have False
-      using no_retraction_cball
-             [OF \<open>0 < r\<close>, of a, unfolded retract_of_def, simplified, rule_format,
-              of "\<lambda>x. if x \<in> connected_component_set (- s) a
-                      then a + r *\<^sub>R g x
-                      else a + r *\<^sub>R inverse(norm(x - a)) *\<^sub>R (x - a)"]
-      by blast
-  }
-  then show ?thesis
-    by blast
-qed
-
-subsection\<open>Absolute retracts, Etc.\<close>
-
-text\<open>Absolute retracts (AR), absolute neighbourhood retracts (ANR) and also
- Euclidean neighbourhood retracts (ENR). We define AR and ANR by
- specializing the standard definitions for a set to embedding in
-spaces of higher dimension. \<close>
-
-(*This turns out to be sufficient (since any set in
-R^n can be embedded as a closed subset of a convex subset of R^{n+1}) to
-derive the usual definitions, but we need to split them into two
-implications because of the lack of type quantifiers. Then ENR turns out
-to be equivalent to ANR plus local compactness. -- JRH*)
-
-definition AR :: "'a::topological_space set => bool"
-  where
-   "AR S \<equiv> \<forall>U. \<forall>S'::('a * real) set. S homeomorphic S' \<and> closedin (subtopology euclidean U) S'
-                \<longrightarrow> S' retract_of U"
-
-definition ANR :: "'a::topological_space set => bool"
-  where
-   "ANR S \<equiv> \<forall>U. \<forall>S'::('a * real) set. S homeomorphic S' \<and> closedin (subtopology euclidean U) S'
-                \<longrightarrow> (\<exists>T. openin (subtopology euclidean U) T \<and>
-                        S' retract_of T)"
-
-definition ENR :: "'a::topological_space set => bool"
-  where "ENR S \<equiv> \<exists>U. open U \<and> S retract_of U"
-
-text\<open> First, show that we do indeed get the "usual" properties of ARs and ANRs.\<close>
-
-proposition AR_imp_absolute_extensor:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "AR S" and contf: "continuous_on T f" and "f ` T \<subseteq> S"
-      and cloUT: "closedin (subtopology euclidean U) T"
-  obtains g where "continuous_on U g" "g ` U \<subseteq> S" "\<And>x. x \<in> T \<Longrightarrow> g x = f x"
-proof -
-  have "aff_dim S < int (DIM('b \<times> real))"
-    using aff_dim_le_DIM [of S] by simp
-  then obtain C and S' :: "('b * real) set"
-          where C: "convex C" "C \<noteq> {}"
-            and cloCS: "closedin (subtopology euclidean C) S'"
-            and hom: "S homeomorphic S'"
-    by (metis that homeomorphic_closedin_convex)
-  then have "S' retract_of C"
-    using \<open>AR S\<close> by (simp add: AR_def)
-  then obtain r where "S' \<subseteq> C" and contr: "continuous_on C r"
-                  and "r ` C \<subseteq> S'" and rid: "\<And>x. x\<in>S' \<Longrightarrow> r x = x"
-    by (auto simp: retraction_def retract_of_def)
-  obtain g h where "homeomorphism S S' g h"
-    using hom by (force simp: homeomorphic_def)
-  then have "continuous_on (f ` T) g"
-    by (meson \<open>f ` T \<subseteq> S\<close> continuous_on_subset homeomorphism_def)
-  then have contgf: "continuous_on T (g o f)"
-    by (metis continuous_on_compose contf)
-  have gfTC: "(g \<circ> f) ` T \<subseteq> C"
-  proof -
-    have "g ` S = S'"
-      by (metis (no_types) \<open>homeomorphism S S' g h\<close> homeomorphism_def)
-    with \<open>S' \<subseteq> C\<close> \<open>f ` T \<subseteq> S\<close> show ?thesis by force
-  qed
-  obtain f' where f': "continuous_on U f'"  "f' ` U \<subseteq> C"
-                      "\<And>x. x \<in> T \<Longrightarrow> f' x = (g \<circ> f) x"
-    by (metis Dugundji [OF C cloUT contgf gfTC])
-  show ?thesis
-  proof (rule_tac g = "h o r o f'" in that)
-    show "continuous_on U (h \<circ> r \<circ> f')"
-      apply (intro continuous_on_compose f')
-       using continuous_on_subset contr f' apply blast
-      by (meson \<open>homeomorphism S S' g h\<close> \<open>r ` C \<subseteq> S'\<close> continuous_on_subset \<open>f' ` U \<subseteq> C\<close> homeomorphism_def image_mono)
-    show "(h \<circ> r \<circ> f') ` U \<subseteq> S"
-      using \<open>homeomorphism S S' g h\<close> \<open>r ` C \<subseteq> S'\<close> \<open>f' ` U \<subseteq> C\<close>
-      by (fastforce simp: homeomorphism_def)
-    show "\<And>x. x \<in> T \<Longrightarrow> (h \<circ> r \<circ> f') x = f x"
-      using \<open>homeomorphism S S' g h\<close> \<open>f ` T \<subseteq> S\<close> f'
-      by (auto simp: rid homeomorphism_def)
-  qed
-qed
-
-lemma AR_imp_absolute_retract:
-  fixes S :: "'a::euclidean_space set" and S' :: "'b::euclidean_space set"
-  assumes "AR S" "S homeomorphic S'"
-      and clo: "closedin (subtopology euclidean U) S'"
-    shows "S' retract_of U"
-proof -
-  obtain g h where hom: "homeomorphism S S' g h"
-    using assms by (force simp: homeomorphic_def)
-  have h: "continuous_on S' h" " h ` S' \<subseteq> S"
-    using hom homeomorphism_def apply blast
-    apply (metis hom equalityE homeomorphism_def)
-    done
-  obtain h' where h': "continuous_on U h'" "h' ` U \<subseteq> S"
-              and h'h: "\<And>x. x \<in> S' \<Longrightarrow> h' x = h x"
-    by (blast intro: AR_imp_absolute_extensor [OF \<open>AR S\<close> h clo])
-  have [simp]: "S' \<subseteq> U" using clo closedin_limpt by blast
-  show ?thesis
-  proof (simp add: retraction_def retract_of_def, intro exI conjI)
-    show "continuous_on U (g o h')"
-      apply (intro continuous_on_compose h')
-      apply (meson hom continuous_on_subset h' homeomorphism_cont1)
-      done
-    show "(g \<circ> h') ` U \<subseteq> S'"
-      using h'  by clarsimp (metis hom subsetD homeomorphism_def imageI)
-    show "\<forall>x\<in>S'. (g \<circ> h') x = x"
-      by clarsimp (metis h'h hom homeomorphism_def)
-  qed
-qed
-
-lemma AR_imp_absolute_retract_UNIV:
-  fixes S :: "'a::euclidean_space set" and S' :: "'b::euclidean_space set"
-  assumes "AR S" and hom: "S homeomorphic S'"
-      and clo: "closed S'"
-    shows "S' retract_of UNIV"
-apply (rule AR_imp_absolute_retract [OF \<open>AR S\<close> hom])
-using clo closed_closedin by auto
-
-lemma absolute_extensor_imp_AR:
-  fixes S :: "'a::euclidean_space set"
-  assumes "\<And>f :: 'a * real \<Rightarrow> 'a.
-           \<And>U T. \<lbrakk>continuous_on T f;  f ` T \<subseteq> S;
-                  closedin (subtopology euclidean U) T\<rbrakk>
-                 \<Longrightarrow> \<exists>g. continuous_on U g \<and> g ` U \<subseteq> S \<and> (\<forall>x \<in> T. g x = f x)"
-  shows "AR S"
-proof (clarsimp simp: AR_def)
-  fix U and T :: "('a * real) set"
-  assume "S homeomorphic T" and clo: "closedin (subtopology euclidean U) T"
-  then obtain g h where hom: "homeomorphism S T g h"
-    by (force simp: homeomorphic_def)
-  have h: "continuous_on T h" " h ` T \<subseteq> S"
-    using hom homeomorphism_def apply blast
-    apply (metis hom equalityE homeomorphism_def)
-    done
-  obtain h' where h': "continuous_on U h'" "h' ` U \<subseteq> S"
-              and h'h: "\<forall>x\<in>T. h' x = h x"
-    using assms [OF h clo] by blast
-  have [simp]: "T \<subseteq> U"
-    using clo closedin_imp_subset by auto
-  show "T retract_of U"
-  proof (simp add: retraction_def retract_of_def, intro exI conjI)
-    show "continuous_on U (g o h')"
-      apply (intro continuous_on_compose h')
-      apply (meson hom continuous_on_subset h' homeomorphism_cont1)
-      done
-    show "(g \<circ> h') ` U \<subseteq> T"
-      using h'  by clarsimp (metis hom subsetD homeomorphism_def imageI)
-    show "\<forall>x\<in>T. (g \<circ> h') x = x"
-      by clarsimp (metis h'h hom homeomorphism_def)
-  qed
-qed
-
-lemma AR_eq_absolute_extensor:
-  fixes S :: "'a::euclidean_space set"
-  shows "AR S \<longleftrightarrow>
-       (\<forall>f :: 'a * real \<Rightarrow> 'a.
