doc-src/TutorialI/document/Typedefs.tex
changeset 48966 6e15de7dd871
parent 48965 1fead823c7c6
child 48967 389e44f9e47a
--- a/doc-src/TutorialI/document/Typedefs.tex	Tue Aug 28 13:15:15 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,340 +0,0 @@
-%
-\begin{isabellebody}%
-\def\isabellecontext{Typedefs}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isamarkupsection{Introducing New Types%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\label{sec:adv-typedef}
-For most applications, a combination of predefined types like \isa{bool} and
-\isa{{\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}} with recursive datatypes and records is quite sufficient. Very
-occasionally you may feel the need for a more advanced type.  If you
-are certain that your type is not definable by any of the
-standard means, then read on.
-\begin{warn}
-  Types in HOL must be non-empty; otherwise the quantifier rules would be
-  unsound, because $\exists x.\ x=x$ is a theorem.
-\end{warn}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Declaring New Types%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\label{sec:typedecl}
-\index{types!declaring|(}%
-\index{typedecl@\isacommand {typedecl} (command)}%
-The most trivial way of introducing a new type is by a \textbf{type
-declaration}:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{typedecl}\isamarkupfalse%
-\ my{\isaliteral{5F}{\isacharunderscore}}new{\isaliteral{5F}{\isacharunderscore}}type%
-\begin{isamarkuptext}%
-\noindent
-This does not define \isa{my{\isaliteral{5F}{\isacharunderscore}}new{\isaliteral{5F}{\isacharunderscore}}type} at all but merely introduces its
-name. Thus we know nothing about this type, except that it is
-non-empty. Such declarations without definitions are
-useful if that type can be viewed as a parameter of the theory.
-A typical example is given in \S\ref{sec:VMC}, where we define a transition
-relation over an arbitrary type of states.
-
-In principle we can always get rid of such type declarations by making those
-types parameters of every other type, thus keeping the theory generic. In
-practice, however, the resulting clutter can make types hard to read.
-
-If you are looking for a quick and dirty way of introducing a new type
-together with its properties: declare the type and state its properties as
-axioms. Example:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{axioms}\isamarkupfalse%
-\isanewline
-just{\isaliteral{5F}{\isacharunderscore}}one{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}x{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}my{\isaliteral{5F}{\isacharunderscore}}new{\isaliteral{5F}{\isacharunderscore}}type{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}y{\isaliteral{2E}{\isachardot}}\ x\ {\isaliteral{3D}{\isacharequal}}\ y{\isaliteral{22}{\isachardoublequoteclose}}%
-\begin{isamarkuptext}%
-\noindent
-However, we strongly discourage this approach, except at explorative stages
-of your development. It is extremely easy to write down contradictory sets of
-axioms, in which case you will be able to prove everything but it will mean
-nothing.  In the example above, the axiomatic approach is
-unnecessary: a one-element type called \isa{unit} is already defined in HOL.
-\index{types!declaring|)}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Defining New Types%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\label{sec:typedef}
-\index{types!defining|(}%
-\index{typedecl@\isacommand {typedef} (command)|(}%
-Now we come to the most general means of safely introducing a new type, the
-\textbf{type definition}. All other means, for example
-\isacommand{datatype}, are based on it. The principle is extremely simple:
-any non-empty subset of an existing type can be turned into a new type.
-More precisely, the new type is specified to be isomorphic to some
-non-empty subset of an existing type.
-
-Let us work a simple example, the definition of a three-element type.
-It is easily represented by the first three natural numbers:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{typedef}\isamarkupfalse%
-\ three\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{7B}{\isacharbraceleft}}{\isadigit{0}}{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}nat{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{2}}{\isaliteral{7D}{\isacharbraceright}}{\isaliteral{22}{\isachardoublequoteclose}}%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-%
-\begin{isamarkuptxt}%
-\noindent
-In order to enforce that the representing set on the right-hand side is
-non-empty, this definition actually starts a proof to that effect:
-\begin{isabelle}%
-\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}x{\isaliteral{2E}{\isachardot}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ {\isaliteral{7B}{\isacharbraceleft}}{\isadigit{0}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{2}}{\isaliteral{7D}{\isacharbraceright}}%
-\end{isabelle}
-Fortunately, this is easy enough to show, even \isa{auto} could do it.
