src/HOL/Cardinals/Constructions_on_Wellorders.thy
changeset 49310 6e30078de4f0
parent 48979 b62d14275b89
child 51764 67f05cb13e08
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Cardinals/Constructions_on_Wellorders.thy	Wed Sep 12 05:29:21 2012 +0200
@@ -0,0 +1,795 @@
+(*  Title:      HOL/Cardinals/Constructions_on_Wellorders.thy
+    Author:     Andrei Popescu, TU Muenchen
+    Copyright   2012
+
+Constructions on wellorders.
+*)
+
+header {* Constructions on Wellorders *}
+
+theory Constructions_on_Wellorders
+imports Constructions_on_Wellorders_Base Wellorder_Embedding
+begin
+
+declare
+  ordLeq_Well_order_simp[simp]
+  ordLess_Well_order_simp[simp]
+  ordIso_Well_order_simp[simp]
+  not_ordLeq_iff_ordLess[simp]
+  not_ordLess_iff_ordLeq[simp]
+
+
+subsection {* Restriction to a set  *}
+
+lemma Restr_incr2:
+"r <= r' \<Longrightarrow> Restr r A <= Restr r' A"
+by blast
+
+lemma Restr_incr:
+"\<lbrakk>r \<le> r'; A \<le> A'\<rbrakk> \<Longrightarrow> Restr r A \<le> Restr r' A'"
+by blast
+
+lemma Restr_Int:
+"Restr (Restr r A) B = Restr r (A Int B)"
+by blast
+
+lemma Restr_iff: "(a,b) : Restr r A = (a : A \<and> b : A \<and> (a,b) : r)"
+by (auto simp add: Field_def)
+
+lemma Restr_subset1: "Restr r A \<le> r"
+by auto
+
+lemma Restr_subset2: "Restr r A \<le> A \<times> A"
+by auto
+
+lemma wf_Restr:
+"wf r \<Longrightarrow> wf(Restr r A)"
+using wf_subset Restr_subset by blast
+
+lemma Restr_incr1:
+"A \<le> B \<Longrightarrow> Restr r A \<le> Restr r B"
+by blast
+
+
+subsection {* Order filters versus restrictions and embeddings  *}
+
+lemma ofilter_Restr:
+assumes WELL: "Well_order r" and
+        OFA: "ofilter r A" and OFB: "ofilter r B" and SUB: "A \<le> B"
+shows "ofilter (Restr r B) A"
+proof-
+  let ?rB = "Restr r B"
+  have Well: "wo_rel r" unfolding wo_rel_def using WELL .
+  hence Refl: "Refl r" by (auto simp add: wo_rel.REFL)
+  hence Field: "Field ?rB = Field r Int B"
+  using Refl_Field_Restr by blast
+  have WellB: "wo_rel ?rB \<and> Well_order ?rB" using WELL
+  by (auto simp add: Well_order_Restr wo_rel_def)
+  (* Main proof *)
+  show ?thesis
+  proof(auto simp add: WellB wo_rel.ofilter_def)
+    fix a assume "a \<in> A"
+    hence "a \<in> Field r \<and> a \<in> B" using assms Well
+    by (auto simp add: wo_rel.ofilter_def)
+    with Field show "a \<in> Field(Restr r B)" by auto
+  next
+    fix a b assume *: "a \<in> A"  and "b \<in> under (Restr r B) a"
+    hence "b \<in> under r a"
+    using WELL OFB SUB ofilter_Restr_under[of r B a] by auto
+    thus "b \<in> A" using * Well OFA by(auto simp add: wo_rel.ofilter_def)
+  qed
+qed
+
+lemma ofilter_subset_iso:
+assumes WELL: "Well_order r" and
+        OFA: "ofilter r A" and OFB: "ofilter r B"
+shows "(A = B) = iso (Restr r A) (Restr r B) id"
+using assms
+by (auto simp add: ofilter_subset_embedS_iso)
+
+
+subsection {* Ordering the  well-orders by existence of embeddings *}
+
+corollary ordLeq_refl_on: "refl_on {r. Well_order r} ordLeq"
+using ordLeq_reflexive unfolding ordLeq_def refl_on_def
+by blast
+
+corollary ordLeq_trans: "trans ordLeq"
+using trans_def[of ordLeq] ordLeq_transitive by blast
+
+corollary ordLeq_preorder_on: "preorder_on {r. Well_order r} ordLeq"
+by(auto simp add: preorder_on_def ordLeq_refl_on ordLeq_trans)
+
+corollary ordIso_refl_on: "refl_on {r. Well_order r} ordIso"
+using ordIso_reflexive unfolding refl_on_def ordIso_def
+by blast
+
+corollary ordIso_trans: "trans ordIso"
+using trans_def[of ordIso] ordIso_transitive by blast
+