-        \<forall>U T. continuous_on T f \<longrightarrow> f ` T \<subseteq> S \<longrightarrow>
-               closedin (subtopology euclidean U) T \<longrightarrow>
-                (\<exists>g. continuous_on U g \<and> g ` U \<subseteq> S \<and> (\<forall>x \<in> T. g x = f x)))"
-apply (rule iffI)
- apply (metis AR_imp_absolute_extensor)
-apply (simp add: absolute_extensor_imp_AR)
-done
-
-lemma AR_imp_retract:
-  fixes S :: "'a::euclidean_space set"
-  assumes "AR S \<and> closedin (subtopology euclidean U) S"
-    shows "S retract_of U"
-using AR_imp_absolute_retract assms homeomorphic_refl by blast
-
-lemma AR_homeomorphic_AR:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "AR T" "S homeomorphic T"
-    shows "AR S"
-unfolding AR_def
-by (metis assms AR_imp_absolute_retract homeomorphic_trans [of _ S] homeomorphic_sym)
-
-lemma homeomorphic_AR_iff_AR:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  shows "S homeomorphic T \<Longrightarrow> AR S \<longleftrightarrow> AR T"
-by (metis AR_homeomorphic_AR homeomorphic_sym)
-
-
-proposition ANR_imp_absolute_neighbourhood_extensor:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "ANR S" and contf: "continuous_on T f" and "f ` T \<subseteq> S"
-      and cloUT: "closedin (subtopology euclidean U) T"
-  obtains V g where "T \<subseteq> V" "openin (subtopology euclidean U) V"
-                    "continuous_on V g"
-                    "g ` V \<subseteq> S" "\<And>x. x \<in> T \<Longrightarrow> g x = f x"
-proof -
-  have "aff_dim S < int (DIM('b \<times> real))"
-    using aff_dim_le_DIM [of S] by simp
-  then obtain C and S' :: "('b * real) set"
-          where C: "convex C" "C \<noteq> {}"
-            and cloCS: "closedin (subtopology euclidean C) S'"
-            and hom: "S homeomorphic S'"
-    by (metis that homeomorphic_closedin_convex)
-  then obtain D where opD: "openin (subtopology euclidean C) D" and "S' retract_of D"
-    using \<open>ANR S\<close> by (auto simp: ANR_def)
-  then obtain r where "S' \<subseteq> D" and contr: "continuous_on D r"
-                  and "r ` D \<subseteq> S'" and rid: "\<And>x. x \<in> S' \<Longrightarrow> r x = x"
-    by (auto simp: retraction_def retract_of_def)
-  obtain g h where homgh: "homeomorphism S S' g h"
-    using hom by (force simp: homeomorphic_def)
-  have "continuous_on (f ` T) g"
-    by (meson \<open>f ` T \<subseteq> S\<close> continuous_on_subset homeomorphism_def homgh)
-  then have contgf: "continuous_on T (g o f)"
-    by (intro continuous_on_compose contf)
-  have gfTC: "(g \<circ> f) ` T \<subseteq> C"
-  proof -
-    have "g ` S = S'"
-      by (metis (no_types) homeomorphism_def homgh)
-    then show ?thesis
-      by (metis (no_types) assms(3) cloCS closedin_def image_comp image_mono order.trans topspace_euclidean_subtopology)
-  qed
-  obtain f' where contf': "continuous_on U f'"
-              and "f' ` U \<subseteq> C"
-              and eq: "\<And>x. x \<in> T \<Longrightarrow> f' x = (g \<circ> f) x"
-    by (metis Dugundji [OF C cloUT contgf gfTC])
-  show ?thesis
-  proof (rule_tac V = "{x \<in> U. f' x \<in> D}" and g = "h o r o f'" in that)
-    show "T \<subseteq> {x \<in> U. f' x \<in> D}"
-      using cloUT closedin_imp_subset \<open>S' \<subseteq> D\<close> \<open>f ` T \<subseteq> S\<close> eq homeomorphism_image1 homgh
-      by fastforce
-    show ope: "openin (subtopology euclidean U) {x \<in> U. f' x \<in> D}"
-      using  \<open>f' ` U \<subseteq> C\<close> by (auto simp: opD contf' continuous_openin_preimage)
-    have conth: "continuous_on (r ` f' ` {x \<in> U. f' x \<in> D}) h"
-      apply (rule continuous_on_subset [of S'])
-      using homeomorphism_def homgh apply blast
-      using \<open>r ` D \<subseteq> S'\<close> by blast
-    show "continuous_on {x \<in> U. f' x \<in> D} (h \<circ> r \<circ> f')"
-      apply (intro continuous_on_compose conth
-                   continuous_on_subset [OF contr] continuous_on_subset [OF contf'], auto)
-      done
-    show "(h \<circ> r \<circ> f') ` {x \<in> U. f' x \<in> D} \<subseteq> S"
-      using \<open>homeomorphism S S' g h\<close>  \<open>f' ` U \<subseteq> C\<close>  \<open>r ` D \<subseteq> S'\<close>
-      by (auto simp: homeomorphism_def)
-    show "\<And>x. x \<in> T \<Longrightarrow> (h \<circ> r \<circ> f') x = f x"
-      using \<open>homeomorphism S S' g h\<close> \<open>f ` T \<subseteq> S\<close> eq
-      by (auto simp: rid homeomorphism_def)
-  qed
-qed
-
-
-corollary ANR_imp_absolute_neighbourhood_retract:
-  fixes S :: "'a::euclidean_space set" and S' :: "'b::euclidean_space set"
-  assumes "ANR S" "S homeomorphic S'"
-      and clo: "closedin (subtopology euclidean U) S'"
-  obtains V where "openin (subtopology euclidean U) V" "S' retract_of V"
-proof -
-  obtain g h where hom: "homeomorphism S S' g h"
-    using assms by (force simp: homeomorphic_def)
-  have h: "continuous_on S' h" " h ` S' \<subseteq> S"
-    using hom homeomorphism_def apply blast
-    apply (metis hom equalityE homeomorphism_def)
-    done
-    from ANR_imp_absolute_neighbourhood_extensor [OF \<open>ANR S\<close> h clo]
-  obtain V h' where "S' \<subseteq> V" and opUV: "openin (subtopology euclidean U) V"
-                and h': "continuous_on V h'" "h' ` V \<subseteq> S"
-                and h'h:"\<And>x. x \<in> S' \<Longrightarrow> h' x = h x"
-    by (blast intro: ANR_imp_absolute_neighbourhood_extensor [OF \<open>ANR S\<close> h clo])
-  have "S' retract_of V"
-  proof (simp add: retraction_def retract_of_def, intro exI conjI \<open>S' \<subseteq> V\<close>)
-    show "continuous_on V (g o h')"
-      apply (intro continuous_on_compose h')
-      apply (meson hom continuous_on_subset h' homeomorphism_cont1)
-      done
-    show "(g \<circ> h') ` V \<subseteq> S'"
-      using h'  by clarsimp (metis hom subsetD homeomorphism_def imageI)
-    show "\<forall>x\<in>S'. (g \<circ> h') x = x"
-      by clarsimp (metis h'h hom homeomorphism_def)
-  qed
-  then show ?thesis
-    by (rule that [OF opUV])
-qed
-
-corollary ANR_imp_absolute_neighbourhood_retract_UNIV:
-  fixes S :: "'a::euclidean_space set" and S' :: "'b::euclidean_space set"
-  assumes "ANR S" and hom: "S homeomorphic S'" and clo: "closed S'"
-  obtains V where "open V" "S' retract_of V"
-  using ANR_imp_absolute_neighbourhood_retract [OF \<open>ANR S\<close> hom]
-by (metis clo closed_closedin open_openin subtopology_UNIV)
-
-lemma absolute_neighbourhood_extensor_imp_ANR:
-  fixes S :: "'a::euclidean_space set"
-  assumes "\<And>f :: 'a * real \<Rightarrow> 'a.
-           \<And>U T. \<lbrakk>continuous_on T f;  f ` T \<subseteq> S;
-                  closedin (subtopology euclidean U) T\<rbrakk>
-                 \<Longrightarrow> \<exists>V g. T \<subseteq> V \<and> openin (subtopology euclidean U) V \<and>
-                       continuous_on V g \<and> g ` V \<subseteq> S \<and> (\<forall>x \<in> T. g x = f x)"
-  shows "ANR S"
-proof (clarsimp simp: ANR_def)
-  fix U and T :: "('a * real) set"
-  assume "S homeomorphic T" and clo: "closedin (subtopology euclidean U) T"
-  then obtain g h where hom: "homeomorphism S T g h"
-    by (force simp: homeomorphic_def)
-  have h: "continuous_on T h" " h ` T \<subseteq> S"
-    using hom homeomorphism_def apply blast
-    apply (metis hom equalityE homeomorphism_def)
-    done
-  obtain V h' where "T \<subseteq> V" and opV: "openin (subtopology euclidean U) V"
-                and h': "continuous_on V h'" "h' ` V \<subseteq> S"
-              and h'h: "\<forall>x\<in>T. h' x = h x"
-    using assms [OF h clo] by blast
-  have [simp]: "T \<subseteq> U"
-    using clo closedin_imp_subset by auto
-  have "T retract_of V"
-  proof (simp add: retraction_def retract_of_def, intro exI conjI \<open>T \<subseteq> V\<close>)
-    show "continuous_on V (g o h')"
-      apply (intro continuous_on_compose h')
-      apply (meson hom continuous_on_subset h' homeomorphism_cont1)
-      done
-    show "(g \<circ> h') ` V \<subseteq> T"
-      using h'  by clarsimp (metis hom subsetD homeomorphism_def imageI)
-    show "\<forall>x\<in>T. (g \<circ> h') x = x"
-      by clarsimp (metis h'h hom homeomorphism_def)
-  qed
-  then show "\<exists>V. openin (subtopology euclidean U) V \<and> T retract_of V"
-    using opV by blast
-qed
-
-lemma ANR_eq_absolute_neighbourhood_extensor:
-  fixes S :: "'a::euclidean_space set"
-  shows "ANR S \<longleftrightarrow>
-         (\<forall>f :: 'a * real \<Rightarrow> 'a.
-          \<forall>U T. continuous_on T f \<longrightarrow> f ` T \<subseteq> S \<longrightarrow>
-                closedin (subtopology euclidean U) T \<longrightarrow>
-               (\<exists>V g. T \<subseteq> V \<and> openin (subtopology euclidean U) V \<and>
-                       continuous_on V g \<and> g ` V \<subseteq> S \<and> (\<forall>x \<in> T. g x = f x)))"
-apply (rule iffI)
- apply (metis ANR_imp_absolute_neighbourhood_extensor)
-apply (simp add: absolute_neighbourhood_extensor_imp_ANR)
-done
-
-lemma ANR_imp_neighbourhood_retract:
-  fixes S :: "'a::euclidean_space set"
-  assumes "ANR S" "closedin (subtopology euclidean U) S"
-  obtains V where "openin (subtopology euclidean U) V" "S retract_of V"
-using ANR_imp_absolute_neighbourhood_retract assms homeomorphic_refl by blast
-
-lemma ANR_imp_absolute_closed_neighbourhood_retract:
-  fixes S :: "'a::euclidean_space set" and S' :: "'b::euclidean_space set"
-  assumes "ANR S" "S homeomorphic S'" and US': "closedin (subtopology euclidean U) S'"
-  obtains V W
-    where "openin (subtopology euclidean U) V"
-          "closedin (subtopology euclidean U) W"
-          "S' \<subseteq> V" "V \<subseteq> W" "S' retract_of W"
-proof -
-  obtain Z where "openin (subtopology euclidean U) Z" and S'Z: "S' retract_of Z"
-    by (blast intro: assms ANR_imp_absolute_neighbourhood_retract)
-  then have UUZ: "closedin (subtopology euclidean U) (U - Z)"
-    by auto
-  have "S' \<inter> (U - Z) = {}"
-    using \<open>S' retract_of Z\<close> closedin_retract closedin_subtopology by fastforce
-  then obtain V W
-      where "openin (subtopology euclidean U) V"
-        and "openin (subtopology euclidean U) W"
-        and "S' \<subseteq> V" "U - Z \<subseteq> W" "V \<inter> W = {}"
-      using separation_normal_local [OF US' UUZ]  by auto
-  moreover have "S' retract_of U - W"