-In general, one has to provide a witness, in our case 0:%
-\end{isamarkuptxt}%
-\isamarkuptrue%
-\isacommand{apply}\isamarkupfalse%
-{\isaliteral{28}{\isacharparenleft}}rule{\isaliteral{5F}{\isacharunderscore}}tac\ x\ {\isaliteral{3D}{\isacharequal}}\ {\isadigit{0}}\ \isakeyword{in}\ exI{\isaliteral{29}{\isacharparenright}}\isanewline
-\isacommand{by}\isamarkupfalse%
-\ simp%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-This type definition introduces the new type \isa{three} and asserts
-that it is a copy of the set \isa{{\isaliteral{7B}{\isacharbraceleft}}{\isadigit{0}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{2}}{\isaliteral{7D}{\isacharbraceright}}}. This assertion
-is expressed via a bijection between the \emph{type} \isa{three} and the
-\emph{set} \isa{{\isaliteral{7B}{\isacharbraceleft}}{\isadigit{0}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{2}}{\isaliteral{7D}{\isacharbraceright}}}. To this end, the command declares the following
-constants behind the scenes:
-\begin{center}
-\begin{tabular}{rcl}
-\isa{three} &::& \isa{nat\ set} \\
-\isa{Rep{\isaliteral{5F}{\isacharunderscore}}three} &::& \isa{three\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ nat}\\
-\isa{Abs{\isaliteral{5F}{\isacharunderscore}}three} &::& \isa{nat\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ three}
-\end{tabular}
-\end{center}
-where constant \isa{three} is explicitly defined as the representing set:
-\begin{center}
-\isa{three\ {\isaliteral{5C3C65717569763E}{\isasymequiv}}\ {\isaliteral{7B}{\isacharbraceleft}}{\isadigit{0}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{2}}{\isaliteral{7D}{\isacharbraceright}}}\hfill(\isa{three{\isaliteral{5F}{\isacharunderscore}}def})
-\end{center}
-The situation is best summarized with the help of the following diagram,
-where squares denote types and the irregular region denotes a set:
-\begin{center}
-\includegraphics[scale=.8]{typedef}
-\end{center}
-Finally, \isacommand{typedef} asserts that \isa{Rep{\isaliteral{5F}{\isacharunderscore}}three} is
-surjective on the subset \isa{three} and \isa{Abs{\isaliteral{5F}{\isacharunderscore}}three} and \isa{Rep{\isaliteral{5F}{\isacharunderscore}}three} are inverses of each other:
-\begin{center}
-\begin{tabular}{@ {}r@ {\qquad\qquad}l@ {}}
-\isa{Rep{\isaliteral{5F}{\isacharunderscore}}three\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ three} & (\isa{Rep{\isaliteral{5F}{\isacharunderscore}}three}) \\
-\isa{Abs{\isaliteral{5F}{\isacharunderscore}}three\ {\isaliteral{28}{\isacharparenleft}}Rep{\isaliteral{5F}{\isacharunderscore}}three\ x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ x} & (\isa{Rep{\isaliteral{5F}{\isacharunderscore}}three{\isaliteral{5F}{\isacharunderscore}}inverse}) \\
-\isa{y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ three\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Rep{\isaliteral{5F}{\isacharunderscore}}three\ {\isaliteral{28}{\isacharparenleft}}Abs{\isaliteral{5F}{\isacharunderscore}}three\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ y} & (\isa{Abs{\isaliteral{5F}{\isacharunderscore}}three{\isaliteral{5F}{\isacharunderscore}}inverse})
-\end{tabular}
-\end{center}
-%
-From this example it should be clear what \isacommand{typedef} does
-in general given a name (here \isa{three}) and a set
-(here \isa{{\isaliteral{7B}{\isacharbraceleft}}{\isadigit{0}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{2}}{\isaliteral{7D}{\isacharbraceright}}}).
-
-Our next step is to define the basic functions expected on the new type.
-Although this depends on the type at hand, the following strategy works well:
-\begin{itemize}
-\item define a small kernel of basic functions that can express all other
-functions you anticipate.