+corollary ordIso_sym: "sym ordIso"
+by (auto simp add: sym_def ordIso_symmetric)
+
+corollary ordIso_equiv: "equiv {r. Well_order r} ordIso"
+by (auto simp add:  equiv_def ordIso_sym ordIso_refl_on ordIso_trans)
+
+lemma ordLess_irrefl: "irrefl ordLess"
+by(unfold irrefl_def, auto simp add: ordLess_irreflexive)
+
+lemma ordLess_or_ordIso:
+assumes WELL: "Well_order r" and WELL': "Well_order r'"
+shows "r <o r' \<or> r' <o r \<or> r =o r'"
+unfolding ordLess_def ordIso_def
+using assms embedS_or_iso[of r r'] by auto
+
+corollary ordLeq_ordLess_Un_ordIso:
+"ordLeq = ordLess \<union> ordIso"
+by (auto simp add: ordLeq_iff_ordLess_or_ordIso)
+
+lemma not_ordLeq_ordLess:
+"r \<le>o r' \<Longrightarrow> \<not> r' <o r"
+using not_ordLess_ordLeq by blast
+
+lemma ordIso_or_ordLess:
+assumes WELL: "Well_order r" and WELL': "Well_order r'"
+shows "r =o r' \<or> r <o r' \<or> r' <o r"
+using assms ordLess_or_ordLeq ordLeq_iff_ordLess_or_ordIso by blast
+
+lemmas ord_trans = ordIso_transitive ordLeq_transitive ordLess_transitive
+                   ordIso_ordLeq_trans ordLeq_ordIso_trans
+                   ordIso_ordLess_trans ordLess_ordIso_trans
+                   ordLess_ordLeq_trans ordLeq_ordLess_trans
+
+lemma ofilter_ordLeq:
+assumes "Well_order r" and "ofilter r A"
+shows "Restr r A \<le>o r"
+proof-
+  have "A \<le> Field r" using assms by (auto simp add: wo_rel_def wo_rel.ofilter_def)
+  thus ?thesis using assms
+  by (simp add: ofilter_subset_ordLeq wo_rel.Field_ofilter
+      wo_rel_def Restr_Field)
+qed
+
+corollary under_Restr_ordLeq:
+"Well_order r \<Longrightarrow> Restr r (under r a) \<le>o r"
+by (auto simp add: ofilter_ordLeq wo_rel.under_ofilter wo_rel_def)
+
+
+subsection {* Copy via direct images  *}
+
+lemma Id_dir_image: "dir_image Id f \<le> Id"
+unfolding dir_image_def by auto
+
+lemma Un_dir_image:
+"dir_image (r1 \<union> r2) f = (dir_image r1 f) \<union> (dir_image r2 f)"
+unfolding dir_image_def by auto
+
+lemma Int_dir_image:
+assumes "inj_on f (Field r1 \<union> Field r2)"
+shows "dir_image (r1 Int r2) f = (dir_image r1 f) Int (dir_image r2 f)"
+proof
+  show "dir_image (r1 Int r2) f \<le> (dir_image r1 f) Int (dir_image r2 f)"
+  using assms unfolding dir_image_def inj_on_def by auto
+next
+  show "(dir_image r1 f) Int (dir_image r2 f) \<le> dir_image (r1 Int r2) f"
+  proof(clarify)
+    fix a' b'
+    assume "(a',b') \<in> dir_image r1 f" "(a',b') \<in> dir_image r2 f"
+    then obtain a1 b1 a2 b2
+    where 1: "a' = f a1 \<and> b' = f b1 \<and> a' = f a2 \<and> b' = f b2" and
+          2: "(a1,b1) \<in> r1 \<and> (a2,b2) \<in> r2" and
+          3: "{a1,b1} \<le> Field r1 \<and> {a2,b2} \<le> Field r2"
+    unfolding dir_image_def Field_def by blast
+    hence "a1 = a2 \<and> b1 = b2" using assms unfolding inj_on_def by auto
+    hence "a' = f a1 \<and> b' = f b1 \<and> (a1,b1) \<in> r1 Int r2 \<and> (a2,b2) \<in> r1 Int r2"
+    using 1 2 by auto
+    thus "(a',b') \<in> dir_image (r1 \<inter> r2) f"
+    unfolding dir_image_def by blast
+  qed
+qed
+
+
+subsection {* Ordinal-like sum of two (disjoint) well-orders *}
+
+text{* This is roughly obtained by ``concatenating" the two well-orders -- thus, all elements
+of the first will be smaller than all elements of the second.  This construction
+only makes sense if the fields of the two well-order relations are disjoint. *}
+
+definition Osum :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel"  (infix "Osum" 60)
+where
+"r Osum r' = r \<union> r' \<union> {(a,a'). a \<in> Field r \<and> a' \<in> Field r'}"