-    apply (rule retract_of_subset [OF S'Z])
-    using US' \<open>S' \<subseteq> V\<close> \<open>V \<inter> W = {}\<close> closedin_subset apply fastforce
-    using Diff_subset_conv \<open>U - Z \<subseteq> W\<close> by blast
-  ultimately show ?thesis
-    apply (rule_tac V=V and W = "U-W" in that)
-    using openin_imp_subset apply (force simp:)+
-    done
-qed
-
-lemma ANR_imp_closed_neighbourhood_retract:
-  fixes S :: "'a::euclidean_space set"
-  assumes "ANR S" "closedin (subtopology euclidean U) S"
-  obtains V W where "openin (subtopology euclidean U) V"
-                    "closedin (subtopology euclidean U) W"
-                    "S \<subseteq> V" "V \<subseteq> W" "S retract_of W"
-by (meson ANR_imp_absolute_closed_neighbourhood_retract assms homeomorphic_refl)
-
-lemma ANR_homeomorphic_ANR:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "ANR T" "S homeomorphic T"
-    shows "ANR S"
-unfolding ANR_def
-by (metis assms ANR_imp_absolute_neighbourhood_retract homeomorphic_trans [of _ S] homeomorphic_sym)
-
-lemma homeomorphic_ANR_iff_ANR:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  shows "S homeomorphic T \<Longrightarrow> ANR S \<longleftrightarrow> ANR T"
-by (metis ANR_homeomorphic_ANR homeomorphic_sym)
-
-subsection\<open> Analogous properties of ENRs.\<close>
-
-proposition ENR_imp_absolute_neighbourhood_retract:
-  fixes S :: "'a::euclidean_space set" and S' :: "'b::euclidean_space set"
-  assumes "ENR S" and hom: "S homeomorphic S'"
-      and "S' \<subseteq> U"
-  obtains V where "openin (subtopology euclidean U) V" "S' retract_of V"
-proof -
-  obtain X where "open X" "S retract_of X"
-    using \<open>ENR S\<close> by (auto simp: ENR_def)
-  then obtain r where "retraction X S r"
-    by (auto simp: retract_of_def)
-  have "locally compact S'"
-    using retract_of_locally_compact open_imp_locally_compact
-          homeomorphic_local_compactness \<open>S retract_of X\<close> \<open>open X\<close> hom by blast
-  then obtain W where UW: "openin (subtopology euclidean U) W"
-                  and WS': "closedin (subtopology euclidean W) S'"
-    apply (rule locally_compact_closedin_open)
-    apply (rename_tac W)
-    apply (rule_tac W = "U \<inter> W" in that, blast)
-    by (simp add: \<open>S' \<subseteq> U\<close> closedin_limpt)
-  obtain f g where hom: "homeomorphism S S' f g"
-    using assms by (force simp: homeomorphic_def)
-  have contg: "continuous_on S' g"
-    using hom homeomorphism_def by blast
-  moreover have "g ` S' \<subseteq> S" by (metis hom equalityE homeomorphism_def)
-  ultimately obtain h where conth: "continuous_on W h" and hg: "\<And>x. x \<in> S' \<Longrightarrow> h x = g x"
-    using Tietze_unbounded [of S' g W] WS' by blast
-  have "W \<subseteq> U" using UW openin_open by auto
-  have "S' \<subseteq> W" using WS' closedin_closed by auto
-  have him: "\<And>x. x \<in> S' \<Longrightarrow> h x \<in> X"
-    by (metis (no_types) \<open>S retract_of X\<close> hg hom homeomorphism_def image_insert insert_absorb insert_iff retract_of_imp_subset subset_eq)
-  have "S' retract_of {x \<in> W. h x \<in> X}"
-  proof (simp add: retraction_def retract_of_def, intro exI conjI)
-    show "S' \<subseteq> {x \<in> W. h x \<in> X}"
-      using him WS' closedin_imp_subset by blast
-    show "continuous_on {x \<in> W. h x \<in> X} (f o r o h)"
-    proof (intro continuous_on_compose)
-      show "continuous_on {x \<in> W. h x \<in> X} h"
-        by (metis (no_types) Collect_restrict conth continuous_on_subset)
-      show "continuous_on (h ` {x \<in> W. h x \<in> X}) r"
-      proof -
-        have "h ` {b \<in> W. h b \<in> X} \<subseteq> X"
-          by blast
-        then show "continuous_on (h ` {b \<in> W. h b \<in> X}) r"
-          by (meson \<open>retraction X S r\<close> continuous_on_subset retraction)
-      qed
-      show "continuous_on (r ` h ` {x \<in> W. h x \<in> X}) f"
-        apply (rule continuous_on_subset [of S])
-         using hom homeomorphism_def apply blast
-        apply clarify
-        apply (meson \<open>retraction X S r\<close> subsetD imageI retraction_def)
-        done
-    qed
-    show "(f \<circ> r \<circ> h) ` {x \<in> W. h x \<in> X} \<subseteq> S'"
-      using \<open>retraction X S r\<close> hom
-      by (auto simp: retraction_def homeomorphism_def)
-    show "\<forall>x\<in>S'. (f \<circ> r \<circ> h) x = x"
-      using \<open>retraction X S r\<close> hom by (auto simp: retraction_def homeomorphism_def hg)
-  qed
-  then show ?thesis
-    apply (rule_tac V = "{x. x \<in> W \<and> h x \<in> X}" in that)
-     apply (rule openin_trans [OF _ UW])
-     using \<open>continuous_on W h\<close> \<open>open X\<close> continuous_openin_preimage_eq apply blast+
-     done
-qed
-
-corollary ENR_imp_absolute_neighbourhood_retract_UNIV:
-  fixes S :: "'a::euclidean_space set" and S' :: "'b::euclidean_space set"
-  assumes "ENR S" "S homeomorphic S'"
-  obtains T' where "open T'" "S' retract_of T'"
-by (metis ENR_imp_absolute_neighbourhood_retract UNIV_I assms(1) assms(2) open_openin subsetI subtopology_UNIV)
-
-lemma ENR_homeomorphic_ENR:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "ENR T" "S homeomorphic T"
-    shows "ENR S"
-unfolding ENR_def
-by (meson ENR_imp_absolute_neighbourhood_retract_UNIV assms homeomorphic_sym)
-
-lemma homeomorphic_ENR_iff_ENR:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "S homeomorphic T"
-    shows "ENR S \<longleftrightarrow> ENR T"
-by (meson ENR_homeomorphic_ENR assms homeomorphic_sym)
-
-lemma ENR_translation:
-  fixes S :: "'a::euclidean_space set"
-  shows "ENR(image (\<lambda>x. a + x) S) \<longleftrightarrow> ENR S"
-by (meson homeomorphic_sym homeomorphic_translation homeomorphic_ENR_iff_ENR)
-
-lemma ENR_linear_image_eq:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "linear f" "inj f"
-  shows "ENR (image f S) \<longleftrightarrow> ENR S"
-apply (rule homeomorphic_ENR_iff_ENR)
-using assms homeomorphic_sym linear_homeomorphic_image by auto
-
-subsection\<open>Some relations among the concepts\<close>
-
-text\<open>We also relate AR to being a retract of UNIV, which is often a more convenient proxy in the closed case.\<close>
-
-lemma AR_imp_ANR: "AR S \<Longrightarrow> ANR S"
-  using ANR_def AR_def by fastforce
-
-lemma ENR_imp_ANR:
-  fixes S :: "'a::euclidean_space set"
-  shows "ENR S \<Longrightarrow> ANR S"
-apply (simp add: ANR_def)
-by (metis ENR_imp_absolute_neighbourhood_retract closedin_imp_subset)
-
-lemma ENR_ANR:
-  fixes S :: "'a::euclidean_space set"
-  shows "ENR S \<longleftrightarrow> ANR S \<and> locally compact S"
-proof
-  assume "ENR S"
-  then have "locally compact S"
-    using ENR_def open_imp_locally_compact retract_of_locally_compact by auto
-  then show "ANR S \<and> locally compact S"
-    using ENR_imp_ANR \<open>ENR S\<close> by blast
-next
-  assume "ANR S \<and> locally compact S"
-  then have "ANR S" "locally compact S" by auto
-  then obtain T :: "('a * real) set" where "closed T" "S homeomorphic T"
-    using locally_compact_homeomorphic_closed
-    by (metis DIM_prod DIM_real Suc_eq_plus1 lessI)
-  then show "ENR S"
-    using \<open>ANR S\<close>
-    apply (simp add: ANR_def)
-    apply (drule_tac x=UNIV in spec)
-    apply (drule_tac x=T in spec)
-    apply (auto simp: closed_closedin)
-    apply (meson ENR_def ENR_homeomorphic_ENR open_openin)
-    done
-qed
-
-
-proposition AR_ANR:
-  fixes S :: "'a::euclidean_space set"
-  shows "AR S \<longleftrightarrow> ANR S \<and> contractible S \<and> S \<noteq> {}"
-        (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  obtain C and S' :: "('a * real) set"
-    where "convex C" "C \<noteq> {}" "closedin (subtopology euclidean C) S'" "S homeomorphic S'"
-      apply (rule homeomorphic_closedin_convex [of S, where 'n = "'a * real"])
-      using aff_dim_le_DIM [of S] by auto
-  with \<open>AR S\<close> have "contractible S"
-    apply (simp add: AR_def)
-    apply (drule_tac x=C in spec)
-    apply (drule_tac x="S'" in spec, simp)
-    using convex_imp_contractible homeomorphic_contractible_eq retract_of_contractible by fastforce
-  with \<open>AR S\<close> show ?rhs
-    apply (auto simp: AR_imp_ANR)
-    apply (force simp: AR_def)
-    done
-next
-  assume ?rhs
-  then obtain a and h:: "real \<times> 'a \<Rightarrow> 'a"
-      where conth: "continuous_on ({0..1} \<times> S) h"
-        and hS: "h ` ({0..1} \<times> S) \<subseteq> S"
-        and [simp]: "\<And>x. h(0, x) = x"
-        and [simp]: "\<And>x. h(1, x) = a"
-        and "ANR S" "S \<noteq> {}"
-    by (auto simp: contractible_def homotopic_with_def)
-  then have "a \<in> S"
-    by (metis all_not_in_conv atLeastAtMost_iff image_subset_iff mem_Sigma_iff order_refl zero_le_one)
-  have "\<exists>g. continuous_on W g \<and> g ` W \<subseteq> S \<and> (\<forall>x\<in>T. g x = f x)"
-         if      f: "continuous_on T f" "f ` T \<subseteq> S"
-            and WT: "closedin (subtopology euclidean W) T"
-         for W T and f :: "'a \<times> real \<Rightarrow> 'a"
-  proof -
-    obtain U g
-      where "T \<subseteq> U" and WU: "openin (subtopology euclidean W) U"
-        and contg: "continuous_on U g"
-        and "g ` U \<subseteq> S" and gf: "\<And>x. x \<in> T \<Longrightarrow> g x = f x"
-      using iffD1 [OF ANR_eq_absolute_neighbourhood_extensor \<open>ANR S\<close>, rule_format, OF f WT]
-      by auto
-    have WWU: "closedin (subtopology euclidean W) (W - U)"
-      using WU closedin_diff by fastforce
-    moreover have "(W - U) \<inter> T = {}"
-      using \<open>T \<subseteq> U\<close> by auto
-    ultimately obtain V V'
-      where WV': "openin (subtopology euclidean W) V'"
-        and WV: "openin (subtopology euclidean W) V"
-        and "W - U \<subseteq> V'" "T \<subseteq> V" "V' \<inter> V = {}"
-      using separation_normal_local [of W "W-U" T] WT by blast
-    then have WVT: "T \<inter> (W - V) = {}"
-      by auto
-    have WWV: "closedin (subtopology euclidean W) (W - V)"
-      using WV closedin_diff by fastforce
-    obtain j :: " 'a \<times> real \<Rightarrow> real"
-      where contj: "continuous_on W j"
-        and j:  "\<And>x. x \<in> W \<Longrightarrow> j x \<in> {0..1}"
-        and j0: "\<And>x. x \<in> W - V \<Longrightarrow> j x = 1"
-        and j1: "\<And>x. x \<in> T \<Longrightarrow> j x = 0"
