src/HOL/Multivariate_Analysis/Operator_Norm.thy
changeset 63627 6ddb43c6b711
parent 63626 44ce6b524ff3
child 63631 2edc8da89edc
child 63633 2accfb71e33b
--- a/src/HOL/Multivariate_Analysis/Operator_Norm.thy	Fri Aug 05 18:34:57 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,238 +0,0 @@
-(*  Title:      HOL/Multivariate_Analysis/Operator_Norm.thy
-    Author:     Amine Chaieb, University of Cambridge
-    Author:     Brian Huffman
-*)
-
-section \<open>Operator Norm\<close>
-
-theory Operator_Norm
-imports Complex_Main
-begin
-
-text \<open>This formulation yields zero if \<open>'a\<close> is the trivial vector space.\<close>
-
-definition onorm :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> real"
-  where "onorm f = (SUP x. norm (f x) / norm x)"
-
-lemma onorm_bound:
-  assumes "0 \<le> b" and "\<And>x. norm (f x) \<le> b * norm x"
-  shows "onorm f \<le> b"
-  unfolding onorm_def
-proof (rule cSUP_least)
-  fix x
-  show "norm (f x) / norm x \<le> b"
-    using assms by (cases "x = 0") (simp_all add: pos_divide_le_eq)
-qed simp
-
-text \<open>In non-trivial vector spaces, the first assumption is redundant.\<close>
-
-lemma onorm_le:
-  fixes f :: "'a::{real_normed_vector, perfect_space} \<Rightarrow> 'b::real_normed_vector"
-  assumes "\<And>x. norm (f x) \<le> b * norm x"
-  shows "onorm f \<le> b"
-proof (rule onorm_bound [OF _ assms])
-  have "{0::'a} \<noteq> UNIV" by (metis not_open_singleton open_UNIV)
-  then obtain a :: 'a where "a \<noteq> 0" by fast
-  have "0 \<le> b * norm a"
-    by (rule order_trans [OF norm_ge_zero assms])
-  with \<open>a \<noteq> 0\<close> show "0 \<le> b"
-    by (simp add: zero_le_mult_iff)
-qed
-
-lemma le_onorm:
-  assumes "bounded_linear f"
-  shows "norm (f x) / norm x \<le> onorm f"
-proof -
-  interpret f: bounded_linear f by fact
-  obtain b where "0 \<le> b" and "\<forall>x. norm (f x) \<le> norm x * b"
-    using f.nonneg_bounded by auto
-  then have "\<forall>x. norm (f x) / norm x \<le> b"
-    by (clarify, case_tac "x = 0",
-      simp_all add: f.zero pos_divide_le_eq mult.commute)
-  then have "bdd_above (range (\<lambda>x. norm (f x) / norm x))"
-    unfolding bdd_above_def by fast
-  with UNIV_I show ?thesis
-    unfolding onorm_def by (rule cSUP_upper)
-qed
-
-lemma onorm:
-  assumes "bounded_linear f"
-  shows "norm (f x) \<le> onorm f * norm x"
-proof -
-  interpret f: bounded_linear f by fact
-  show ?thesis
-  proof (cases)
-    assume "x = 0"
-    then show ?thesis by (simp add: f.zero)
-  next
-    assume "x \<noteq> 0"
-    have "norm (f x) / norm x \<le> onorm f"
-      by (rule le_onorm [OF assms])
-    then show "norm (f x) \<le> onorm f * norm x"
-      by (simp add: pos_divide_le_eq \<open>x \<noteq> 0\<close>)
-  qed
-qed
-
-lemma onorm_pos_le:
-  assumes f: "bounded_linear f"
-  shows "0 \<le> onorm f"
-  using le_onorm [OF f, where x=0] by simp
-
-lemma onorm_zero: "onorm (\<lambda>x. 0) = 0"
-proof (rule order_antisym)
-  show "onorm (\<lambda>x. 0) \<le> 0"