+
+abbreviation Osum2 :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel" (infix "\<union>o" 60)
+where "r \<union>o r' \<equiv> r Osum r'"
+
+lemma Field_Osum: "Field(r Osum r') = Field r \<union> Field r'"
+unfolding Osum_def Field_def by blast
+
+lemma Osum_Refl:
+assumes FLD: "Field r Int Field r' = {}" and
+        REFL: "Refl r" and REFL': "Refl r'"
+shows "Refl (r Osum r')"
+using assms  (* Need first unfold Field_Osum, only then Osum_def *)
+unfolding refl_on_def  Field_Osum unfolding Osum_def by blast
+
+lemma Osum_trans:
+assumes FLD: "Field r Int Field r' = {}" and
+        TRANS: "trans r" and TRANS': "trans r'"
+shows "trans (r Osum r')"
+proof(unfold trans_def, auto)
+  fix x y z assume *: "(x, y) \<in> r \<union>o r'" and **: "(y, z) \<in> r \<union>o r'"
+  show  "(x, z) \<in> r \<union>o r'"
+  proof-
+    {assume Case1: "(x,y) \<in> r"
+     hence 1: "x \<in> Field r \<and> y \<in> Field r" unfolding Field_def by auto
+     have ?thesis
+     proof-
+       {assume Case11: "(y,z) \<in> r"
+        hence "(x,z) \<in> r" using Case1 TRANS trans_def[of r] by blast
+        hence ?thesis unfolding Osum_def by auto
+       }
+       moreover
+       {assume Case12: "(y,z) \<in> r'"
+        hence "y \<in> Field r'" unfolding Field_def by auto
+        hence False using FLD 1 by auto
+       }
+       moreover
+       {assume Case13: "z \<in> Field r'"
+        hence ?thesis using 1 unfolding Osum_def by auto
+       }
+       ultimately show ?thesis using ** unfolding Osum_def by blast
+     qed
+    }
+    moreover
+    {assume Case2: "(x,y) \<in> r'"
+     hence 2: "x \<in> Field r' \<and> y \<in> Field r'" unfolding Field_def by auto
+     have ?thesis
+     proof-
+       {assume Case21: "(y,z) \<in> r"
+        hence "y \<in> Field r" unfolding Field_def by auto
+        hence False using FLD 2 by auto
+       }
+       moreover
+       {assume Case22: "(y,z) \<in> r'"
+        hence "(x,z) \<in> r'" using Case2 TRANS' trans_def[of r'] by blast
+        hence ?thesis unfolding Osum_def by auto
+       }
+       moreover
+       {assume Case23: "y \<in> Field r"
+        hence False using FLD 2 by auto
+       }
+       ultimately show ?thesis using ** unfolding Osum_def by blast
+     qed
+    }
+    moreover
+    {assume Case3: "x \<in> Field r \<and> y \<in> Field r'"
+     have ?thesis
+     proof-
+       {assume Case31: "(y,z) \<in> r"
+        hence "y \<in> Field r" unfolding Field_def by auto
+        hence False using FLD Case3 by auto
+       }
+       moreover
+       {assume Case32: "(y,z) \<in> r'"
+        hence "z \<in> Field r'" unfolding Field_def by blast
+        hence ?thesis unfolding Osum_def using Case3 by auto
+       }
+       moreover
+       {assume Case33: "y \<in> Field r"
+        hence False using FLD Case3 by auto
+       }
+       ultimately show ?thesis using ** unfolding Osum_def by blast
+     qed
+    }
+    ultimately show ?thesis using * unfolding Osum_def by blast
+  qed
+qed
+
+lemma Osum_Preorder:
+"\<lbrakk>Field r Int Field r' = {}; Preorder r; Preorder r'\<rbrakk> \<Longrightarrow> Preorder (r Osum r')"
+unfolding preorder_on_def using Osum_Refl Osum_trans by blast
+
+lemma Osum_antisym:
+assumes FLD: "Field r Int Field r' = {}" and
+        AN: "antisym r" and AN': "antisym r'"
+shows "antisym (r Osum r')"
+proof(unfold antisym_def, auto)
+  fix x y assume *: "(x, y) \<in> r \<union>o r'" and **: "(y, x) \<in> r \<union>o r'"
+  show  "x = y"
+  proof-