-\item define the kernel in terms of corresponding functions on the
-representing type using \isa{Abs} and \isa{Rep} to convert between the
-two levels.
-\end{itemize}
-In our example it suffices to give the three elements of type \isa{three}
-names:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{definition}\isamarkupfalse%
-\ A\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ three\ \isakeyword{where}\ {\isaliteral{22}{\isachardoublequoteopen}}A\ {\isaliteral{5C3C65717569763E}{\isasymequiv}}\ Abs{\isaliteral{5F}{\isacharunderscore}}three\ {\isadigit{0}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-\isacommand{definition}\isamarkupfalse%
-\ B\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ three\ \isakeyword{where}\ {\isaliteral{22}{\isachardoublequoteopen}}B\ {\isaliteral{5C3C65717569763E}{\isasymequiv}}\ Abs{\isaliteral{5F}{\isacharunderscore}}three\ {\isadigit{1}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-\isacommand{definition}\isamarkupfalse%
-\ C\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ three\ \isakeyword{where}\ {\isaliteral{22}{\isachardoublequoteopen}}C\ {\isaliteral{5C3C65717569763E}{\isasymequiv}}\ Abs{\isaliteral{5F}{\isacharunderscore}}three\ {\isadigit{2}}{\isaliteral{22}{\isachardoublequoteclose}}%
-\begin{isamarkuptext}%
-So far, everything was easy. But it is clear that reasoning about \isa{three} will be hell if we have to go back to \isa{nat} every time. Thus our
-aim must be to raise our level of abstraction by deriving enough theorems
-about type \isa{three} to characterize it completely. And those theorems
-should be phrased in terms of \isa{A}, \isa{B} and \isa{C}, not \isa{Abs{\isaliteral{5F}{\isacharunderscore}}three} and \isa{Rep{\isaliteral{5F}{\isacharunderscore}}three}. Because of the simplicity of the example,
-we merely need to prove that \isa{A}, \isa{B} and \isa{C} are distinct
-and that they exhaust the type.
-
-In processing our \isacommand{typedef} declaration, 
-Isabelle proves several helpful lemmas. The first two
-express injectivity of \isa{Rep{\isaliteral{5F}{\isacharunderscore}}three} and \isa{Abs{\isaliteral{5F}{\isacharunderscore}}three}:
-\begin{center}
-\begin{tabular}{@ {}r@ {\qquad}l@ {}}
-\isa{{\isaliteral{28}{\isacharparenleft}}Rep{\isaliteral{5F}{\isacharunderscore}}three\ x\ {\isaliteral{3D}{\isacharequal}}\ Rep{\isaliteral{5F}{\isacharunderscore}}three\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}x\ {\isaliteral{3D}{\isacharequal}}\ y{\isaliteral{29}{\isacharparenright}}} & (\isa{Rep{\isaliteral{5F}{\isacharunderscore}}three{\isaliteral{5F}{\isacharunderscore}}inject}) \\
-\begin{tabular}{@ {}l@ {}}
-\isa{{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ three{\isaliteral{3B}{\isacharsemicolon}}\ y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ three\ {\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}} \\
-\isa{{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}Abs{\isaliteral{5F}{\isacharunderscore}}three\ x\ {\isaliteral{3D}{\isacharequal}}\ Abs{\isaliteral{5F}{\isacharunderscore}}three\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}x\ {\isaliteral{3D}{\isacharequal}}\ y{\isaliteral{29}{\isacharparenright}}}
-\end{tabular} & (\isa{Abs{\isaliteral{5F}{\isacharunderscore}}three{\isaliteral{5F}{\isacharunderscore}}inject}) \\
-\end{tabular}
-\end{center}
-The following ones allow to replace some \isa{x{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}three} by
-\isa{Abs{\isaliteral{5F}{\isacharunderscore}}three{\isaliteral{28}{\isacharparenleft}}y{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}nat{\isaliteral{29}{\isacharparenright}}}, and conversely \isa{y} by \isa{Rep{\isaliteral{5F}{\isacharunderscore}}three\ x}:
