src/HOL/Integ/Barith.thy
changeset 15272 79a7a4f20f50
parent 15239 fb73c8154b19
--- a/src/HOL/Integ/Barith.thy	Fri Oct 29 15:16:31 2004 +0200
+++ b/src/HOL/Integ/Barith.thy	Tue Nov 02 16:33:08 2004 +0100
@@ -1,32 +1,29 @@
-(*  Title:      HOL/Integ/Barith.thy
-    ID:         $Id$
-    Author:     Amine Chaieb, TU Muenchen
-
-Simple decision procedure for bounded arithmetic
-*)
+theory Barith = Presburger
+files ("barith.ML") :
 
-theory Barith
-imports Presburger
-files ("barith.ML")
-begin
-
-lemma imp_commute: "(PROP P \<Longrightarrow> PROP Q \<Longrightarrow> PROP R) \<equiv>
-  (PROP Q \<Longrightarrow> PROP P \<Longrightarrow> PROP R)"
+lemma imp_commute: "(PROP P ==> PROP Q
+==> PROP R) == (PROP Q ==>
+PROP P ==> PROP R)"
 proof
-  assume h1: "PROP P \<Longrightarrow> PROP Q \<Longrightarrow> PROP R"
+  assume h1: "PROP P \<Longrightarrow> PROP Q \<Longrightarrow>
+PROP R"
   assume h2: "PROP Q"
   assume h3: "PROP P"
   from h3 h2 show "PROP R" by (rule h1)
 next
-  assume h1: "PROP Q \<Longrightarrow> PROP P \<Longrightarrow> PROP R"
-  assume h2: "PROP P"
+  assume h1: "PROP Q \<Longrightarrow> PROP P \<Longrightarrow>
+PROP R"
+ assume h2: "PROP P"
   assume h3: "PROP Q"
   from h3 h2 show "PROP R" by (rule h1)
 qed
 
-lemma imp_simplify: "(PROP P \<Longrightarrow> PROP P \<Longrightarrow> PROP Q) \<equiv> (PROP P \<Longrightarrow> PROP Q)"
+lemma imp_simplify: "(PROP P \<Longrightarrow> PROP P
+\<Longrightarrow> PROP Q) \<equiv> (PROP P \<Longrightarrow>
+PROP Q)"
 proof
-  assume h1: "PROP P \<Longrightarrow> PROP P \<Longrightarrow> PROP Q"
+  assume h1: "PROP P \<Longrightarrow> PROP P \<Longrightarrow>
+PROP Q"
   assume h2: "PROP P"
   from h2 h2 show "PROP Q" by (rule h1)
 next
@@ -35,50 +32,78 @@
   then show "PROP Q" by (rule h)
 qed
 
+(* Simple lemmas needed for simplification before the procedure runs*)
+lemma zero_eq_Numeral0_nring: "(0::'a::number_ring) = Numeral0"
+ by simp
+
+lemma one_eq_Numeral1_nring: "(1::'a::number_ring) = Numeral1"
+ by simp
+
+lemma zero_eq_Numeral0_nat: "(0::nat) = Numeral0"
+ by simp
+
+lemma one_eq_Numeral1_nat: "(1::nat) = Numeral1"
+ by simp
+
+lemma z_less_imp_le1 : "(a::int) < b \<Longrightarrow> a +1 <= b"
+by simp
+
+lemma z_eq_imp_le_conj: "(a::int) = b \<Longrightarrow> a <= b \<and> b <= a"
+by simp
+
+lemma zpower_Pls: "(z::int)^Numeral0 = 1"
+ by simp
+
+lemma zpower_Min: "(z::int)^((-1)::nat) = 1"
+proof -
+ have 1:"((-1)::nat) = 0"
+   by simp
+ show ?thesis by (simp add: 1)
+qed
+
 
 (* Abstraction of constants *)
 lemma abs_const: "(x::int) <= x \<and> x <= x"
-  by simp
+by simp
 
 (* Abstraction of Variables *)
 lemma abs_var: "l <= (x::int) \<and> x <= u \<Longrightarrow> l <= (x::int) \<and> x <= u"
-  by simp
-
+by simp
 
 (* Unary operators *)
 lemma abs_neg: "l <= (x::int) \<and> x <= u \<Longrightarrow>  -u <= -x \<and> -x <= -l"
-  by arith
+by arith
 
 
 (* Binary operations *)
 (* Addition*)
 lemma abs_add: "\<lbrakk> l1 <= (x1::int) \<and> x1 <= u1 ; l2 <= (x2::int) \<and> x2 <= u2\<rbrakk> 
   \<Longrightarrow>  l1 + l2 <= x1 + x2 \<and> x1 + x2 <= u1 + u2"
-  by arith
+by arith
 
 lemma abs_sub: "\<lbrakk> l1 <= (x1::int) \<and> x1 <= u1 ; l2 <= (x2::int) \<and> x2 <= u2\<rbrakk> 
   \<Longrightarrow>  l1 - u2 <= x1 - x2 \<and> x1 - x2 <= u1 - l2"
-  by arith
+by arith
 
 lemma abs_sub_x: "l <= (x::int) \<and> x <= u \<Longrightarrow> 0 <= x - x \<and> x - x <= 0"
-  by arith
+by arith
 