+    {assume Case1: "(x,y) \<in> r"
+     hence 1: "x \<in> Field r \<and> y \<in> Field r" unfolding Field_def by auto
+     have ?thesis
+     proof-
+       have "(y,x) \<in> r \<Longrightarrow> ?thesis"
+       using Case1 AN antisym_def[of r] by blast
+       moreover
+       {assume "(y,x) \<in> r'"
+        hence "y \<in> Field r'" unfolding Field_def by auto
+        hence False using FLD 1 by auto
+       }
+       moreover
+       have "x \<in> Field r' \<Longrightarrow> False" using FLD 1 by auto
+       ultimately show ?thesis using ** unfolding Osum_def by blast
+     qed
+    }
+    moreover
+    {assume Case2: "(x,y) \<in> r'"
+     hence 2: "x \<in> Field r' \<and> y \<in> Field r'" unfolding Field_def by auto
+     have ?thesis
+     proof-
+       {assume "(y,x) \<in> r"
+        hence "y \<in> Field r" unfolding Field_def by auto
+        hence False using FLD 2 by auto
+       }
+       moreover
+       have "(y,x) \<in> r' \<Longrightarrow> ?thesis"
+       using Case2 AN' antisym_def[of r'] by blast
+       moreover
+       {assume "y \<in> Field r"
+        hence False using FLD 2 by auto
+       }
+       ultimately show ?thesis using ** unfolding Osum_def by blast
+     qed
+    }
+    moreover
+    {assume Case3: "x \<in> Field r \<and> y \<in> Field r'"
+     have ?thesis
+     proof-
+       {assume "(y,x) \<in> r"
+        hence "y \<in> Field r" unfolding Field_def by auto
+        hence False using FLD Case3 by auto
+       }
+       moreover
+       {assume Case32: "(y,x) \<in> r'"
+        hence "x \<in> Field r'" unfolding Field_def by blast
+        hence False using FLD Case3 by auto
+       }
+       moreover
+       have "\<not> y \<in> Field r" using FLD Case3 by auto
+       ultimately show ?thesis using ** unfolding Osum_def by blast
+     qed
+    }
+    ultimately show ?thesis using * unfolding Osum_def by blast
+  qed
+qed
+
+lemma Osum_Partial_order:
+"\<lbrakk>Field r Int Field r' = {}; Partial_order r; Partial_order r'\<rbrakk> \<Longrightarrow>
+ Partial_order (r Osum r')"
+unfolding partial_order_on_def using Osum_Preorder Osum_antisym by blast
+
+lemma Osum_Total:
+assumes FLD: "Field r Int Field r' = {}" and
+        TOT: "Total r" and TOT': "Total r'"
+shows "Total (r Osum r')"
+using assms
+unfolding total_on_def  Field_Osum unfolding Osum_def by blast
+
+lemma Osum_Linear_order:
+"\<lbrakk>Field r Int Field r' = {}; Linear_order r; Linear_order r'\<rbrakk> \<Longrightarrow>
+ Linear_order (r Osum r')"
+unfolding linear_order_on_def using Osum_Partial_order Osum_Total by blast
+
+lemma Osum_wf:
+assumes FLD: "Field r Int Field r' = {}" and
+        WF: "wf r" and WF': "wf r'"
+shows "wf (r Osum r')"
+unfolding wf_eq_minimal2 unfolding Field_Osum
+proof(intro allI impI, elim conjE)
+  fix A assume *: "A \<subseteq> Field r \<union> Field r'" and **: "A \<noteq> {}"
+  obtain B where B_def: "B = A Int Field r" by blast
+  show "\<exists>a\<in>A. \<forall>a'\<in>A. (a', a) \<notin> r \<union>o r'"
+  proof(cases "B = {}")
+    assume Case1: "B \<noteq> {}"
+    hence "B \<noteq> {} \<and> B \<le> Field r" using B_def by auto
+    then obtain a where 1: "a \<in> B" and 2: "\<forall>a1 \<in> B. (a1,a) \<notin> r"
+    using WF  unfolding wf_eq_minimal2 by blast
+    hence 3: "a \<in> Field r \<and> a \<notin> Field r'" using B_def FLD by auto
+    (*  *)
+    have "\<forall>a1 \<in> A. (a1,a) \<notin> r Osum r'"
+    proof(intro ballI)
+      fix a1 assume **: "a1 \<in> A"
+      {assume Case11: "a1 \<in> Field r"
