src/ZF/ex/Primrec.ML
changeset 12088 6f463d16cbd0
parent 12087 b38cfbabfda4
child 12089 34e7693271a9
--- a/src/ZF/ex/Primrec.ML	Wed Nov 07 00:16:19 2001 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,297 +0,0 @@
-(*  Title:      ZF/ex/Primrec
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1994  University of Cambridge
-
-Primitive Recursive Functions
-
-Proof adopted from
-Nora Szasz, 
-A Machine Checked Proof that Ackermann's Function is not Primitive Recursive,
-In: Huet & Plotkin, eds., Logical Environments (CUP, 1993), 317-338.
-
-See also E. Mendelson, Introduction to Mathematical Logic.
-(Van Nostrand, 1964), page 250, exercise 11.
-*)
-
-(*** Inductive definition of the PR functions ***)
-
-(* c \\<in> prim_rec ==> c \\<in> list(nat) -> nat *)
-val prim_rec_into_fun = prim_rec.dom_subset RS subsetD;
-
-AddTCs ([prim_rec_into_fun] @ prim_rec.intrs);
-
-Goal "i \\<in> nat ==> ACK(i): prim_rec";
-by (induct_tac "i" 1);
-by (ALLGOALS Asm_simp_tac);
-qed "ACK_in_prim_rec";
-
-AddTCs [ACK_in_prim_rec, prim_rec_into_fun RS apply_type,
-	list_add_type, nat_into_Ord, rec_type];
-
-Goal "[| i \\<in> nat;  j \\<in> nat |] ==>  ack(i,j): nat";
-by Auto_tac;
-qed "ack_type";
-AddTCs [ack_type];
-
-(** Ackermann's function cases **)
-
-(*PROPERTY A 1*)
-Goal "j \\<in> nat ==> ack(0,j) = succ(j)";
-by (asm_simp_tac (simpset() addsimps [SC]) 1);
-qed "ack_0";
-
-(*PROPERTY A 2*)
-Goal "ack(succ(i), 0) = ack(i,1)";
-by (asm_simp_tac (simpset() addsimps [CONST,PREC_0]) 1);
-qed "ack_succ_0";
-
-(*PROPERTY A 3*)
-Goal "[| i \\<in> nat;  j \\<in> nat |]  \
-\     ==> ack(succ(i), succ(j)) = ack(i, ack(succ(i), j))";
-by (asm_simp_tac (simpset() addsimps [CONST,PREC_succ,COMP_1,PROJ_0]) 1);
-qed "ack_succ_succ";
-
-Addsimps [ack_0, ack_succ_0, ack_succ_succ, ack_type];
-Delsimps [ACK_0, ACK_succ];
-
-
-(*PROPERTY A 4*)
-Goal "i \\<in> nat ==> \\<forall>j \\<in> nat. j < ack(i,j)";
-by (induct_tac "i" 1);
-by (Asm_simp_tac 1);
-by (rtac ballI 1);
-by (induct_tac "j" 1);
-by (etac (succ_leI RS lt_trans1) 2);
-by (rtac (nat_0I RS nat_0_le RS lt_trans) 1);
-by Auto_tac;
-qed_spec_mp "lt_ack2";
-
-(*PROPERTY A 5-, the single-step lemma*)
-Goal "[| i \\<in> nat; j \\<in> nat |] ==> ack(i,j) < ack(i, succ(j))";
-by (induct_tac "i" 1);
-by (ALLGOALS (asm_simp_tac (simpset() addsimps [lt_ack2])));
-qed "ack_lt_ack_succ2";
-
-(*PROPERTY A 5, monotonicity for < *)
-Goal "[| j<k; i \\<in> nat; k \\<in> nat |] ==> ack(i,j) < ack(i,k)";
-by (ftac lt_nat_in_nat 1 THEN assume_tac 1);
-by (etac succ_lt_induct 1);
-by (assume_tac 1);
-by (rtac lt_trans 2);
-by (auto_tac (claset() addIs [ack_lt_ack_succ2], simpset()));
-qed "ack_lt_mono2";
-
-(*PROPERTY A 5', monotonicity for le *)
