src/HOL/Integ/Parity.thy
changeset 14436 77017c49c004
parent 14430 5cb24165a2e1
child 14443 75910c7557c5
--- a/src/HOL/Integ/Parity.thy	Fri Mar 05 15:18:59 2004 +0100
+++ b/src/HOL/Integ/Parity.thy	Fri Mar 05 15:19:55 2004 +0100
@@ -156,9 +156,12 @@
   apply (case_tac "x < y", auto simp add: zdiff_int [THEN sym])
   done
 
-lemma even_nat_suc: "even (Suc x) = odd x"
+lemma even_nat_Suc: "even (Suc x) = odd x"
   by (simp add: even_nat_def)
 
+text{*Compatibility, in case Avigad uses this*}
+lemmas even_nat_suc = even_nat_Suc
+
 lemma even_nat_power: "even ((x::nat)^y) = (even x & 0 < y)"
   by (simp add: even_nat_def zpow_int)
 
@@ -166,7 +169,7 @@
   by (simp add: even_nat_def)
 
 lemmas even_odd_nat_simps [simp] = even_nat_def[of "number_of v",standard] 
-  even_nat_zero even_nat_suc even_nat_product even_nat_sum even_nat_power
+  even_nat_zero even_nat_Suc even_nat_product even_nat_sum even_nat_power
 
 
 subsection {* Equivalent definitions *}
@@ -238,10 +241,12 @@
   apply (simp, simp add: power_Suc)
   done
 
-lemma neg_one_even_power: "even x ==> (-1::'a::{number_ring,ringpower})^x = 1"
+lemma neg_one_even_power [simp]:
+     "even x ==> (-1::'a::{number_ring,ringpower})^x = 1"
   by (rule neg_one_even_odd_power [THEN conjunct1, THEN mp], assumption)
 
-lemma neg_one_odd_power: "odd x ==> (-1::'a::{number_ring,ringpower})^x = -1"
+lemma neg_one_odd_power [simp]:
+     "odd x ==> (-1::'a::{number_ring,ringpower})^x = -1"
   by (rule neg_one_even_odd_power [THEN conjunct2, THEN mp], assumption)