+       hence "(a1,a) \<notin> r" using B_def ** 2 by auto
+       moreover
+       have "(a1,a) \<notin> r'" using 3 by (auto simp add: Field_def)
+       ultimately have "(a1,a) \<notin> r Osum r'"
+       using 3 unfolding Osum_def by auto
+      }
+      moreover
+      {assume Case12: "a1 \<notin> Field r"
+       hence "(a1,a) \<notin> r" unfolding Field_def by auto
+       moreover
+       have "(a1,a) \<notin> r'" using 3 unfolding Field_def by auto
+       ultimately have "(a1,a) \<notin> r Osum r'"
+       using 3 unfolding Osum_def by auto
+      }
+      ultimately show "(a1,a) \<notin> r Osum r'" by blast
+    qed
+    thus ?thesis using 1 B_def by auto
+  next
+    assume Case2: "B = {}"
+    hence 1: "A \<noteq> {} \<and> A \<le> Field r'" using * ** B_def by auto
+    then obtain a' where 2: "a' \<in> A" and 3: "\<forall>a1' \<in> A. (a1',a') \<notin> r'"
+    using WF' unfolding wf_eq_minimal2 by blast
+    hence 4: "a' \<in> Field r' \<and> a' \<notin> Field r" using 1 FLD by blast
+    (*  *)
+    have "\<forall>a1' \<in> A. (a1',a') \<notin> r Osum r'"
+    proof(unfold Osum_def, auto simp add: 3)
+      fix a1' assume "(a1', a') \<in> r"
+      thus False using 4 unfolding Field_def by blast
+    next
+      fix a1' assume "a1' \<in> A" and "a1' \<in> Field r"
+      thus False using Case2 B_def by auto
+    qed
+    thus ?thesis using 2 by blast
+  qed
+qed
+
+lemma Osum_minus_Id:
+assumes TOT: "Total r" and TOT': "Total r'" and
+        NID: "\<not> (r \<le> Id)" and NID': "\<not> (r' \<le> Id)"
+shows "(r Osum r') - Id \<le> (r - Id) Osum (r' - Id)"
+proof-
+  {fix a a' assume *: "(a,a') \<in> (r Osum r')" and **: "a \<noteq> a'"
+   have "(a,a') \<in> (r - Id) Osum (r' - Id)"
+   proof-
+     {assume "(a,a') \<in> r \<or> (a,a') \<in> r'"
+      with ** have ?thesis unfolding Osum_def by auto
+     }
+     moreover
+     {assume "a \<in> Field r \<and> a' \<in> Field r'"
+      hence "a \<in> Field(r - Id) \<and> a' \<in> Field (r' - Id)"
+      using assms rel.Total_Id_Field by blast
+      hence ?thesis unfolding Osum_def by auto
+     }
+     ultimately show ?thesis using * unfolding Osum_def by blast
+   qed
+  }
+  thus ?thesis by(auto simp add: Osum_def)
+qed
+
+
+lemma wf_Int_Times:
+assumes "A Int B = {}"
+shows "wf(A \<times> B)"
+proof(unfold wf_def, auto)
+  fix P x
+  assume *: "\<forall>x. (\<forall>y. y \<in> A \<and> x \<in> B \<longrightarrow> P y) \<longrightarrow> P x"
+  moreover have "\<forall>y \<in> A. P y" using assms * by blast
+  ultimately show "P x" using * by (case_tac "x \<in> B", auto)
+qed
+
+lemma Osum_minus_Id1:
+assumes "r \<le> Id"
+shows "(r Osum r') - Id \<le> (r' - Id) \<union> (Field r \<times> Field r')"
+proof-
+  let ?Left = "(r Osum r') - Id"
+  let ?Right = "(r' - Id) \<union> (Field r \<times> Field r')"
+  {fix a::'a and b assume *: "(a,b) \<notin> Id"
+   {assume "(a,b) \<in> r"
+    with * have False using assms by auto
+   }
+   moreover
+   {assume "(a,b) \<in> r'"
+    with * have "(a,b) \<in> r' - Id" by auto
+   }
+   ultimately
+   have "(a,b) \<in> ?Left \<Longrightarrow> (a,b) \<in> ?Right"
+   unfolding Osum_def by auto
+  }
+  thus ?thesis by auto
+qed
+
+lemma Osum_minus_Id2:
+assumes "r' \<le> Id"
+shows "(r Osum r') - Id \<le> (r - Id) \<union> (Field r \<times> Field r')"
+proof-
+  let ?Left = "(r Osum r') - Id"
+  let ?Right = "(r - Id) \<union> (Field r \<times> Field r')"
+  {fix a::'a and b assume *: "(a,b) \<notin> Id"
+   {assume "(a,b) \<in> r'"
