src/HOL/Library/Euclidean_Space.thy
changeset 30305 720226bedc4d
parent 30267 171b3bd93c90
parent 30303 9c4f4ac0d038
child 30489 5d7d0add1741
--- a/src/HOL/Library/Euclidean_Space.thy	Thu Mar 05 02:32:46 2009 +0100
+++ b/src/HOL/Library/Euclidean_Space.thy	Thu Mar 05 08:24:28 2009 +0100
@@ -4199,7 +4199,7 @@
   assumes iB: "independent (B:: (real ^'n) set)"
   shows "\<exists>g. linear g \<and> (\<forall>x\<in>B. g x = f x)"
 proof-
-  from maximal_independent_subset_extend[of B "UNIV"] iB
+  from maximal_independent_subset_extend[of B UNIV] iB
   obtain C where C: "B \<subseteq> C" "independent C" "\<And>x. x \<in> span C" by auto
   
   from C(2) independent_bound[of C] linear_independent_extend_lemma[of C f]