-    by (simp add: onorm_bound)
-  show "0 \<le> onorm (\<lambda>x. 0)"
-    using bounded_linear_zero by (rule onorm_pos_le)
-qed
-
-lemma onorm_eq_0:
-  assumes f: "bounded_linear f"
-  shows "onorm f = 0 \<longleftrightarrow> (\<forall>x. f x = 0)"
-  using onorm [OF f] by (auto simp: fun_eq_iff [symmetric] onorm_zero)
-
-lemma onorm_pos_lt:
-  assumes f: "bounded_linear f"
-  shows "0 < onorm f \<longleftrightarrow> \<not> (\<forall>x. f x = 0)"
-  by (simp add: less_le onorm_pos_le [OF f] onorm_eq_0 [OF f])
-
-lemma onorm_id_le: "onorm (\<lambda>x. x) \<le> 1"
-  by (rule onorm_bound) simp_all
-
-lemma onorm_id: "onorm (\<lambda>x. x::'a::{real_normed_vector, perfect_space}) = 1"
-proof (rule antisym[OF onorm_id_le])
-  have "{0::'a} \<noteq> UNIV" by (metis not_open_singleton open_UNIV)
-  then obtain x :: 'a where "x \<noteq> 0" by fast
-  hence "1 \<le> norm x / norm x"
-    by simp
-  also have "\<dots> \<le> onorm (\<lambda>x::'a. x)"
-    by (rule le_onorm) (rule bounded_linear_ident)
-  finally show "1 \<le> onorm (\<lambda>x::'a. x)" .
-qed
-
-lemma onorm_compose:
-  assumes f: "bounded_linear f"
-  assumes g: "bounded_linear g"
-  shows "onorm (f \<circ> g) \<le> onorm f * onorm g"
-proof (rule onorm_bound)
-  show "0 \<le> onorm f * onorm g"
-    by (intro mult_nonneg_nonneg onorm_pos_le f g)
-next
-  fix x
-  have "norm (f (g x)) \<le> onorm f * norm (g x)"
-    by (rule onorm [OF f])
-  also have "onorm f * norm (g x) \<le> onorm f * (onorm g * norm x)"
-    by (rule mult_left_mono [OF onorm [OF g] onorm_pos_le [OF f]])
-  finally show "norm ((f \<circ> g) x) \<le> onorm f * onorm g * norm x"
-    by (simp add: mult.assoc)
-qed
-
-lemma onorm_scaleR_lemma:
-  assumes f: "bounded_linear f"
-  shows "onorm (\<lambda>x. r *\<^sub>R f x) \<le> \<bar>r\<bar> * onorm f"
-proof (rule onorm_bound)
-  show "0 \<le> \<bar>r\<bar> * onorm f"
-    by (intro mult_nonneg_nonneg onorm_pos_le abs_ge_zero f)
-next
-  fix x
-  have "\<bar>r\<bar> * norm (f x) \<le> \<bar>r\<bar> * (onorm f * norm x)"
-    by (intro mult_left_mono onorm abs_ge_zero f)
-  then show "norm (r *\<^sub>R f x) \<le> \<bar>r\<bar> * onorm f * norm x"
-    by (simp only: norm_scaleR mult.assoc)
-qed
-
-lemma onorm_scaleR:
-  assumes f: "bounded_linear f"
-  shows "onorm (\<lambda>x. r *\<^sub>R f x) = \<bar>r\<bar> * onorm f"
-proof (cases "r = 0")
-  assume "r \<noteq> 0"
-  show ?thesis
-  proof (rule order_antisym)
-    show "onorm (\<lambda>x. r *\<^sub>R f x) \<le> \<bar>r\<bar> * onorm f"
-      using f by (rule onorm_scaleR_lemma)
-  next
-    have "bounded_linear (\<lambda>x. r *\<^sub>R f x)"
-      using bounded_linear_scaleR_right f by (rule bounded_linear_compose)
-    then have "onorm (\<lambda>x. inverse r *\<^sub>R r *\<^sub>R f x) \<le> \<bar>inverse r\<bar> * onorm (\<lambda>x. r *\<^sub>R f x)"
-      by (rule onorm_scaleR_lemma)
-    with \<open>r \<noteq> 0\<close> show "\<bar>r\<bar> * onorm f \<le> onorm (\<lambda>x. r *\<^sub>R f x)"