+    with * have False using assms by auto
+   }
+   moreover
+   {assume "(a,b) \<in> r"
+    with * have "(a,b) \<in> r - Id" by auto
+   }
+   ultimately
+   have "(a,b) \<in> ?Left \<Longrightarrow> (a,b) \<in> ?Right"
+   unfolding Osum_def by auto
+  }
+  thus ?thesis by auto
+qed
+
+lemma Osum_wf_Id:
+assumes TOT: "Total r" and TOT': "Total r'" and
+        FLD: "Field r Int Field r' = {}" and
+        WF: "wf(r - Id)" and WF': "wf(r' - Id)"
+shows "wf ((r Osum r') - Id)"
+proof(cases "r \<le> Id \<or> r' \<le> Id")
+  assume Case1: "\<not>(r \<le> Id \<or> r' \<le> Id)"
+  have "Field(r - Id) Int Field(r' - Id) = {}"
+  using FLD mono_Field[of "r - Id" r]  mono_Field[of "r' - Id" r']
+            Diff_subset[of r Id] Diff_subset[of r' Id] by blast
+  thus ?thesis
+  using Case1 Osum_minus_Id[of r r'] assms Osum_wf[of "r - Id" "r' - Id"]
+        wf_subset[of "(r - Id) \<union>o (r' - Id)" "(r Osum r') - Id"] by auto
+next
+  have 1: "wf(Field r \<times> Field r')"
+  using FLD by (auto simp add: wf_Int_Times)
+  assume Case2: "r \<le> Id \<or> r' \<le> Id"
+  moreover
+  {assume Case21: "r \<le> Id"
+   hence "(r Osum r') - Id \<le> (r' - Id) \<union> (Field r \<times> Field r')"
+   using Osum_minus_Id1[of r r'] by simp
+   moreover
+   {have "Domain(Field r \<times> Field r') Int Range(r' - Id) = {}"
+    using FLD unfolding Field_def by blast
+    hence "wf((r' - Id) \<union> (Field r \<times> Field r'))"
+    using 1 WF' wf_Un[of "Field r \<times> Field r'" "r' - Id"]
+    by (auto simp add: Un_commute)
+   }
+   ultimately have ?thesis by (auto simp add: wf_subset)
+  }
+  moreover
+  {assume Case22: "r' \<le> Id"
+   hence "(r Osum r') - Id \<le> (r - Id) \<union> (Field r \<times> Field r')"
+   using Osum_minus_Id2[of r' r] by simp
+   moreover
+   {have "Range(Field r \<times> Field r') Int Domain(r - Id) = {}"
+    using FLD unfolding Field_def by blast
+    hence "wf((r - Id) \<union> (Field r \<times> Field r'))"
+    using 1 WF wf_Un[of "r - Id" "Field r \<times> Field r'"]
+    by (auto simp add: Un_commute)
+   }
+   ultimately have ?thesis by (auto simp add: wf_subset)
+  }
+  ultimately show ?thesis by blast
+qed
+
+lemma Osum_Well_order:
+assumes FLD: "Field r Int Field r' = {}" and
+        WELL: "Well_order r" and WELL': "Well_order r'"
+shows "Well_order (r Osum r')"
+proof-
+  have "Total r \<and> Total r'" using WELL WELL'
+  by (auto simp add: order_on_defs)
+  thus ?thesis using assms unfolding well_order_on_def
+  using Osum_Linear_order Osum_wf_Id by blast
+qed
+
+lemma Osum_embed:
+assumes FLD: "Field r Int Field r' = {}" and
+        WELL: "Well_order r" and WELL': "Well_order r'"
+shows "embed r (r Osum r') id"
+proof-
+  have 1: "Well_order (r Osum r')"
+  using assms by (auto simp add: Osum_Well_order)
+  moreover
+  have "compat r (r Osum r') id"
+  unfolding compat_def Osum_def by auto
+  moreover
+  have "inj_on id (Field r)" by simp
+  moreover
+  have "ofilter (r Osum r') (Field r)"
+  using 1 proof(auto simp add: wo_rel_def wo_rel.ofilter_def
+                               Field_Osum rel.under_def)
+    fix a b assume 2: "a \<in> Field r" and 3: "(b,a) \<in> r Osum r'"
+    moreover
+    {assume "(b,a) \<in> r'"
+     hence "a \<in> Field r'" using Field_def[of r'] by blast
+     hence False using 2 FLD by blast
+    }
+    moreover
+    {assume "a \<in> Field r'"
+     hence False using 2 FLD by blast
+    }
+    ultimately
+    show "b \<in> Field r" by (auto simp add: Osum_def Field_def)
+  qed