-      by (rule Urysohn_local [OF WT WWV WVT, of 0 "1::real"]) (auto simp: in_segment)
-    have Weq: "W = (W - V) \<union> (W - V')"
-      using \<open>V' \<inter> V = {}\<close> by force
-    show ?thesis
-    proof (intro conjI exI)
-      have *: "continuous_on (W - V') (\<lambda>x. h (j x, g x))"
-        apply (rule continuous_on_compose2 [OF conth continuous_on_Pair])
-          apply (rule continuous_on_subset [OF contj Diff_subset])
-         apply (rule continuous_on_subset [OF contg])
-         apply (metis Diff_subset_conv Un_commute \<open>W - U \<subseteq> V'\<close>)
-        using j \<open>g ` U \<subseteq> S\<close> \<open>W - U \<subseteq> V'\<close> apply fastforce
-        done
-      show "continuous_on W (\<lambda>x. if x \<in> W - V then a else h (j x, g x))"
-        apply (subst Weq)
-        apply (rule continuous_on_cases_local)
-            apply (simp_all add: Weq [symmetric] WWV continuous_on_const *)
-          using WV' closedin_diff apply fastforce
-         apply (auto simp: j0 j1)
-        done
-    next
-      have "h (j (x, y), g (x, y)) \<in> S" if "(x, y) \<in> W" "(x, y) \<in> V" for x y
-      proof -
-        have "j(x, y) \<in> {0..1}"
-          using j that by blast
-        moreover have "g(x, y) \<in> S"
-          using \<open>V' \<inter> V = {}\<close> \<open>W - U \<subseteq> V'\<close> \<open>g ` U \<subseteq> S\<close> that by fastforce
-        ultimately show ?thesis
-          using hS by blast
-      qed
-      with \<open>a \<in> S\<close> \<open>g ` U \<subseteq> S\<close>
-      show "(\<lambda>x. if x \<in> W - V then a else h (j x, g x)) ` W \<subseteq> S"
-        by auto
-    next
-      show "\<forall>x\<in>T. (if x \<in> W - V then a else h (j x, g x)) = f x"
-        using \<open>T \<subseteq> V\<close> by (auto simp: j0 j1 gf)
-    qed
-  qed
-  then show ?lhs
-    by (simp add: AR_eq_absolute_extensor)
-qed
-
-
-lemma ANR_retract_of_ANR:
-  fixes S :: "'a::euclidean_space set"
-  assumes "ANR T" "S retract_of T"
-  shows "ANR S"
-using assms
-apply (simp add: ANR_eq_absolute_neighbourhood_extensor retract_of_def retraction_def)
-apply (clarsimp elim!: all_forward)
-apply (erule impCE, metis subset_trans)
-apply (clarsimp elim!: ex_forward)
-apply (rule_tac x="r o g" in exI)
-by (metis comp_apply continuous_on_compose continuous_on_subset subsetD imageI image_comp image_mono subset_trans)
-
-lemma AR_retract_of_AR:
-  fixes S :: "'a::euclidean_space set"
-  shows "\<lbrakk>AR T; S retract_of T\<rbrakk> \<Longrightarrow> AR S"
-using ANR_retract_of_ANR AR_ANR retract_of_contractible by fastforce
-
-lemma ENR_retract_of_ENR:
-   "\<lbrakk>ENR T; S retract_of T\<rbrakk> \<Longrightarrow> ENR S"
-by (meson ENR_def retract_of_trans)
-
-lemma retract_of_UNIV:
-  fixes S :: "'a::euclidean_space set"
-  shows "S retract_of UNIV \<longleftrightarrow> AR S \<and> closed S"
-by (metis AR_ANR AR_imp_retract ENR_def ENR_imp_ANR closed_UNIV closed_closedin contractible_UNIV empty_not_UNIV open_UNIV retract_of_closed retract_of_contractible retract_of_empty(1) subtopology_UNIV)
-
-lemma compact_AR [simp]:
-  fixes S :: "'a::euclidean_space set"
-  shows "compact S \<and> AR S \<longleftrightarrow> compact S \<and> S retract_of UNIV"
-using compact_imp_closed retract_of_UNIV by blast
-
-subsection\<open>More properties of ARs, ANRs and ENRs\<close>
-
-lemma not_AR_empty [simp]: "~ AR({})"
-  by (auto simp: AR_def)
-
-lemma ENR_empty [simp]: "ENR {}"
-  by (simp add: ENR_def)
-
-lemma ANR_empty [simp]: "ANR ({} :: 'a::euclidean_space set)"
-  by (simp add: ENR_imp_ANR)
-
-lemma convex_imp_AR:
-  fixes S :: "'a::euclidean_space set"
-  shows "\<lbrakk>convex S; S \<noteq> {}\<rbrakk> \<Longrightarrow> AR S"
-apply (rule absolute_extensor_imp_AR)
-apply (rule Dugundji, assumption+)
-by blast
-
-lemma convex_imp_ANR:
-  fixes S :: "'a::euclidean_space set"
-  shows "convex S \<Longrightarrow> ANR S"
-using ANR_empty AR_imp_ANR convex_imp_AR by blast
-
-lemma ENR_convex_closed:
-  fixes S :: "'a::euclidean_space set"
-  shows "\<lbrakk>closed S; convex S\<rbrakk> \<Longrightarrow> ENR S"
-using ENR_def ENR_empty convex_imp_AR retract_of_UNIV by blast
-
-lemma AR_UNIV [simp]: "AR (UNIV :: 'a::euclidean_space set)"
-  using retract_of_UNIV by auto
-
-lemma ANR_UNIV [simp]: "ANR (UNIV :: 'a::euclidean_space set)"
-  by (simp add: AR_imp_ANR)
-
-lemma ENR_UNIV [simp]:"ENR UNIV"
-  using ENR_def by blast
-
-lemma AR_singleton:
-    fixes a :: "'a::euclidean_space"
-    shows "AR {a}"
-  using retract_of_UNIV by blast
-
-lemma ANR_singleton:
-    fixes a :: "'a::euclidean_space"
-    shows "ANR {a}"
-  by (simp add: AR_imp_ANR AR_singleton)
-
-lemma ENR_singleton: "ENR {a}"
-  using ENR_def by blast
-
-subsection\<open>ARs closed under union\<close>
-
-lemma AR_closed_Un_local_aux:
-  fixes U :: "'a::euclidean_space set"
-  assumes "closedin (subtopology euclidean U) S"
-          "closedin (subtopology euclidean U) T"
-          "AR S" "AR T" "AR(S \<inter> T)"
-  shows "(S \<union> T) retract_of U"
-proof -
-  have "S \<inter> T \<noteq> {}"
-    using assms AR_def by fastforce
-  have "S \<subseteq> U" "T \<subseteq> U"
-    using assms by (auto simp: closedin_imp_subset)
-  define S' where "S' \<equiv> {x \<in> U. setdist {x} S \<le> setdist {x} T}"
-  define T' where "T' \<equiv> {x \<in> U. setdist {x} T \<le> setdist {x} S}"
-  define W  where "W \<equiv> {x \<in> U. setdist {x} S = setdist {x} T}"
-  have US': "closedin (subtopology euclidean U) S'"
-    using continuous_closedin_preimage [of U "\<lambda>x. setdist {x} S - setdist {x} T" "{..0}"]
-    by (simp add: S'_def continuous_intros)
-  have UT': "closedin (subtopology euclidean U) T'"
-    using continuous_closedin_preimage [of U "\<lambda>x. setdist {x} T - setdist {x} S" "{..0}"]
-    by (simp add: T'_def continuous_intros)
-  have "S \<subseteq> S'"
-    using S'_def \<open>S \<subseteq> U\<close> setdist_sing_in_set by fastforce
-  have "T \<subseteq> T'"
-    using T'_def \<open>T \<subseteq> U\<close> setdist_sing_in_set by fastforce
-  have "S \<inter> T \<subseteq> W" "W \<subseteq> U"
-    using \<open>S \<subseteq> U\<close> by (auto simp: W_def setdist_sing_in_set)
-  have "(S \<inter> T) retract_of W"
-    apply (rule AR_imp_absolute_retract [OF \<open>AR(S \<inter> T)\<close>])
-     apply (simp add: homeomorphic_refl)
-    apply (rule closedin_subset_trans [of U])
-    apply (simp_all add: assms closedin_Int \<open>S \<inter> T \<subseteq> W\<close> \<open>W \<subseteq> U\<close>)
-    done
-  then obtain r0
-    where "S \<inter> T \<subseteq> W" and contr0: "continuous_on W r0"
-      and "r0 ` W \<subseteq> S \<inter> T"
-      and r0 [simp]: "\<And>x. x \<in> S \<inter> T \<Longrightarrow> r0 x = x"
-      by (auto simp: retract_of_def retraction_def)
-  have ST: "x \<in> W \<Longrightarrow> x \<in> S \<longleftrightarrow> x \<in> T" for x
-    using setdist_eq_0_closedin \<open>S \<inter> T \<noteq> {}\<close> assms
-    by (force simp: W_def setdist_sing_in_set)
-  have "S' \<inter> T' = W"
-    by (auto simp: S'_def T'_def W_def)
-  then have cloUW: "closedin (subtopology euclidean U) W"
-    using closedin_Int US' UT' by blast
-  define r where "r \<equiv> \<lambda>x. if x \<in> W then r0 x else x"
-  have "r ` (W \<union> S) \<subseteq> S" "r ` (W \<union> T) \<subseteq> T"
-    using \<open>r0 ` W \<subseteq> S \<inter> T\<close> r_def by auto
-  have contr: "continuous_on (W \<union> (S \<union> T)) r"
-  unfolding r_def
-  proof (rule continuous_on_cases_local [OF _ _ contr0 continuous_on_id])
-    show "closedin (subtopology euclidean (W \<union> (S \<union> T))) W"
-      using \<open>S \<subseteq> U\<close> \<open>T \<subseteq> U\<close> \<open>W \<subseteq> U\<close> \<open>closedin (subtopology euclidean U) W\<close> closedin_subset_trans by fastforce
-    show "closedin (subtopology euclidean (W \<union> (S \<union> T))) (S \<union> T)"
-      by (meson \<open>S \<subseteq> U\<close> \<open>T \<subseteq> U\<close> \<open>W \<subseteq> U\<close> assms closedin_Un closedin_subset_trans sup.bounded_iff sup.cobounded2)
-    show "\<And>x. x \<in> W \<and> x \<notin> W \<or> x \<in> S \<union> T \<and> x \<in> W \<Longrightarrow> r0 x = x"
-      by (auto simp: ST)
-  qed
-  have cloUWS: "closedin (subtopology euclidean U) (W \<union> S)"
-    by (simp add: cloUW assms closedin_Un)
-  obtain g where contg: "continuous_on U g"
-             and "g ` U \<subseteq> S" and geqr: "\<And>x. x \<in> W \<union> S \<Longrightarrow> g x = r x"
-    apply (rule AR_imp_absolute_extensor [OF \<open>AR S\<close> _ _ cloUWS])
-      apply (rule continuous_on_subset [OF contr])
-      using \<open>r ` (W \<union> S) \<subseteq> S\<close> apply auto
-    done
-  have cloUWT: "closedin (subtopology euclidean U) (W \<union> T)"
-    by (simp add: cloUW assms closedin_Un)
-  obtain h where conth: "continuous_on U h"
-             and "h ` U \<subseteq> T" and heqr: "\<And>x. x \<in> W \<union> T \<Longrightarrow> h x = r x"
-    apply (rule AR_imp_absolute_extensor [OF \<open>AR T\<close> _ _ cloUWT])
-      apply (rule continuous_on_subset [OF contr])
-      using \<open>r ` (W \<union> T) \<subseteq> T\<close> apply auto
-    done
-  have "U = S' \<union> T'"
-    by (force simp: S'_def T'_def)
-  then have cont: "continuous_on U (\<lambda>x. if x \<in> S' then g x else h x)"
-    apply (rule ssubst)
-    apply (rule continuous_on_cases_local)
-    using US' UT' \<open>S' \<inter> T' = W\<close> \<open>U = S' \<union> T'\<close>
-          contg conth continuous_on_subset geqr heqr apply auto
-    done
-  have UST: "(\<lambda>x. if x \<in> S' then g x else h x) ` U \<subseteq> S \<union> T"
-    using \<open>g ` U \<subseteq> S\<close> \<open>h ` U \<subseteq> T\<close> by auto
-  show ?thesis
-    apply (simp add: retract_of_def retraction_def \<open>S \<subseteq> U\<close> \<open>T \<subseteq> U\<close>)
-    apply (rule_tac x="\<lambda>x. if x \<in> S' then g x else h x" in exI)
-    apply (intro conjI cont UST)
-    by (metis IntI ST Un_iff \<open>S \<subseteq> S'\<close> \<open>S' \<inter> T' = W\<close> \<open>T \<subseteq> T'\<close> subsetD geqr heqr r0 r_def)
-qed
-
-
-proposition AR_closed_Un_local:
-  fixes S :: "'a::euclidean_space set"
-  assumes STS: "closedin (subtopology euclidean (S \<union> T)) S"