-Goal "[| j le k;  i \\<in> nat;  k \\<in> nat |] ==> ack(i,j) le ack(i,k)";
-by (res_inst_tac [("f", "%j. ack(i,j)")] Ord_lt_mono_imp_le_mono 1);
-by (REPEAT (ares_tac [ack_lt_mono2, ack_type RS nat_into_Ord] 1));
-qed "ack_le_mono2";
-
-(*PROPERTY A 6*)
-Goal "[| i \\<in> nat;  j \\<in> nat |] ==> ack(i, succ(j)) le ack(succ(i), j)";
-by (induct_tac "j" 1);
-by (ALLGOALS Asm_simp_tac);
-by (rtac ack_le_mono2 1);
-by (rtac (lt_ack2 RS succ_leI RS le_trans) 1);
-by Auto_tac;
-qed "ack2_le_ack1";
-
-(*PROPERTY A 7-, the single-step lemma*)
-Goal "[| i \\<in> nat; j \\<in> nat |] ==> ack(i,j) < ack(succ(i),j)";
-by (rtac (ack_lt_mono2 RS lt_trans2) 1);
-by (rtac ack2_le_ack1 4);
-by Auto_tac;
-qed "ack_lt_ack_succ1";
-
-(*PROPERTY A 7, monotonicity for < *)
-Goal "[| i<j; j \\<in> nat; k \\<in> nat |] ==> ack(i,k) < ack(j,k)";
-by (ftac lt_nat_in_nat 1 THEN assume_tac 1);
-by (etac succ_lt_induct 1);
-by (assume_tac 1);
-by (rtac lt_trans 2);
-by (auto_tac (claset() addIs [ack_lt_ack_succ1], simpset()));
-qed "ack_lt_mono1";
-
-(*PROPERTY A 7', monotonicity for le *)
-Goal "[| i le j; j \\<in> nat; k \\<in> nat |] ==> ack(i,k) le ack(j,k)";
-by (res_inst_tac [("f", "%j. ack(j,k)")] Ord_lt_mono_imp_le_mono 1);
-by (REPEAT (ares_tac [ack_lt_mono1, ack_type RS nat_into_Ord] 1));
-qed "ack_le_mono1";
-
-(*PROPERTY A 8*)
-Goal "j \\<in> nat ==> ack(1,j) = succ(succ(j))";
-by (induct_tac "j" 1);
-by (ALLGOALS Asm_simp_tac);
-qed "ack_1";
-
-(*PROPERTY A 9*)
-Goal "j \\<in> nat ==> ack(succ(1),j) = succ(succ(succ(j#+j)))";
-by (induct_tac "j" 1);
-by (ALLGOALS (asm_simp_tac (simpset() addsimps [ack_1, add_succ_right])));
-qed "ack_2";
-
-(*PROPERTY A 10*)
-Goal "[| i1 \\<in> nat; i2 \\<in> nat; j \\<in> nat |] ==> \
-\               ack(i1, ack(i2,j)) < ack(succ(succ(i1#+i2)), j)";
-by (rtac (ack2_le_ack1 RSN (2,lt_trans2)) 1);
-by (Asm_simp_tac 1);
-by (rtac (add_le_self RS ack_le_mono1 RS lt_trans1) 1);
-by (rtac (add_le_self2 RS ack_lt_mono1 RS ack_lt_mono2) 4);
-by Auto_tac;
-qed "ack_nest_bound";
-
-(*PROPERTY A 11*)
-Goal "[| i1 \\<in> nat; i2 \\<in> nat; j \\<in> nat |] ==> \
-\          ack(i1,j) #+ ack(i2,j) < ack(succ(succ(succ(succ(i1#+i2)))), j)";
-by (res_inst_tac [("j", "ack(succ(1), ack(i1 #+ i2, j))")] lt_trans 1);
-by (asm_simp_tac (simpset() addsimps [ack_2]) 1);
-by (rtac (ack_nest_bound RS lt_trans2) 2);
-by (Asm_simp_tac 5);
-by (rtac (add_le_mono RS leI RS leI) 1);
-by (auto_tac (claset() addIs [add_le_self, add_le_self2, ack_le_mono1], 
-	      simpset()));
-qed "ack_add_bound";
-
-(*PROPERTY A 12.  Article uses existential quantifier but the ALF proof
-  used k#+4.  Quantified version must be nested \\<exists>k'. \\<forall>i,j... *)
-Goal "[| i < ack(k,j);  j \\<in> nat;  k \\<in> nat |] ==> \