+  ultimately show ?thesis
+  using assms by (auto simp add: embed_iff_compat_inj_on_ofilter)
+qed
+
+corollary Osum_ordLeq:
+assumes FLD: "Field r Int Field r' = {}" and
+        WELL: "Well_order r" and WELL': "Well_order r'"
+shows "r \<le>o r Osum r'"
+using assms Osum_embed Osum_Well_order
+unfolding ordLeq_def by blast
+
+lemma Well_order_embed_copy:
+assumes WELL: "well_order_on A r" and
+        INJ: "inj_on f A" and SUB: "f ` A \<le> B"
+shows "\<exists>r'. well_order_on B r' \<and> r \<le>o r'"
+proof-
+  have "bij_betw f A (f ` A)"
+  using INJ inj_on_imp_bij_betw by blast
+  then obtain r'' where "well_order_on (f ` A) r''" and 1: "r =o r''"
+  using WELL  Well_order_iso_copy by blast
+  hence 2: "Well_order r'' \<and> Field r'' = (f ` A)"
+  using rel.well_order_on_Well_order by blast
+  (*  *)
+  let ?C = "B - (f ` A)"
+  obtain r''' where "well_order_on ?C r'''"
+  using well_order_on by blast
+  hence 3: "Well_order r''' \<and> Field r''' = ?C"
+  using rel.well_order_on_Well_order by blast
+  (*  *)
+  let ?r' = "r'' Osum r'''"
+  have "Field r'' Int Field r''' = {}"
+  using 2 3 by auto
+  hence "r'' \<le>o ?r'" using Osum_ordLeq[of r'' r'''] 2 3 by blast
+  hence 4: "r \<le>o ?r'" using 1 ordIso_ordLeq_trans by blast
+  (*  *)
+  hence "Well_order ?r'" unfolding ordLeq_def by auto
+  moreover
+  have "Field ?r' = B" using 2 3 SUB by (auto simp add: Field_Osum)
+  ultimately show ?thesis using 4 by blast
+qed
+
+
+subsection {* The maxim among a finite set of ordinals  *}
+
+text {* The correct phrasing would be ``a maxim of ...", as @{text "\<le>o"} is only a preorder. *}
+
+definition isOmax :: "'a rel set \<Rightarrow> 'a rel \<Rightarrow> bool"
+where
+"isOmax  R r == r \<in> R \<and> (ALL r' : R. r' \<le>o r)"
+
+definition omax :: "'a rel set \<Rightarrow> 'a rel"
+where
+"omax R == SOME r. isOmax R r"
+
+lemma exists_isOmax:
+assumes "finite R" and "R \<noteq> {}" and "\<forall> r \<in> R. Well_order r"
+shows "\<exists> r. isOmax R r"
+proof-
+  have "finite R \<Longrightarrow> R \<noteq> {} \<longrightarrow> (\<forall> r \<in> R. Well_order r) \<longrightarrow> (\<exists> r. isOmax R r)"
+  apply(erule finite_induct) apply(simp add: isOmax_def)
+  proof(clarsimp)
+    fix r :: "('a \<times> 'a) set" and R assume *: "finite R" and **: "r \<notin> R"
+    and ***: "Well_order r" and ****: "\<forall>r\<in>R. Well_order r"
+    and IH: "R \<noteq> {} \<longrightarrow> (\<exists>p. isOmax R p)"
+    let ?R' = "insert r R"
+    show "\<exists>p'. (isOmax ?R' p')"
+    proof(cases "R = {}")
+      assume Case1: "R = {}"
+      thus ?thesis unfolding isOmax_def using ***
+      by (simp add: ordLeq_reflexive)
+    next
+      assume Case2: "R \<noteq> {}"
+      then obtain p where p: "isOmax R p" using IH by auto
+      hence 1: "Well_order p" using **** unfolding isOmax_def by simp
+      {assume Case21: "r \<le>o p"
+       hence "isOmax ?R' p" using p unfolding isOmax_def by simp
+       hence ?thesis by auto
+      }
+      moreover
+      {assume Case22: "p \<le>o r"
+       {fix r' assume "r' \<in> ?R'"
+        moreover
+        {assume "r' \<in> R"
+         hence "r' \<le>o p" using p unfolding isOmax_def by simp
+         hence "r' \<le>o r" using Case22 by(rule ordLeq_transitive)
+        }
+        moreover have "r \<le>o r" using *** by(rule ordLeq_reflexive)
+        ultimately have "r' \<le>o r" by auto
+       }
+       hence "isOmax ?R' r" unfolding isOmax_def by simp
+       hence ?thesis by auto
+      }