-      and STT: "closedin (subtopology euclidean (S \<union> T)) T"
-      and "AR S" "AR T" "AR(S \<inter> T)"
-    shows "AR(S \<union> T)"
-proof -
-  have "C retract_of U"
-       if hom: "S \<union> T homeomorphic C" and UC: "closedin (subtopology euclidean U) C"
-       for U and C :: "('a * real) set"
-  proof -
-    obtain f g where hom: "homeomorphism (S \<union> T) C f g"
-      using hom by (force simp: homeomorphic_def)
-    have US: "closedin (subtopology euclidean U) {x \<in> C. g x \<in> S}"
-      apply (rule closedin_trans [OF _ UC])
-      apply (rule continuous_closedin_preimage_gen [OF _ _ STS])
-      using hom homeomorphism_def apply blast
-      apply (metis hom homeomorphism_def set_eq_subset)
-      done
-    have UT: "closedin (subtopology euclidean U) {x \<in> C. g x \<in> T}"
-      apply (rule closedin_trans [OF _ UC])
-      apply (rule continuous_closedin_preimage_gen [OF _ _ STT])
-      using hom homeomorphism_def apply blast
-      apply (metis hom homeomorphism_def set_eq_subset)
-      done
-    have ARS: "AR {x \<in> C. g x \<in> S}"
-      apply (rule AR_homeomorphic_AR [OF \<open>AR S\<close>])
-      apply (simp add: homeomorphic_def)
-      apply (rule_tac x=g in exI)
-      apply (rule_tac x=f in exI)
-      using hom apply (auto simp: homeomorphism_def elim!: continuous_on_subset)
-      apply (rule_tac x="f x" in image_eqI, auto)
-      done
-    have ART: "AR {x \<in> C. g x \<in> T}"
-      apply (rule AR_homeomorphic_AR [OF \<open>AR T\<close>])
-      apply (simp add: homeomorphic_def)
-      apply (rule_tac x=g in exI)
-      apply (rule_tac x=f in exI)
-      using hom apply (auto simp: homeomorphism_def elim!: continuous_on_subset)
-      apply (rule_tac x="f x" in image_eqI, auto)
-      done
-    have ARI: "AR ({x \<in> C. g x \<in> S} \<inter> {x \<in> C. g x \<in> T})"
-      apply (rule AR_homeomorphic_AR [OF \<open>AR (S \<inter> T)\<close>])
-      apply (simp add: homeomorphic_def)
-      apply (rule_tac x=g in exI)
-      apply (rule_tac x=f in exI)
-      using hom
-      apply (auto simp: homeomorphism_def elim!: continuous_on_subset)
-      apply (rule_tac x="f x" in image_eqI, auto)
-      done
-    have "C = {x \<in> C. g x \<in> S} \<union> {x \<in> C. g x \<in> T}"
-      using hom  by (auto simp: homeomorphism_def)
-    then show ?thesis
-      by (metis AR_closed_Un_local_aux [OF US UT ARS ART ARI])
-  qed
-  then show ?thesis
-    by (force simp: AR_def)
-qed
-
-corollary AR_closed_Un:
-  fixes S :: "'a::euclidean_space set"
-  shows "\<lbrakk>closed S; closed T; AR S; AR T; AR (S \<inter> T)\<rbrakk> \<Longrightarrow> AR (S \<union> T)"
-by (metis AR_closed_Un_local_aux closed_closedin retract_of_UNIV subtopology_UNIV)
-
-subsection\<open>ANRs closed under union\<close>
-
-lemma ANR_closed_Un_local_aux:
-  fixes U :: "'a::euclidean_space set"
-  assumes US: "closedin (subtopology euclidean U) S"
-      and UT: "closedin (subtopology euclidean U) T"
-      and "ANR S" "ANR T" "ANR(S \<inter> T)"
-  obtains V where "openin (subtopology euclidean U) V" "(S \<union> T) retract_of V"
-proof (cases "S = {} \<or> T = {}")
-  case True with assms that show ?thesis
-    by (auto simp: intro: ANR_imp_neighbourhood_retract)
-next
-  case False
-  then have [simp]: "S \<noteq> {}" "T \<noteq> {}" by auto
-  have "S \<subseteq> U" "T \<subseteq> U"
-    using assms by (auto simp: closedin_imp_subset)
-  define S' where "S' \<equiv> {x \<in> U. setdist {x} S \<le> setdist {x} T}"
-  define T' where "T' \<equiv> {x \<in> U. setdist {x} T \<le> setdist {x} S}"
-  define W  where "W \<equiv> {x \<in> U. setdist {x} S = setdist {x} T}"
-  have cloUS': "closedin (subtopology euclidean U) S'"
-    using continuous_closedin_preimage [of U "\<lambda>x. setdist {x} S - setdist {x} T" "{..0}"]
-    by (simp add: S'_def continuous_intros)
-  have cloUT': "closedin (subtopology euclidean U) T'"
-    using continuous_closedin_preimage [of U "\<lambda>x. setdist {x} T - setdist {x} S" "{..0}"]
-    by (simp add: T'_def continuous_intros)
-  have "S \<subseteq> S'"
-    using S'_def \<open>S \<subseteq> U\<close> setdist_sing_in_set by fastforce
-  have "T \<subseteq> T'"
-    using T'_def \<open>T \<subseteq> U\<close> setdist_sing_in_set by fastforce
-  have "S' \<union> T' = U"
-    by (auto simp: S'_def T'_def)
-  have "W \<subseteq> S'"
-    by (simp add: Collect_mono S'_def W_def)
-  have "W \<subseteq> T'"
-    by (simp add: Collect_mono T'_def W_def)
-  have ST_W: "S \<inter> T \<subseteq> W" and "W \<subseteq> U"
-    using \<open>S \<subseteq> U\<close> by (force simp: W_def setdist_sing_in_set)+
-  have "S' \<inter> T' = W"
-    by (auto simp: S'_def T'_def W_def)
-  then have cloUW: "closedin (subtopology euclidean U) W"
-    using closedin_Int cloUS' cloUT' by blast
-  obtain W' W0 where "openin (subtopology euclidean W) W'"
-                 and cloWW0: "closedin (subtopology euclidean W) W0"
-                 and "S \<inter> T \<subseteq> W'" "W' \<subseteq> W0"
-                 and ret: "(S \<inter> T) retract_of W0"
-    apply (rule ANR_imp_closed_neighbourhood_retract [OF \<open>ANR(S \<inter> T)\<close>])
-    apply (rule closedin_subset_trans [of U, OF _ ST_W \<open>W \<subseteq> U\<close>])
-    apply (blast intro: assms)+
-    done
-  then obtain U0 where opeUU0: "openin (subtopology euclidean U) U0"
-                   and U0: "S \<inter> T \<subseteq> U0" "U0 \<inter> W \<subseteq> W0"
-    unfolding openin_open  using \<open>W \<subseteq> U\<close> by blast
-  have "W0 \<subseteq> U"
-    using \<open>W \<subseteq> U\<close> cloWW0 closedin_subset by fastforce
-  obtain r0
-    where "S \<inter> T \<subseteq> W0" and contr0: "continuous_on W0 r0" and "r0 ` W0 \<subseteq> S \<inter> T"
-      and r0 [simp]: "\<And>x. x \<in> S \<inter> T \<Longrightarrow> r0 x = x"
-    using ret  by (force simp add: retract_of_def retraction_def)
-  have ST: "x \<in> W \<Longrightarrow> x \<in> S \<longleftrightarrow> x \<in> T" for x
-    using assms by (auto simp: W_def setdist_sing_in_set dest!: setdist_eq_0_closedin)
-  define r where "r \<equiv> \<lambda>x. if x \<in> W0 then r0 x else x"
-  have "r ` (W0 \<union> S) \<subseteq> S" "r ` (W0 \<union> T) \<subseteq> T"
-    using \<open>r0 ` W0 \<subseteq> S \<inter> T\<close> r_def by auto
-  have contr: "continuous_on (W0 \<union> (S \<union> T)) r"
-  unfolding r_def
-  proof (rule continuous_on_cases_local [OF _ _ contr0 continuous_on_id])
-    show "closedin (subtopology euclidean (W0 \<union> (S \<union> T))) W0"
-      apply (rule closedin_subset_trans [of U])
-      using cloWW0 cloUW closedin_trans \<open>W0 \<subseteq> U\<close> \<open>S \<subseteq> U\<close> \<open>T \<subseteq> U\<close> apply blast+
-      done
-    show "closedin (subtopology euclidean (W0 \<union> (S \<union> T))) (S \<union> T)"
-      by (meson \<open>S \<subseteq> U\<close> \<open>T \<subseteq> U\<close> \<open>W0 \<subseteq> U\<close> assms closedin_Un closedin_subset_trans sup.bounded_iff sup.cobounded2)
-    show "\<And>x. x \<in> W0 \<and> x \<notin> W0 \<or> x \<in> S \<union> T \<and> x \<in> W0 \<Longrightarrow> r0 x = x"
-      using ST cloWW0 closedin_subset by fastforce
-  qed
-  have cloS'WS: "closedin (subtopology euclidean S') (W0 \<union> S)"
-    by (meson closedin_subset_trans US cloUS' \<open>S \<subseteq> S'\<close> \<open>W \<subseteq> S'\<close> cloUW cloWW0 
-              closedin_Un closedin_imp_subset closedin_trans)
-  obtain W1 g where "W0 \<union> S \<subseteq> W1" and contg: "continuous_on W1 g"
-                and opeSW1: "openin (subtopology euclidean S') W1"
-                and "g ` W1 \<subseteq> S" and geqr: "\<And>x. x \<in> W0 \<union> S \<Longrightarrow> g x = r x"
-    apply (rule ANR_imp_absolute_neighbourhood_extensor [OF \<open>ANR S\<close> _ \<open>r ` (W0 \<union> S) \<subseteq> S\<close> cloS'WS])
-     apply (rule continuous_on_subset [OF contr])
-    apply (blast intro:  elim: )+
-    done
-  have cloT'WT: "closedin (subtopology euclidean T') (W0 \<union> T)"
-    by (meson closedin_subset_trans UT cloUT' \<open>T \<subseteq> T'\<close> \<open>W \<subseteq> T'\<close> cloUW cloWW0 
-              closedin_Un closedin_imp_subset closedin_trans)
-  obtain W2 h where "W0 \<union> T \<subseteq> W2" and conth: "continuous_on W2 h"
-                and opeSW2: "openin (subtopology euclidean T') W2"
-                and "h ` W2 \<subseteq> T" and heqr: "\<And>x. x \<in> W0 \<union> T \<Longrightarrow> h x = r x"
-    apply (rule ANR_imp_absolute_neighbourhood_extensor [OF \<open>ANR T\<close> _ \<open>r ` (W0 \<union> T) \<subseteq> T\<close> cloT'WT])
-     apply (rule continuous_on_subset [OF contr])
-    apply (blast intro:  elim: )+
-    done
-  have "S' \<inter> T' = W"
-    by (force simp: S'_def T'_def W_def)
-  obtain O1 O2 where "open O1" "W1 = S' \<inter> O1" "open O2" "W2 = T' \<inter> O2"
-    using opeSW1 opeSW2 by (force simp add: openin_open)
-  show ?thesis
-  proof
-    have eq: "W1 - (W - U0) \<union> (W2 - (W - U0)) =
-         ((U - T') \<inter> O1 \<union> (U - S') \<inter> O2 \<union> U \<inter> O1 \<inter> O2) - (W - U0)"
-     using \<open>U0 \<inter> W \<subseteq> W0\<close> \<open>W0 \<union> S \<subseteq> W1\<close> \<open>W0 \<union> T \<subseteq> W2\<close>
-      by (auto simp: \<open>S' \<union> T' = U\<close> [symmetric] \<open>S' \<inter> T' = W\<close> [symmetric] \<open>W1 = S' \<inter> O1\<close> \<open>W2 = T' \<inter> O2\<close>)
-    show "openin (subtopology euclidean U) (W1 - (W - U0) \<union> (W2 - (W - U0)))"
-      apply (subst eq)
-      apply (intro openin_Un openin_Int_open openin_diff closedin_diff cloUW opeUU0 cloUS' cloUT' \<open>open O1\<close> \<open>open O2\<close>)
-      apply simp_all
-      done
-    have cloW1: "closedin (subtopology euclidean (W1 - (W - U0) \<union> (W2 - (W - U0)))) (W1 - (W - U0))"
-      using cloUS' apply (simp add: closedin_closed)
-      apply (erule ex_forward)
-      using U0 \<open>W0 \<union> S \<subseteq> W1\<close>
-      apply (auto simp add: \<open>W1 = S' \<inter> O1\<close> \<open>W2 = T' \<inter> O2\<close> \<open>S' \<union> T' = U\<close> [symmetric]\<open>S' \<inter> T' = W\<close> [symmetric])
-      done
-    have cloW2: "closedin (subtopology euclidean (W1 - (W - U0) \<union> (W2 - (W - U0)))) (W2 - (W - U0))"