-\             i#+j < ack(succ(succ(succ(succ(k)))), j)";
-by (res_inst_tac [("j", "ack(k,j) #+ ack(0,j)")] lt_trans 1);
-by (rtac (ack_add_bound RS lt_trans2) 2);
-by (rtac add_lt_mono 1);
-by Auto_tac;
-qed "ack_add_bound2";
-
-(*** MAIN RESULT ***)
-
-Addsimps [list_add_type];
-
-Goalw [SC_def] "l \\<in> list(nat) ==> SC ` l < ack(1, list_add(l))";
-by (exhaust_tac "l" 1);
-by (asm_simp_tac (simpset() addsimps [succ_iff]) 1);
-by (asm_simp_tac (simpset() addsimps [ack_1, add_le_self]) 1);
-qed "SC_case";
-
-(*PROPERTY A 4'? Extra lemma needed for CONST case, constant functions*)
-Goal "[| i \\<in> nat; j \\<in> nat |] ==> i < ack(i,j)";
-by (induct_tac "i" 1);
-by (asm_simp_tac (simpset() addsimps [nat_0_le]) 1);
-by (etac ([succ_leI, ack_lt_ack_succ1] MRS lt_trans1) 1);
-by Auto_tac;
-qed "lt_ack1";
-
-Goalw [CONST_def]
-    "[| l \\<in> list(nat);  k \\<in> nat |] ==> CONST(k) ` l < ack(k, list_add(l))";
-by (asm_simp_tac (simpset() addsimps [lt_ack1]) 1);
-qed "CONST_case";
-
-Goalw [PROJ_def]
-    "l \\<in> list(nat) ==> \\<forall>i \\<in> nat. PROJ(i) ` l < ack(0, list_add(l))";
-by (Asm_simp_tac 1);
-by (etac list.induct 1);
-by (asm_simp_tac (simpset() addsimps [nat_0_le]) 1);
-by (Asm_simp_tac 1);
-by (rtac ballI 1);
-by (eres_inst_tac [("n","x")] natE 1);
-by (asm_simp_tac (simpset() addsimps [add_le_self]) 1);
-by (Asm_simp_tac 1);
-by (etac (bspec RS lt_trans2) 1);
-by (rtac (add_le_self2 RS succ_leI) 2);
-by Auto_tac;
-qed_spec_mp "PROJ_case";
-
-(** COMP case **)
-
-Goal "fs \\<in> list({f \\<in> prim_rec .                                 \
-\                  \\<exists>kf \\<in> nat. \\<forall>l \\<in> list(nat).                  \
-\                             f`l < ack(kf, list_add(l))})      \
-\      ==> \\<exists>k \\<in> nat. \\<forall>l \\<in> list(nat).                          \
-\                list_add(map(%f. f ` l, fs)) < ack(k, list_add(l))";
-by (etac list.induct 1);
-by (res_inst_tac [("x","0")] bexI 1);
-by (ALLGOALS (asm_simp_tac (simpset() addsimps [lt_ack1, nat_0_le])));
-by (Clarify_tac 1);
-by (rtac (ballI RS bexI) 1);
-by (rtac (add_lt_mono RS lt_trans) 1);
-by (REPEAT (FIRSTGOAL (etac bspec)));
-by (rtac ack_add_bound 5);
-by Auto_tac;
-qed "COMP_map_lemma";
-
-Goalw [COMP_def]
- "[| kg: nat;                                 \
-\         \\<forall>l \\<in> list(nat). g`l < ack(kg, list_add(l));          \
-\         fs \\<in> list({f \\<in> prim_rec .                               \
-\                    \\<exists>kf \\<in> nat. \\<forall>l \\<in> list(nat).                \
-\                       f`l < ack(kf, list_add(l))})            \
-\      |] ==> \\<exists>k \\<in> nat. \\<forall>l \\<in> list(nat). COMP(g,fs)`l < ack(k, list_add(l))";
-by (Asm_simp_tac 1);