+      moreover have "r \<le>o p \<or> p \<le>o r"
+      using 1 *** ordLeq_total by auto
+      ultimately show ?thesis by blast
+    qed
+  qed
+  thus ?thesis using assms by auto
+qed
+
+lemma omax_isOmax:
+assumes "finite R" and "R \<noteq> {}" and "\<forall> r \<in> R. Well_order r"
+shows "isOmax R (omax R)"
+unfolding omax_def using assms
+by(simp add: exists_isOmax someI_ex)
+
+lemma omax_in:
+assumes "finite R" and "R \<noteq> {}" and "\<forall> r \<in> R. Well_order r"
+shows "omax R \<in> R"
+using assms omax_isOmax unfolding isOmax_def by blast
+
+lemma Well_order_omax:
+assumes "finite R" and "R \<noteq> {}" and "\<forall>r\<in>R. Well_order r"
+shows "Well_order (omax R)"
+using assms apply - apply(drule omax_in) by auto
+
+lemma omax_maxim:
+assumes "finite R" and "\<forall> r \<in> R. Well_order r" and "r \<in> R"
+shows "r \<le>o omax R"
+using assms omax_isOmax unfolding isOmax_def by blast
+
+lemma omax_ordLeq:
+assumes "finite R" and "R \<noteq> {}" and *: "\<forall> r \<in> R. r \<le>o p"
+shows "omax R \<le>o p"
+proof-
+  have "\<forall> r \<in> R. Well_order r" using * unfolding ordLeq_def by simp
+  thus ?thesis using assms omax_in by auto
+qed
+
+lemma omax_ordLess:
+assumes "finite R" and "R \<noteq> {}" and *: "\<forall> r \<in> R. r <o p"
+shows "omax R <o p"
+proof-
+  have "\<forall> r \<in> R. Well_order r" using * unfolding ordLess_def by simp
+  thus ?thesis using assms omax_in by auto
+qed
+
+lemma omax_ordLeq_elim:
+assumes "finite R" and "\<forall> r \<in> R. Well_order r"
+and "omax R \<le>o p" and "r \<in> R"
+shows "r \<le>o p"
+using assms omax_maxim[of R r] apply simp
+using ordLeq_transitive by blast
+
+lemma omax_ordLess_elim:
+assumes "finite R" and "\<forall> r \<in> R. Well_order r"
+and "omax R <o p" and "r \<in> R"
+shows "r <o p"
+using assms omax_maxim[of R r] apply simp
+using ordLeq_ordLess_trans by blast
+
+lemma ordLeq_omax:
+assumes "finite R" and "\<forall> r \<in> R. Well_order r"
+and "r \<in> R" and "p \<le>o r"
+shows "p \<le>o omax R"
+using assms omax_maxim[of R r] apply simp
+using ordLeq_transitive by blast
+
+lemma ordLess_omax:
+assumes "finite R" and "\<forall> r \<in> R. Well_order r"
+and "r \<in> R" and "p <o r"
+shows "p <o omax R"
+using assms omax_maxim[of R r] apply simp
+using ordLess_ordLeq_trans by blast
+
+lemma omax_ordLeq_mono:
+assumes P: "finite P" and R: "finite R"
+and NE_P: "P \<noteq> {}" and Well_R: "\<forall> r \<in> R. Well_order r"
+and LEQ: "\<forall> p \<in> P. \<exists> r \<in> R. p \<le>o r"
+shows "omax P \<le>o omax R"
+proof-
+  let ?mp = "omax P"  let ?mr = "omax R"
+  {fix p assume "p : P"
+   then obtain r where r: "r : R" and "p \<le>o r"
+   using LEQ by blast
+   moreover have "r <=o ?mr"
+   using r R Well_R omax_maxim by blast
+   ultimately have "p <=o ?mr"
+   using ordLeq_transitive by blast
+  }
+  thus "?mp <=o ?mr"
+  using NE_P P using omax_ordLeq by blast
+qed
+
+lemma omax_ordLess_mono:
+assumes P: "finite P" and R: "finite R"
+and NE_P: "P \<noteq> {}" and Well_R: "\<forall> r \<in> R. Well_order r"
+and LEQ: "\<forall> p \<in> P. \<exists> r \<in> R. p <o r"
+shows "omax P <o omax R"
+proof-
+  let ?mp = "omax P"  let ?mr = "omax R"
+  {fix p assume "p : P"
+   then obtain r where r: "r : R" and "p <o r"
+   using LEQ by blast
+   moreover have "r <=o ?mr"
+   using r R Well_R omax_maxim by blast
+   ultimately have "p <o ?mr"
+   using ordLess_ordLeq_trans by blast
+  }
+  thus "?mp <o ?mr"
+  using NE_P P omax_ordLess by blast
+qed
+
+end