-      using cloUT' apply (simp add: closedin_closed)
-      apply (erule ex_forward)
-      using U0 \<open>W0 \<union> T \<subseteq> W2\<close>
-      apply (auto simp add: \<open>W1 = S' \<inter> O1\<close> \<open>W2 = T' \<inter> O2\<close> \<open>S' \<union> T' = U\<close> [symmetric]\<open>S' \<inter> T' = W\<close> [symmetric])
-      done
-    have *: "\<forall>x\<in>S \<union> T. (if x \<in> S' then g x else h x) = x"
-      using ST \<open>S' \<inter> T' = W\<close> cloT'WT closedin_subset geqr heqr 
-      apply (auto simp: r_def)
-       apply fastforce
-      using \<open>S \<subseteq> S'\<close> \<open>T \<subseteq> T'\<close> \<open>W0 \<union> S \<subseteq> W1\<close> \<open>W1 = S' \<inter> O1\<close>  by auto
-    have "\<exists>r. continuous_on (W1 - (W - U0) \<union> (W2 - (W - U0))) r \<and>
-              r ` (W1 - (W - U0) \<union> (W2 - (W - U0))) \<subseteq> S \<union> T \<and> 
-              (\<forall>x\<in>S \<union> T. r x = x)"
-      apply (rule_tac x = "\<lambda>x. if  x \<in> S' then g x else h x" in exI)
-      apply (intro conjI *)
-      apply (rule continuous_on_cases_local 
-                  [OF cloW1 cloW2 continuous_on_subset [OF contg] continuous_on_subset [OF conth]])
-      using \<open>W1 = S' \<inter> O1\<close> \<open>W2 = T' \<inter> O2\<close> \<open>S' \<inter> T' = W\<close>
-            \<open>g ` W1 \<subseteq> S\<close> \<open>h ` W2 \<subseteq> T\<close> apply auto
-      using \<open>U0 \<inter> W \<subseteq> W0\<close> \<open>W0 \<union> S \<subseteq> W1\<close> apply (fastforce simp add: geqr heqr)+
-      done
-    then show "S \<union> T retract_of W1 - (W - U0) \<union> (W2 - (W - U0))"
-      using  \<open>W0 \<union> S \<subseteq> W1\<close> \<open>W0 \<union> T \<subseteq> W2\<close> ST opeUU0 U0
-      by (auto simp add: retract_of_def retraction_def)
-  qed
-qed
-
-
-proposition ANR_closed_Un_local:
-  fixes S :: "'a::euclidean_space set"
-  assumes STS: "closedin (subtopology euclidean (S \<union> T)) S"
-      and STT: "closedin (subtopology euclidean (S \<union> T)) T"
-      and "ANR S" "ANR T" "ANR(S \<inter> T)" 
-    shows "ANR(S \<union> T)"
-proof -
-  have "\<exists>T. openin (subtopology euclidean U) T \<and> C retract_of T"
-       if hom: "S \<union> T homeomorphic C" and UC: "closedin (subtopology euclidean U) C"
-       for U and C :: "('a * real) set"
-  proof -
-    obtain f g where hom: "homeomorphism (S \<union> T) C f g"
-      using hom by (force simp: homeomorphic_def)
-    have US: "closedin (subtopology euclidean U) {x \<in> C. g x \<in> S}"
-      apply (rule closedin_trans [OF _ UC])
-      apply (rule continuous_closedin_preimage_gen [OF _ _ STS])
-      using hom [unfolded homeomorphism_def] apply blast
-      apply (metis hom homeomorphism_def set_eq_subset)
-      done
-    have UT: "closedin (subtopology euclidean U) {x \<in> C. g x \<in> T}"
-      apply (rule closedin_trans [OF _ UC])
-      apply (rule continuous_closedin_preimage_gen [OF _ _ STT])
-      using hom [unfolded homeomorphism_def] apply blast
-      apply (metis hom homeomorphism_def set_eq_subset)
-      done
-    have ANRS: "ANR {x \<in> C. g x \<in> S}"
-      apply (rule ANR_homeomorphic_ANR [OF \<open>ANR S\<close>])
-      apply (simp add: homeomorphic_def)
-      apply (rule_tac x=g in exI)
-      apply (rule_tac x=f in exI)
-      using hom apply (auto simp: homeomorphism_def elim!: continuous_on_subset)
-      apply (rule_tac x="f x" in image_eqI, auto)
-      done
-    have ANRT: "ANR {x \<in> C. g x \<in> T}"
-      apply (rule ANR_homeomorphic_ANR [OF \<open>ANR T\<close>])
-      apply (simp add: homeomorphic_def)
-      apply (rule_tac x=g in exI)
-      apply (rule_tac x=f in exI)
-      using hom apply (auto simp: homeomorphism_def elim!: continuous_on_subset)
-      apply (rule_tac x="f x" in image_eqI, auto)
-      done
-    have ANRI: "ANR ({x \<in> C. g x \<in> S} \<inter> {x \<in> C. g x \<in> T})"
-      apply (rule ANR_homeomorphic_ANR [OF \<open>ANR (S \<inter> T)\<close>])
-      apply (simp add: homeomorphic_def)
-      apply (rule_tac x=g in exI)
-      apply (rule_tac x=f in exI)
-      using hom
-      apply (auto simp: homeomorphism_def elim!: continuous_on_subset)
-      apply (rule_tac x="f x" in image_eqI, auto)
-      done
-    have "C = {x. x \<in> C \<and> g x \<in> S} \<union> {x. x \<in> C \<and> g x \<in> T}"
-      by auto (metis Un_iff hom homeomorphism_def imageI)
-    then show ?thesis
-      by (metis ANR_closed_Un_local_aux [OF US UT ANRS ANRT ANRI])
-  qed
-  then show ?thesis
-    by (auto simp: ANR_def)
-qed    
-
-corollary ANR_closed_Un:
-  fixes S :: "'a::euclidean_space set"
-  shows "\<lbrakk>closed S; closed T; ANR S; ANR T; ANR (S \<inter> T)\<rbrakk> \<Longrightarrow> ANR (S \<union> T)"
-by (simp add: ANR_closed_Un_local closedin_def diff_eq open_Compl openin_open_Int)
-
-lemma ANR_openin:
-  fixes S :: "'a::euclidean_space set"
-  assumes "ANR T" and opeTS: "openin (subtopology euclidean T) S"
-  shows "ANR S"
-proof (clarsimp simp only: ANR_eq_absolute_neighbourhood_extensor)
-  fix f :: "'a \<times> real \<Rightarrow> 'a" and U C
-  assume contf: "continuous_on C f" and fim: "f ` C \<subseteq> S"
-     and cloUC: "closedin (subtopology euclidean U) C"
-  have "f ` C \<subseteq> T"
-    using fim opeTS openin_imp_subset by blast
-  obtain W g where "C \<subseteq> W"
-               and UW: "openin (subtopology euclidean U) W"
-               and contg: "continuous_on W g"
-               and gim: "g ` W \<subseteq> T"
-               and geq: "\<And>x. x \<in> C \<Longrightarrow> g x = f x"
-    apply (rule ANR_imp_absolute_neighbourhood_extensor [OF \<open>ANR T\<close> contf \<open>f ` C \<subseteq> T\<close> cloUC])
-    using fim by auto
-  show "\<exists>V g. C \<subseteq> V \<and> openin (subtopology euclidean U) V \<and> continuous_on V g \<and> g ` V \<subseteq> S \<and> (\<forall>x\<in>C. g x = f x)"
-  proof (intro exI conjI)
-    show "C \<subseteq> {x \<in> W. g x \<in> S}"
-      using \<open>C \<subseteq> W\<close> fim geq by blast
-    show "openin (subtopology euclidean U) {x \<in> W. g x \<in> S}"
-      by (metis (mono_tags, lifting) UW contg continuous_openin_preimage gim opeTS openin_trans)
-    show "continuous_on {x \<in> W. g x \<in> S} g"
-      by (blast intro: continuous_on_subset [OF contg])
-    show "g ` {x \<in> W. g x \<in> S} \<subseteq> S"
-      using gim by blast
-    show "\<forall>x\<in>C. g x = f x"
-      using geq by blast
-  qed
-qed
-
-lemma ENR_openin:
-    fixes S :: "'a::euclidean_space set"
-    assumes "ENR T" and opeTS: "openin (subtopology euclidean T) S"
-    shows "ENR S"
-  using assms apply (simp add: ENR_ANR)
-  using ANR_openin locally_open_subset by blast
-
-lemma ANR_neighborhood_retract:
-    fixes S :: "'a::euclidean_space set"
-    assumes "ANR U" "S retract_of T" "openin (subtopology euclidean U) T"
-    shows "ANR S"
-  using ANR_openin ANR_retract_of_ANR assms by blast
-
-lemma ENR_neighborhood_retract:
-    fixes S :: "'a::euclidean_space set"
-    assumes "ENR U" "S retract_of T" "openin (subtopology euclidean U) T"
-    shows "ENR S"
-  using ENR_openin ENR_retract_of_ENR assms by blast
-
-lemma ANR_rel_interior:
-  fixes S :: "'a::euclidean_space set"
-  shows "ANR S \<Longrightarrow> ANR(rel_interior S)"
-   by (blast intro: ANR_openin openin_set_rel_interior)
-
-lemma ANR_delete:
-  fixes S :: "'a::euclidean_space set"
-  shows "ANR S \<Longrightarrow> ANR(S - {a})"
-   by (blast intro: ANR_openin openin_delete openin_subtopology_self)
-
-lemma ENR_rel_interior:
-  fixes S :: "'a::euclidean_space set"
-  shows "ENR S \<Longrightarrow> ENR(rel_interior S)"
-   by (blast intro: ENR_openin openin_set_rel_interior)
-
-lemma ENR_delete:
-  fixes S :: "'a::euclidean_space set"
-  shows "ENR S \<Longrightarrow> ENR(S - {a})"
-   by (blast intro: ENR_openin openin_delete openin_subtopology_self)
-
-lemma open_imp_ENR: "open S \<Longrightarrow> ENR S"
-    using ENR_def by blast
-
-lemma open_imp_ANR:
-    fixes S :: "'a::euclidean_space set"
-    shows "open S \<Longrightarrow> ANR S"
-  by (simp add: ENR_imp_ANR open_imp_ENR)
-
-lemma ANR_ball [iff]:
-    fixes a :: "'a::euclidean_space"
-    shows "ANR(ball a r)"
-  by (simp add: convex_imp_ANR)
-
-lemma ENR_ball [iff]: "ENR(ball a r)"
-  by (simp add: open_imp_ENR)
-
-lemma AR_ball [simp]:
-    fixes a :: "'a::euclidean_space"
-    shows "AR(ball a r) \<longleftrightarrow> 0 < r"
-  by (auto simp: AR_ANR convex_imp_contractible)
-
-lemma ANR_cball [iff]:
-    fixes a :: "'a::euclidean_space"
-    shows "ANR(cball a r)"
-  by (simp add: convex_imp_ANR)
-
-lemma ENR_cball:
-    fixes a :: "'a::euclidean_space"
-    shows "ENR(cball a r)"
-  using ENR_convex_closed by blast
-
-lemma AR_cball [simp]:
-    fixes a :: "'a::euclidean_space"
-    shows "AR(cball a r) \<longleftrightarrow> 0 \<le> r"
-  by (auto simp: AR_ANR convex_imp_contractible)
-
-lemma ANR_box [iff]:
-    fixes a :: "'a::euclidean_space"
-    shows "ANR(cbox a b)" "ANR(box a b)"
-  by (auto simp: convex_imp_ANR open_imp_ANR)
-
-lemma ENR_box [iff]:
-    fixes a :: "'a::euclidean_space"
-    shows "ENR(cbox a b)" "ENR(box a b)"
-apply (simp add: ENR_convex_closed closed_cbox)
-by (simp add: open_box open_imp_ENR)
-
-lemma AR_box [simp]:
-    "AR(cbox a b) \<longleftrightarrow> cbox a b \<noteq> {}" "AR(box a b) \<longleftrightarrow> box a b \<noteq> {}"
-  by (auto simp: AR_ANR convex_imp_contractible)
-
-lemma ANR_interior:
-     fixes S :: "'a::euclidean_space set"
-     shows "ANR(interior S)"
-  by (simp add: open_imp_ANR)
-
-lemma ENR_interior:
-     fixes S :: "'a::euclidean_space set"
-     shows "ENR(interior S)"
-  by (simp add: open_imp_ENR)
-
-lemma AR_imp_contractible:
-    fixes S :: "'a::euclidean_space set"
-    shows "AR S \<Longrightarrow> contractible S"
-  by (simp add: AR_ANR)
-
-lemma ENR_imp_locally_compact:
-    fixes S :: "'a::euclidean_space set"
-    shows "ENR S \<Longrightarrow> locally compact S"
-  by (simp add: ENR_ANR)
-
-lemma ANR_imp_locally_path_connected:
-  fixes S :: "'a::euclidean_space set"
-  assumes "ANR S"
-    shows "locally path_connected S"
-proof -
-  obtain U and T :: "('a \<times> real) set"
-     where "convex U" "U \<noteq> {}"
-       and UT: "closedin (subtopology euclidean U) T"
-       and "S homeomorphic T"
-    apply (rule homeomorphic_closedin_convex [of S])
-    using aff_dim_le_DIM [of S] apply auto
-    done
-  have "locally path_connected T"
-    by (meson ANR_imp_absolute_neighbourhood_retract \<open>S homeomorphic T\<close> \<open>closedin (subtopology euclidean U) T\<close> \<open>convex U\<close> assms convex_imp_locally_path_connected locally_open_subset retract_of_locally_path_connected)
-  then have S: "locally path_connected S"
-      if "openin (subtopology euclidean U) V" "T retract_of V" "U \<noteq> {}" for V
-    using \<open>S homeomorphic T\<close> homeomorphic_locally homeomorphic_path_connectedness by blast
-  show ?thesis
-    using assms
-    apply (clarsimp simp: ANR_def)
-    apply (drule_tac x=U in spec)
-    apply (drule_tac x=T in spec)
-    using \<open>S homeomorphic T\<close> \<open>U \<noteq> {}\<close> UT  apply (blast intro: S)
-    done
-qed
-
-lemma ANR_imp_locally_connected:
-  fixes S :: "'a::euclidean_space set"
-  assumes "ANR S"
-    shows "locally connected S"
-using locally_path_connected_imp_locally_connected ANR_imp_locally_path_connected assms by auto
-
-lemma AR_imp_locally_path_connected:
-  fixes S :: "'a::euclidean_space set"
-  assumes "AR S"
-    shows "locally path_connected S"
-by (simp add: ANR_imp_locally_path_connected AR_imp_ANR assms)
-
-lemma AR_imp_locally_connected:
-  fixes S :: "'a::euclidean_space set"
-  assumes "AR S"
-    shows "locally connected S"
-using ANR_imp_locally_connected AR_ANR assms by blast
-
-lemma ENR_imp_locally_path_connected:
-  fixes S :: "'a::euclidean_space set"
-  assumes "ENR S"
-    shows "locally path_connected S"
-by (simp add: ANR_imp_locally_path_connected ENR_imp_ANR assms)
-
-lemma ENR_imp_locally_connected:
-  fixes S :: "'a::euclidean_space set"
-  assumes "ENR S"
-    shows "locally connected S"
-using ANR_imp_locally_connected ENR_ANR assms by blast
-
-lemma ANR_Times:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "ANR S" "ANR T" shows "ANR(S \<times> T)"
-proof (clarsimp simp only: ANR_eq_absolute_neighbourhood_extensor)
-  fix f :: " ('a \<times> 'b) \<times> real \<Rightarrow> 'a \<times> 'b" and U C
-  assume "continuous_on C f" and fim: "f ` C \<subseteq> S \<times> T"
-     and cloUC: "closedin (subtopology euclidean U) C"
-  have contf1: "continuous_on C (fst \<circ> f)"
-    by (simp add: \<open>continuous_on C f\<close> continuous_on_fst)
-  obtain W1 g where "C \<subseteq> W1"
-               and UW1: "openin (subtopology euclidean U) W1"
-               and contg: "continuous_on W1 g"
-               and gim: "g ` W1 \<subseteq> S"
-               and geq: "\<And>x. x \<in> C \<Longrightarrow> g x = (fst \<circ> f) x"
-    apply (rule ANR_imp_absolute_neighbourhood_extensor [OF \<open>ANR S\<close> contf1 _ cloUC])
-    using fim apply auto
-    done
-  have contf2: "continuous_on C (snd \<circ> f)"
-    by (simp add: \<open>continuous_on C f\<close> continuous_on_snd)
-  obtain W2 h where "C \<subseteq> W2"
-               and UW2: "openin (subtopology euclidean U) W2"
-               and conth: "continuous_on W2 h"
-               and him: "h ` W2 \<subseteq> T"
-               and heq: "\<And>x. x \<in> C \<Longrightarrow> h x = (snd \<circ> f) x"
-    apply (rule ANR_imp_absolute_neighbourhood_extensor [OF \<open>ANR T\<close> contf2 _ cloUC])
-    using fim apply auto
-    done
-  show "\<exists>V g. C \<subseteq> V \<and>
-               openin (subtopology euclidean U) V \<and>
-               continuous_on V g \<and> g ` V \<subseteq> S \<times> T \<and> (\<forall>x\<in>C. g x = f x)"
-  proof (intro exI conjI)
-    show "C \<subseteq> W1 \<inter> W2"
-      by (simp add: \<open>C \<subseteq> W1\<close> \<open>C \<subseteq> W2\<close>)
-    show "openin (subtopology euclidean U) (W1 \<inter> W2)"
-      by (simp add: UW1 UW2 openin_Int)
-    show  "continuous_on (W1 \<inter> W2) (\<lambda>x. (g x, h x))"
-      by (metis (no_types) contg conth continuous_on_Pair continuous_on_subset inf_commute inf_le1)
-    show  "(\<lambda>x. (g x, h x)) ` (W1 \<inter> W2) \<subseteq> S \<times> T"
-      using gim him by blast
-    show  "(\<forall>x\<in>C. (g x, h x) = f x)"
-      using geq heq by auto
-  qed
-qed
-
-lemma AR_Times:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "AR S" "AR T" shows "AR(S \<times> T)"
-using assms by (simp add: AR_ANR ANR_Times contractible_Times)
-
-
-lemma ENR_rel_frontier_convex:
-  fixes S :: "'a::euclidean_space set"
-  assumes "bounded S" "convex S"
-    shows "ENR(rel_frontier S)"
-proof (cases "S = {}")
-  case True then show ?thesis
-    by simp
-next
-  case False
-  with assms have "rel_interior S \<noteq> {}"
-    by (simp add: rel_interior_eq_empty)
-  then obtain a where a: "a \<in> rel_interior S"
-    by auto
-  have ahS: "affine hull S - {a} \<subseteq> {x. closest_point (affine hull S) x \<noteq> a}"
-    by (auto simp: closest_point_self)
-  have "rel_frontier S retract_of affine hull S - {a}"
-    by (simp add: assms a rel_frontier_retract_of_punctured_affine_hull)
-  also have "... retract_of {x. closest_point (affine hull S) x \<noteq> a}"
-    apply (simp add: retract_of_def retraction_def ahS)
-    apply (rule_tac x="closest_point (affine hull S)" in exI)
-    apply (auto simp add: False closest_point_self affine_imp_convex closest_point_in_set continuous_on_closest_point)
-    done
-  finally have "rel_frontier S retract_of {x. closest_point (affine hull S) x \<noteq> a}" .
-  moreover have "openin (subtopology euclidean UNIV) {x \<in> UNIV. closest_point (affine hull S) x \<in> - {a}}"
-    apply (rule continuous_openin_preimage_gen)
-    apply (auto simp add: False affine_imp_convex continuous_on_closest_point)
-    done
-  ultimately show ?thesis
-    apply (simp add: ENR_def)
-    apply (rule_tac x = "{x. x \<in> UNIV \<and>
-                             closest_point (affine hull S) x \<in> (- {a})}" in exI)
-    apply (simp add: open_openin)
-    done
-qed
-
-lemma ANR_rel_frontier_convex:
-                 fixes S :: "'a::euclidean_space set"
-  assumes "bounded S" "convex S"
-    shows "ANR(rel_frontier S)"
-by (simp add: ENR_imp_ANR ENR_rel_frontier_convex assms)
-
-(*UNUSED
-lemma ENR_Times:
-  fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
-  assumes "ENR S" "ENR T" shows "ENR(S \<times> T)"
-using assms apply (simp add: ENR_ANR ANR_Times)
-thm locally_compact_Times
-oops
-  SIMP_TAC[ENR_ANR; ANR_PCROSS; LOCALLY_COMPACT_PCROSS]);;
-*)
-
-subsection\<open>Borsuk homotopy extension theorem\<close>
-
-text\<open>It's only this late so we can use the concept of retraction,
-  saying that the domain sets or range set are ENRs.\<close>
-
-theorem Borsuk_homotopy_extension_homotopic:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes cloTS: "closedin (subtopology euclidean T) S"
-      and anr: "(ANR S \<and> ANR T) \<or> ANR U"
-      and contf: "continuous_on T f"
-      and "f ` T \<subseteq> U"
-      and "homotopic_with (\<lambda>x. True) S U f g"
-   obtains g' where "homotopic_with (\<lambda>x. True) T U f g'"
-                    "continuous_on T g'" "image g' T \<subseteq> U"
-                    "\<And>x. x \<in> S \<Longrightarrow> g' x = g x"
-proof -
-  have "S \<subseteq> T" using assms closedin_imp_subset by blast
-  obtain h where conth: "continuous_on ({0..1} \<times> S) h"
-             and him: "h ` ({0..1} \<times> S) \<subseteq> U"
-             and [simp]: "\<And>x. h(0, x) = f x" "\<And>x. h(1::real, x) = g x"
-       using assms by (auto simp: homotopic_with_def)
-  define h' where "h' \<equiv>  \<lambda>z. if snd z \<in> S then h z else (f o snd) z"
-  define B where "B \<equiv> {0::real} \<times> T \<union> {0..1} \<times> S"
-  have clo0T: "closedin (subtopology euclidean ({0..1} \<times> T)) ({0::real} \<times> T)"
-    by (simp add: closedin_subtopology_refl closedin_Times)
-  moreover have cloT1S: "closedin (subtopology euclidean ({0..1} \<times> T)) ({0..1} \<times> S)"
-    by (simp add: closedin_subtopology_refl closedin_Times assms)
-  ultimately have clo0TB:"closedin (subtopology euclidean ({0..1} \<times> T)) B"
-    by (auto simp: B_def)
-  have cloBS: "closedin (subtopology euclidean B) ({0..1} \<times> S)"
-    by (metis (no_types) Un_subset_iff B_def closedin_subset_trans [OF cloT1S] clo0TB closedin_imp_subset closedin_self)
-  moreover have cloBT: "closedin (subtopology euclidean B) ({0} \<times> T)"
-    using \<open>S \<subseteq> T\<close> closedin_subset_trans [OF clo0T]
-    by (metis B_def Un_upper1 clo0TB closedin_closed inf_le1)
-  moreover have "continuous_on ({0} \<times> T) (f \<circ> snd)"
-    apply (rule continuous_intros)+
-    apply (simp add: contf)
-    done
-  ultimately have conth': "continuous_on B h'"
-    apply (simp add: h'_def B_def Un_commute [of "{0} \<times> T"])
-    apply (auto intro!: continuous_on_cases_local conth)
-    done
-  have "image h' B \<subseteq> U"
-    using \<open>f ` T \<subseteq> U\<close> him by (auto simp: h'_def B_def)
-  obtain V k where "B \<subseteq> V" and opeTV: "openin (subtopology euclidean ({0..1} \<times> T)) V"
-               and contk: "continuous_on V k" and kim: "k ` V \<subseteq> U"
-               and keq: "\<And>x. x \<in> B \<Longrightarrow> k x = h' x"
-  using anr
-  proof
-    assume ST: "ANR S \<and> ANR T"
-    have eq: "({0} \<times> T \<inter> {0..1} \<times> S) = {0::real} \<times> S"
-      using \<open>S \<subseteq> T\<close> by auto
-    have "ANR B"
-      apply (simp add: B_def)
-      apply (rule ANR_closed_Un_local)
-          apply (metis cloBT B_def)
-         apply (metis Un_commute cloBS B_def)
-        apply (simp_all add: ANR_Times convex_imp_ANR ANR_singleton ST eq)
-      done
-    note Vk = that
-    have *: thesis if "openin (subtopology euclidean ({0..1::real} \<times> T)) V"
-                      "retraction V B r" for V r
-      using that
-      apply (clarsimp simp add: retraction_def)
-      apply (rule Vk [of V "h' o r"], assumption+)
-        apply (metis continuous_on_compose conth' continuous_on_subset) 
-      using \<open>h' ` B \<subseteq> U\<close> apply force+
-      done
-    show thesis
-        apply (rule ANR_imp_neighbourhood_retract [OF \<open>ANR B\<close> clo0TB])
-        apply (auto simp: ANR_Times ANR_singleton ST retract_of_def *)
-        done
-  next
-    assume "ANR U"