-\begin{center}
-\begin{tabular}{@ {}r@ {\qquad}l@ {}}
-\isa{{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ three{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x{\isaliteral{2E}{\isachardot}}\ y\ {\isaliteral{3D}{\isacharequal}}\ Rep{\isaliteral{5F}{\isacharunderscore}}three\ x\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P} & (\isa{Rep{\isaliteral{5F}{\isacharunderscore}}three{\isaliteral{5F}{\isacharunderscore}}cases}) \\
-\isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C416E643E}{\isasymAnd}}y{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}x\ {\isaliteral{3D}{\isacharequal}}\ Abs{\isaliteral{5F}{\isacharunderscore}}three\ y{\isaliteral{3B}{\isacharsemicolon}}\ y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ three{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P} & (\isa{Abs{\isaliteral{5F}{\isacharunderscore}}three{\isaliteral{5F}{\isacharunderscore}}cases}) \\
-\isa{{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ three{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x{\isaliteral{2E}{\isachardot}}\ P\ {\isaliteral{28}{\isacharparenleft}}Rep{\isaliteral{5F}{\isacharunderscore}}three\ x{\isaliteral{29}{\isacharparenright}}{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\ y} & (\isa{Rep{\isaliteral{5F}{\isacharunderscore}}three{\isaliteral{5F}{\isacharunderscore}}induct}) \\
-\isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C416E643E}{\isasymAnd}}y{\isaliteral{2E}{\isachardot}}\ y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ three\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\ {\isaliteral{28}{\isacharparenleft}}Abs{\isaliteral{5F}{\isacharunderscore}}three\ y{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\ x} & (\isa{Abs{\isaliteral{5F}{\isacharunderscore}}three{\isaliteral{5F}{\isacharunderscore}}induct}) \\
-\end{tabular}
-\end{center}
-These theorems are proved for any type definition, with \isa{three}
-replaced by the name of the type in question.
-
-Distinctness of \isa{A}, \isa{B} and \isa{C} follows immediately
-if we expand their definitions and rewrite with the injectivity
-of \isa{Abs{\isaliteral{5F}{\isacharunderscore}}three}:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{lemma}\isamarkupfalse%
-\ {\isaliteral{22}{\isachardoublequoteopen}}A\ {\isaliteral{5C3C6E6F7465713E}{\isasymnoteq}}\ B\ {\isaliteral{5C3C616E643E}{\isasymand}}\ B\ {\isaliteral{5C3C6E6F7465713E}{\isasymnoteq}}\ A\ {\isaliteral{5C3C616E643E}{\isasymand}}\ A\ {\isaliteral{5C3C6E6F7465713E}{\isasymnoteq}}\ C\ {\isaliteral{5C3C616E643E}{\isasymand}}\ C\ {\isaliteral{5C3C6E6F7465713E}{\isasymnoteq}}\ A\ {\isaliteral{5C3C616E643E}{\isasymand}}\ B\ {\isaliteral{5C3C6E6F7465713E}{\isasymnoteq}}\ C\ {\isaliteral{5C3C616E643E}{\isasymand}}\ C\ {\isaliteral{5C3C6E6F7465713E}{\isasymnoteq}}\ B{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{by}\isamarkupfalse%
-{\isaliteral{28}{\isacharparenleft}}simp\ add{\isaliteral{3A}{\isacharcolon}}\ Abs{\isaliteral{5F}{\isacharunderscore}}three{\isaliteral{5F}{\isacharunderscore}}inject\ A{\isaliteral{5F}{\isacharunderscore}}def\ B{\isaliteral{5F}{\isacharunderscore}}def\ C{\isaliteral{5F}{\isacharunderscore}}def\ three{\isaliteral{5F}{\isacharunderscore}}def{\isaliteral{29}{\isacharparenright}}%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-\noindent
-Of course we rely on the simplifier to solve goals like \isa{{\isadigit{0}}\ {\isaliteral{5C3C6E6F7465713E}{\isasymnoteq}}\ {\isadigit{1}}}.