-by (ftac list_CollectD 1);
-by (etac (COMP_map_lemma RS bexE) 1);
-by (rtac (ballI RS bexI) 1);
-by (etac (bspec RS lt_trans) 1);
-by (rtac lt_trans 2);
-by (rtac ack_nest_bound 3);
-by (etac (bspec RS ack_lt_mono2) 2);
-by Auto_tac;
-qed "COMP_case";
-
-(** PREC case **)
-
-Goalw [PREC_def]
- "[| \\<forall>l \\<in> list(nat). f`l #+ list_add(l) < ack(kf, list_add(l)); \
-\           \\<forall>l \\<in> list(nat). g`l #+ list_add(l) < ack(kg, list_add(l)); \
-\           f \\<in> prim_rec;  kf: nat;                                       \
-\           g \\<in> prim_rec;  kg: nat;                                       \
-\           l \\<in> list(nat)                                                \
-\        |] ==> PREC(f,g)`l #+ list_add(l) < ack(succ(kf#+kg), list_add(l))";
-by (exhaust_tac "l" 1);
-by (asm_simp_tac (simpset() addsimps [[nat_le_refl, lt_ack2] MRS lt_trans]) 1);
-by (Asm_simp_tac 1);
-by (etac ssubst 1);  (*get rid of the needless assumption*)
-by (induct_tac "a" 1);
-(*base case*)
-by (EVERY1 [Asm_simp_tac, rtac lt_trans, etac bspec,
-	    assume_tac, rtac (add_le_self RS ack_lt_mono1)]);
-by (ALLGOALS Asm_simp_tac);
-(*ind step*)
-by (rtac (succ_leI RS lt_trans1) 1);
-by (res_inst_tac [("j", "g ` ?ll #+ ?mm")] lt_trans1 1);
-by (etac bspec 2);
-by (rtac (nat_le_refl RS add_le_mono) 1);
-by Typecheck_tac;
-by (asm_simp_tac (simpset() addsimps [add_le_self2]) 1);
-(*final part of the simplification*)
-by (Asm_simp_tac 1);
-by (rtac (add_le_self2 RS ack_le_mono1 RS lt_trans1) 1);
-by (etac ack_lt_mono2 4);
-by Auto_tac;
-qed "PREC_case_lemma";
-
-Goal "[| f \\<in> prim_rec;  kf: nat;                               \
-\        g \\<in> prim_rec;  kg: nat;                               \
-\        \\<forall>l \\<in> list(nat). f`l < ack(kf, list_add(l));        \
-\        \\<forall>l \\<in> list(nat). g`l < ack(kg, list_add(l))         \
-\     |] ==> \\<exists>k \\<in> nat. \\<forall>l \\<in> list(nat). PREC(f,g)`l< ack(k, list_add(l))";
-by (rtac (ballI RS bexI) 1);
-by (rtac ([add_le_self, PREC_case_lemma] MRS lt_trans1) 1);
-by (REPEAT_FIRST (rtac (ack_add_bound2 RS ballI) THEN' etac bspec));
-by Typecheck_tac;
-qed "PREC_case";
-
-Goal "f \\<in> prim_rec ==> \\<exists>k \\<in> nat. \\<forall>l \\<in> list(nat). f`l < ack(k, list_add(l))";
-by (etac prim_rec.induct 1);
-by (auto_tac (claset() addIs [SC_case, CONST_case, PROJ_case, COMP_case, 
-			      PREC_case], 
-	      simpset()));
-qed "ack_bounds_prim_rec";
-
-Goal "~ (\\<lambda>l \\<in> list(nat). list_case(0, %x xs. ack(x,x), l)) \\<in> prim_rec";
-by (rtac notI 1);
-by (etac (ack_bounds_prim_rec RS bexE) 1);
-by (rtac lt_irrefl 1);
-by (dres_inst_tac [("x", "[x]")] bspec 1);
-by Auto_tac;
-qed "ack_not_prim_rec";
-