-    with ANR_imp_absolute_neighbourhood_extensor \<open>h' ` B \<subseteq> U\<close> clo0TB conth' that
-    show ?thesis by blast
-  qed
-  define S' where "S' \<equiv> {x. \<exists>u::real. u \<in> {0..1} \<and> (u, x::'a) \<in> {0..1} \<times> T - V}"
-  have "closedin (subtopology euclidean T) S'"
-    unfolding S'_def
-    apply (rule closedin_compact_projection, blast)
-    using closedin_self opeTV by blast
-  have S'_def: "S' = {x. \<exists>u::real.  (u, x::'a) \<in> {0..1} \<times> T - V}"
-    by (auto simp: S'_def)
-  have cloTS': "closedin (subtopology euclidean T) S'"
-    using S'_def \<open>closedin (subtopology euclidean T) S'\<close> by blast
-  have "S \<inter> S' = {}"
-    using S'_def B_def \<open>B \<subseteq> V\<close> by force
-  obtain a :: "'a \<Rightarrow> real" where conta: "continuous_on T a"
-      and "\<And>x. x \<in> T \<Longrightarrow> a x \<in> closed_segment 1 0"
-      and a1: "\<And>x. x \<in> S \<Longrightarrow> a x = 1"
-      and a0: "\<And>x. x \<in> S' \<Longrightarrow> a x = 0"
-    apply (rule Urysohn_local [OF cloTS cloTS' \<open>S \<inter> S' = {}\<close>, of 1 0], blast)
-    done
-  then have ain: "\<And>x. x \<in> T \<Longrightarrow> a x \<in> {0..1}"
-    using closed_segment_eq_real_ivl by auto
-  have inV: "(u * a t, t) \<in> V" if "t \<in> T" "0 \<le> u" "u \<le> 1" for t u
-  proof (rule ccontr)
-    assume "(u * a t, t) \<notin> V"
-    with ain [OF \<open>t \<in> T\<close>] have "a t = 0"
-      apply simp
-      apply (rule a0)
-      by (metis (no_types, lifting) Diff_iff S'_def SigmaI atLeastAtMost_iff mem_Collect_eq mult_le_one mult_nonneg_nonneg that)
-    show False
-      using B_def \<open>(u * a t, t) \<notin> V\<close> \<open>B \<subseteq> V\<close> \<open>a t = 0\<close> that by auto
-  qed
-  show ?thesis
-  proof
-    show hom: "homotopic_with (\<lambda>x. True) T U f (\<lambda>x. k (a x, x))"
-    proof (simp add: homotopic_with, intro exI conjI)
-      show "continuous_on ({0..1} \<times> T) (k \<circ> (\<lambda>z. (fst z *\<^sub>R (a \<circ> snd) z, snd z)))"
-        apply (intro continuous_on_compose continuous_intros)
-        apply (rule continuous_on_subset [OF conta], force)
-        apply (rule continuous_on_subset [OF contk])
-        apply (force intro: inV)
-        done
-      show "(k \<circ> (\<lambda>z. (fst z *\<^sub>R (a \<circ> snd) z, snd z))) ` ({0..1} \<times> T) \<subseteq> U"
-        using inV kim by auto
-      show "\<forall>x\<in>T. (k \<circ> (\<lambda>z. (fst z *\<^sub>R (a \<circ> snd) z, snd z))) (0, x) = f x"
-        by (simp add: B_def h'_def keq)
-      show "\<forall>x\<in>T. (k \<circ> (\<lambda>z. (fst z *\<^sub>R (a \<circ> snd) z, snd z))) (1, x) = k (a x, x)"
-        by auto
-    qed
-  show "continuous_on T (\<lambda>x. k (a x, x))"
-    using hom homotopic_with_imp_continuous by blast
-  show "(\<lambda>x. k (a x, x)) ` T \<subseteq> U"
-  proof clarify
-    fix t
-    assume "t \<in> T"
-    show "k (a t, t) \<in> U"
-      by (metis \<open>t \<in> T\<close> image_subset_iff inV kim not_one_le_zero linear mult_cancel_right1)
-  qed
-  show "\<And>x. x \<in> S \<Longrightarrow> k (a x, x) = g x"
-    by (simp add: B_def a1 h'_def keq)
-  qed
-qed
-
-
-corollary nullhomotopic_into_ANR_extension:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "closed S"
-      and contf: "continuous_on S f"
-      and "ANR T"
-      and fim: "f ` S \<subseteq> T"
-      and "S \<noteq> {}"
-   shows "(\<exists>c. homotopic_with (\<lambda>x. True) S T f (\<lambda>x. c)) \<longleftrightarrow>
-          (\<exists>g. continuous_on UNIV g \<and> range g \<subseteq> T \<and> (\<forall>x \<in> S. g x = f x))"
-       (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then obtain c where c: "homotopic_with (\<lambda>x. True) S T (\<lambda>x. c) f"
-    by (blast intro: homotopic_with_symD elim: )
-  have "closedin (subtopology euclidean UNIV) S"
-    using \<open>closed S\<close> closed_closedin by fastforce
-  then obtain g where "continuous_on UNIV g" "range g \<subseteq> T"
-                      "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
-    apply (rule Borsuk_homotopy_extension_homotopic [OF _ _ continuous_on_const _ c, where T=UNIV])
-    using \<open>ANR T\<close> \<open>S \<noteq> {}\<close> c homotopic_with_imp_subset1 apply fastforce+
-    done
-  then show ?rhs by blast
-next
-  assume ?rhs
-  then obtain g where "continuous_on UNIV g" "range g \<subseteq> T" "\<And>x. x\<in>S \<Longrightarrow> g x = f x"
-    by blast
-  then obtain c where "homotopic_with (\<lambda>h. True) UNIV T g (\<lambda>x. c)"
-    using nullhomotopic_from_contractible [of UNIV g T] contractible_UNIV by blast
-  then show ?lhs
-    apply (rule_tac x="c" in exI)
-    apply (rule homotopic_with_eq [of _ _ _ g "\<lambda>x. c"])
-    apply (rule homotopic_with_subset_left)
-    apply (auto simp add: \<open>\<And>x. x \<in> S \<Longrightarrow> g x = f x\<close>)
-    done
-qed
-
-corollary nullhomotopic_into_rel_frontier_extension:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "closed S"
-      and contf: "continuous_on S f"
-      and "convex T" "bounded T"
-      and fim: "f ` S \<subseteq> rel_frontier T"
-      and "S \<noteq> {}"
-   shows "(\<exists>c. homotopic_with (\<lambda>x. True) S (rel_frontier T) f (\<lambda>x. c)) \<longleftrightarrow>
-          (\<exists>g. continuous_on UNIV g \<and> range g \<subseteq> rel_frontier T \<and> (\<forall>x \<in> S. g x = f x))"
-by (simp add: nullhomotopic_into_ANR_extension assms ANR_rel_frontier_convex)
-
-corollary nullhomotopic_into_sphere_extension:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b :: euclidean_space"
-  assumes "closed S" and contf: "continuous_on S f"
-      and "S \<noteq> {}" and fim: "f ` S \<subseteq> sphere a r"
-    shows "((\<exists>c. homotopic_with (\<lambda>x. True) S (sphere a r) f (\<lambda>x. c)) \<longleftrightarrow>
-           (\<exists>g. continuous_on UNIV g \<and> range g \<subseteq> sphere a r \<and> (\<forall>x \<in> S. g x = f x)))"
-           (is "?lhs = ?rhs")
-proof (cases "r = 0")
-  case True with fim show ?thesis
-    apply (auto simp: )
-    using fim continuous_on_const apply fastforce
-    by (metis contf contractible_sing nullhomotopic_into_contractible)
-next
-  case False
-  then have eq: "sphere a r = rel_frontier (cball a r)" by simp
-  show ?thesis
-    using fim unfolding eq
-    apply (rule nullhomotopic_into_rel_frontier_extension [OF \<open>closed S\<close> contf convex_cball bounded_cball])
-    apply (rule \<open>S \<noteq> {}\<close>)
-    done
-qed
-
-proposition Borsuk_map_essential_bounded_component:
-  fixes a :: "'a :: euclidean_space"
-  assumes "compact S" and "a \<notin> S"
-   shows "bounded (connected_component_set (- S) a) \<longleftrightarrow>
-          ~(\<exists>c. homotopic_with (\<lambda>x. True) S (sphere 0 1)
-                               (\<lambda>x. inverse(norm(x - a)) *\<^sub>R (x - a)) (\<lambda>x. c))"
-   (is "?lhs = ?rhs")
-proof (cases "S = {}")
-  case True then show ?thesis
-    by simp
-next
-  case False
-  have "closed S" "bounded S"
-    using \<open>compact S\<close> compact_eq_bounded_closed by auto
-  have s01: "(\<lambda>x. (x - a) /\<^sub>R norm (x - a)) ` S \<subseteq> sphere 0 1"
-    using \<open>a \<notin> S\<close>  by clarsimp (metis dist_eq_0_iff dist_norm mult.commute right_inverse)
-  have aincc: "a \<in> connected_component_set (- S) a"
-    by (simp add: \<open>a \<notin> S\<close>)
-  obtain r where "r>0" and r: "S \<subseteq> ball 0 r"
-    using bounded_subset_ballD \<open>bounded S\<close> by blast
-  have "~ ?rhs \<longleftrightarrow> ~ ?lhs"
-  proof
-    assume notr: "~ ?rhs"
-    have nog: "\<nexists>g. continuous_on (S \<union> connected_component_set (- S) a) g \<and>
-                   g ` (S \<union> connected_component_set (- S) a) \<subseteq> sphere 0 1 \<and>
-                   (\<forall>x\<in>S. g x = (x - a) /\<^sub>R norm (x - a))"
-         if "bounded (connected_component_set (- S) a)"
-      apply (rule non_extensible_Borsuk_map [OF \<open>compact S\<close> componentsI _ aincc])
-      using  \<open>a \<notin> S\<close> that by auto
-    obtain g where "range g \<subseteq> sphere 0 1" "continuous_on UNIV g"
-                        "\<And>x. x \<in> S \<Longrightarrow> g x = (x - a) /\<^sub>R norm (x - a)"
-      using notr
-      by (auto simp add: nullhomotopic_into_sphere_extension
-                 [OF \<open>closed S\<close> continuous_on_Borsuk_map [OF \<open>a \<notin> S\<close>] False s01])
-    with \<open>a \<notin> S\<close> show  "~ ?lhs"
-      apply (clarsimp simp: Borsuk_map_into_sphere [of a S, symmetric] dest!: nog)
-      apply (drule_tac x="g" in spec)
-      using continuous_on_subset by fastforce 
-  next
-    assume "~ ?lhs"
-    then obtain b where b: "b \<in> connected_component_set (- S) a" and "r \<le> norm b"
-      using bounded_iff linear by blast
-    then have bnot: "b \<notin> ball 0 r"
-      by simp
-    have "homotopic_with (\<lambda>x. True) S (sphere 0 1) (\<lambda>x. (x - a) /\<^sub>R norm (x - a))
-                                                   (\<lambda>x. (x - b) /\<^sub>R norm (x - b))"
-      apply (rule Borsuk_maps_homotopic_in_path_component)
-      using \<open>closed S\<close> b open_Compl open_path_connected_component apply fastforce
-      done
-    moreover
-    obtain c where "homotopic_with (\<lambda>x. True) (ball 0 r) (sphere 0 1)
-                                   (\<lambda>x. inverse (norm (x - b)) *\<^sub>R (x - b)) (\<lambda>x. c)"
-    proof (rule nullhomotopic_from_contractible)
-      show "contractible (ball (0::'a) r)"
-        by (metis convex_imp_contractible convex_ball)
-      show "continuous_on (ball 0 r) (\<lambda>x. inverse(norm (x - b)) *\<^sub>R (x - b))"
-        by (rule continuous_on_Borsuk_map [OF bnot])
-      show "(\<lambda>x. (x - b) /\<^sub>R norm (x - b)) ` ball 0 r \<subseteq> sphere 0 1"
-        using bnot Borsuk_map_into_sphere by blast
-    qed blast
-    ultimately have "homotopic_with (\<lambda>x. True) S (sphere 0 1)
-                         (\<lambda>x. (x - a) /\<^sub>R norm (x - a)) (\<lambda>x. c)"
-      by (meson homotopic_with_subset_left homotopic_with_trans r)
-    then show "~ ?rhs"
-      by blast
-  qed
-  then show ?thesis by blast
-qed
-
-
-end