-
-The fact that \isa{A}, \isa{B} and \isa{C} exhaust type \isa{three} is
-best phrased as a case distinction theorem: if you want to prove \isa{P\ x}
-(where \isa{x} is of type \isa{three}) it suffices to prove \isa{P\ A},
-\isa{P\ B} and \isa{P\ C}:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{lemma}\isamarkupfalse%
-\ three{\isaliteral{5F}{\isacharunderscore}}cases{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ P\ A{\isaliteral{3B}{\isacharsemicolon}}\ P\ B{\isaliteral{3B}{\isacharsemicolon}}\ P\ C\ {\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\ x{\isaliteral{22}{\isachardoublequoteclose}}%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-%
-\begin{isamarkuptxt}%
-\noindent Again this follows easily using the induction principle stemming from the type definition:%
-\end{isamarkuptxt}%
-\isamarkuptrue%
-\isacommand{apply}\isamarkupfalse%
-{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ x{\isaliteral{29}{\isacharparenright}}%
-\begin{isamarkuptxt}%
-\begin{isabelle}%
-\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}y{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}P\ A{\isaliteral{3B}{\isacharsemicolon}}\ P\ B{\isaliteral{3B}{\isacharsemicolon}}\ P\ C{\isaliteral{3B}{\isacharsemicolon}}\ y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ three{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\ {\isaliteral{28}{\isacharparenleft}}Abs{\isaliteral{5F}{\isacharunderscore}}three\ y{\isaliteral{29}{\isacharparenright}}%
-\end{isabelle}
-Simplification with \isa{three{\isaliteral{5F}{\isacharunderscore}}def} leads to the disjunction \isa{y\ {\isaliteral{3D}{\isacharequal}}\ {\isadigit{0}}\ {\isaliteral{5C3C6F723E}{\isasymor}}\ y\ {\isaliteral{3D}{\isacharequal}}\ {\isadigit{1}}\ {\isaliteral{5C3C6F723E}{\isasymor}}\ y\ {\isaliteral{3D}{\isacharequal}}\ {\isadigit{2}}} which \isa{auto} separates into three
-subgoals, each of which is easily solved by simplification:%
-\end{isamarkuptxt}%
-\isamarkuptrue%
-\isacommand{apply}\isamarkupfalse%
-{\isaliteral{28}{\isacharparenleft}}auto\ simp\ add{\isaliteral{3A}{\isacharcolon}}\ three{\isaliteral{5F}{\isacharunderscore}}def\ A{\isaliteral{5F}{\isacharunderscore}}def\ B{\isaliteral{5F}{\isacharunderscore}}def\ C{\isaliteral{5F}{\isacharunderscore}}def{\isaliteral{29}{\isacharparenright}}\isanewline
-\isacommand{done}\isamarkupfalse%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-\noindent
-This concludes the derivation of the characteristic theorems for
-type \isa{three}.
-
-The attentive reader has realized long ago that the
-above lengthy definition can be collapsed into one line:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{datatype}\isamarkupfalse%
-\ better{\isaliteral{5F}{\isacharunderscore}}three\ {\isaliteral{3D}{\isacharequal}}\ A\ {\isaliteral{7C}{\isacharbar}}\ B\ {\isaliteral{7C}{\isacharbar}}\ C%
-\begin{isamarkuptext}%
-\noindent
-In fact, the \isacommand{datatype} command performs internally more or less
-the same derivations as we did, which gives you some idea what life would be
-like without \isacommand{datatype}.
-
-Although \isa{three} could be defined in one line, we have chosen this
-example to demonstrate \isacommand{typedef} because its simplicity makes the
-key concepts particularly easy to grasp. If you would like to see a
-non-trivial example that cannot be defined more directly, we recommend the
-definition of \emph{finite multisets} in the Library~\cite{HOL-Library}.
-
-Let us conclude by summarizing the above procedure for defining a new type.
-Given some abstract axiomatic description $P$ of a type $ty$ in terms of a
-set of functions $F$, this involves three steps:
-\begin{enumerate}
-\item Find an appropriate type $\tau$ and subset $A$ which has the desired
-  properties $P$, and make a type definition based on this representation.
-\item Define the required functions $F$ on $ty$ by lifting
-analogous functions on the representation via $Abs_ty$ and $Rep_ty$.
-\item Prove that $P$ holds for $ty$ by lifting $P$ from the representation.
-\end{enumerate}
-You can now forget about the representation and work solely in terms of the
-abstract functions $F$ and properties $P$.%
-\index{typedecl@\isacommand {typedef} (command)|)}%
-\index{types!defining|)}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-\end{isabellebody}%
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "root"
-%%% End: