doc-src/Logics/defining.tex
changeset 142 6dfae8cddec7
parent 135 493308514ea8
child 188 6be0856cdf49
--- a/doc-src/Logics/defining.tex	Thu Nov 25 10:29:40 1993 +0100
+++ b/doc-src/Logics/defining.tex	Thu Nov 25 10:44:44 1993 +0100
@@ -25,38 +25,6 @@
 skipped on the first reading.
 
 
-%% FIXME move to Refman
-% \section{Classes and types *}
-% \index{*arities!context conditions}
-%
-% Type declarations are subject to the following two well-formedness
-% conditions:
-% \begin{itemize}
-% \item There are no two declarations $ty :: (\vec{r})c$ and $ty :: (\vec{s})c$
-%   with $\vec{r} \neq \vec{s}$.  For example
-% \begin{ttbox}
-% types ty 1
-% arities ty :: ({\ttlbrace}logic{\ttrbrace}) logic
-%         ty :: ({\ttlbrace}{\ttrbrace})logic
-% \end{ttbox}
-% leads to an error message and fails.
-% \item If there are two declarations $ty :: (s@1,\dots,s@n)c$ and $ty ::
-%   (s@1',\dots,s@n')c'$ such that $c' < c$ then $s@i' \preceq s@i$ must hold
-%   for $i=1,\dots,n$.  The relationship $\preceq$, defined as
-% \[ s' \preceq s \iff \forall c\in s. \exists c'\in s'.~ c'\le c, \]
-% expresses that the set of types represented by $s'$ is a subset of the set of
-% types represented by $s$.  For example
-% \begin{ttbox}
-% classes term < logic
-% types ty 1
-% arities ty :: ({\ttlbrace}logic{\ttrbrace})logic
-%         ty :: ({\ttlbrace}{\ttrbrace})term
-% \end{ttbox}
-% leads to an error message and fails.
-% \end{itemize}
-% These conditions guarantee principal types~\cite{nipkow-prehofer}.
-
-
 
 \section{Precedence grammars} \label{sec:precedence_grammars}