-      by (simp add: inverse_eq_divide pos_le_divide_eq mult.commute)
-  qed
-qed (simp add: onorm_zero)
-
-lemma onorm_scaleR_left_lemma:
-  assumes r: "bounded_linear r"
-  shows "onorm (\<lambda>x. r x *\<^sub>R f) \<le> onorm r * norm f"
-proof (rule onorm_bound)
-  fix x
-  have "norm (r x *\<^sub>R f) = norm (r x) * norm f"
-    by simp
-  also have "\<dots> \<le> onorm r * norm x * norm f"
-    by (intro mult_right_mono onorm r norm_ge_zero)
-  finally show "norm (r x *\<^sub>R f) \<le> onorm r * norm f * norm x"
-    by (simp add: ac_simps)
-qed (intro mult_nonneg_nonneg norm_ge_zero onorm_pos_le r)
-
-lemma onorm_scaleR_left:
-  assumes f: "bounded_linear r"
-  shows "onorm (\<lambda>x. r x *\<^sub>R f) = onorm r * norm f"
-proof (cases "f = 0")
-  assume "f \<noteq> 0"
-  show ?thesis
-  proof (rule order_antisym)
-    show "onorm (\<lambda>x. r x *\<^sub>R f) \<le> onorm r * norm f"
-      using f by (rule onorm_scaleR_left_lemma)
-  next
-    have bl1: "bounded_linear (\<lambda>x. r x *\<^sub>R f)"
-      by (metis bounded_linear_scaleR_const f)
-    have "bounded_linear (\<lambda>x. r x * norm f)"
-      by (metis bounded_linear_mult_const f)
-    from onorm_scaleR_left_lemma[OF this, of "inverse (norm f)"]
-    have "onorm r \<le> onorm (\<lambda>x. r x * norm f) * inverse (norm f)"
-      using \<open>f \<noteq> 0\<close>
-      by (simp add: inverse_eq_divide)
-    also have "onorm (\<lambda>x. r x * norm f) \<le> onorm (\<lambda>x. r x *\<^sub>R f)"
-      by (rule onorm_bound)
-        (auto simp: abs_mult bl1 onorm_pos_le intro!: order_trans[OF _ onorm])
-    finally show "onorm r * norm f \<le> onorm (\<lambda>x. r x *\<^sub>R f)"
-      using \<open>f \<noteq> 0\<close>
-      by (simp add: inverse_eq_divide pos_le_divide_eq mult.commute)
-  qed
-qed (simp add: onorm_zero)
-
-lemma onorm_neg:
-  shows "onorm (\<lambda>x. - f x) = onorm f"
-  unfolding onorm_def by simp
-
-lemma onorm_triangle:
-  assumes f: "bounded_linear f"
-  assumes g: "bounded_linear g"
-  shows "onorm (\<lambda>x. f x + g x) \<le> onorm f + onorm g"
-proof (rule onorm_bound)
-  show "0 \<le> onorm f + onorm g"
-    by (intro add_nonneg_nonneg onorm_pos_le f g)
-next
-  fix x
-  have "norm (f x + g x) \<le> norm (f x) + norm (g x)"
-    by (rule norm_triangle_ineq)
-  also have "norm (f x) + norm (g x) \<le> onorm f * norm x + onorm g * norm x"
-    by (intro add_mono onorm f g)
-  finally show "norm (f x + g x) \<le> (onorm f + onorm g) * norm x"
-    by (simp only: distrib_right)
-qed
-
-lemma onorm_triangle_le:
-  assumes "bounded_linear f"
-  assumes "bounded_linear g"
-  assumes "onorm f + onorm g \<le> e"
-  shows "onorm (\<lambda>x. f x + g x) \<le> e"
-  using assms by (rule onorm_triangle [THEN order_trans])
-
-lemma onorm_triangle_lt:
-  assumes "bounded_linear f"
-  assumes "bounded_linear g"
-  assumes "onorm f + onorm g < e"
-  shows "onorm (\<lambda>x. f x + g x) < e"
-  using assms by (rule onorm_triangle [THEN order_le_less_trans])
-
-end