 (* For resolving the last step*)
 lemma subinterval: "\<lbrakk>l <= (e::int) \<and> e <= u ; l' <= l ; u <= u' \<rbrakk>
   \<Longrightarrow> l' <= e \<and> e <= u'"
-  by arith
+by arith
 
 lemma min_max_minus : "min (-a ::int) (-b) = - max a b"
-  by arith
+by arith
 
 lemma max_min_minus : " max (-a ::int) (-b) = - min a b"
-  by arith
+by arith
 
 lemma max_max_commute : "max (max (a::int) b) (max c d) = max (max a c) (max b d)"
-  by arith
+by arith
 
 lemma min_min_commute : "min (min (a::int) b) (min c d) = min (min a c) (min b d)"
-  by arith
+by arith
 
 lemma zintervals_min: "\<lbrakk> l1 <= (x1::int) \<and> x1<= u1 ; l2 <= x2 \<and> x2 <= u2 \<rbrakk> 
   \<Longrightarrow> min l1 l2 <= x1 \<and> x1 <= max u1 u2" by arith
@@ -112,9 +137,9 @@
   and     x2_lu : "l2 <= (x2::int) \<and> x2 <= u2"
   and     l1_pos : "0 <= l1"
   and     l2_pos : "0 <= l2"
-  shows "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
+  shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
   \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))"
-proof -
+proof-
   from x1_lu have l1_le : "l1 <= x1" by simp
   from x1_lu have x1_le : "x1 <= u1" by simp
   from x2_lu have l2_le : "l2 <= x2" by simp
@@ -151,66 +176,61 @@
 qed
 
 lemma min_le_I1 : "min (a::int) b <= a" by arith
-
 lemma min_le_I2 : "min (a::int) b <= b" by arith
-
 lemma zinterval_lneglpos :
   assumes  x1_lu : "l1 <= (x1::int) \<and> x1 <= u1"
   and     x2_lu : "l2 <= (x2::int) \<and> x2 <= u2"
   and     l1_neg : "l1 <= 0"
   and x1_pos : "0 <= x1" 
   and     l2_pos : "0 <= l2"
-  shows "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
+  shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
   \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))"
-proof -
-  from x1_lu x1_pos have x1_0_u1: "0 <= x1 \<and> x1 <= u1" by simp
-  from l1_neg have ml1_pos: "0 <= -l1" by simp
-  from x1_lu x1_pos have u1_pos: "0 <= u1" by arith
-  from x2_lu l2_pos have u2_pos: "0 <= u2" by arith
-  from x2_lu have l2_le_u2: "l2 <= u2" by arith
-  from l2_le_u2 u1_pos
-  have u1l2_le_u1u2: "u1*l2 <= u1*u2" by (rule zmult_zle_mono)
-  have trv_0: "(0::int) <= 0" by simp
-  from trv_0 trv_0 u1_pos l2_pos
-  have "0*0 <= u1*l2" by (rule zmult_mono)
-  then have u1l2_pos: "0 <= u1*l2" by simp
-  from l1_neg have ml1_pos: "0 <= -l1" by simp
-  from trv_0 trv_0 ml1_pos l2_pos have "0*0 <= (-l1)*l2"
-    by (rule zmult_mono)
-  then have "0 <= -(l1*l2)" by simp  
-  then have "0 - (-(l1*l2)) <= 0" by arith 
-  then have l1l2_neg: "l1*l2 <= 0" by simp
-  from trv_0 trv_0 ml1_pos u2_pos have "0*0 <= (-l1)*u2"
-    by (rule zmult_mono)
-  then have "0 <= -(l1*u2)" by simp  
-  then have "0 - (-(l1*u2)) <= 0" by arith 
-  then have l1u2_neg: "l1*u2 <= 0" by simp
-  from l1l2_neg u1l2_pos have l1l2_le_u1l2: "l1*l2 <= u1*l2" by simp
-  from l1u2_neg u1l2_pos have l1u2_le_u1l2: "l1*u2 <= u1*l2" by simp
-  from ml1_pos l2_le_u2 have "(-l1)*l2 <= (-l1)*u2"
-    by (simp only: zmult_zle_mono) 
-  then have l1u2_le_l1l2: "l1*u2 <= l1*l2" by simp
-  from l1u2_le_l1l2 l1l2_le_u1l2 u1l2_le_u1u2 
-  have min1: "l1*u2 = min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2))" 
-    by arith
-  from u1l2_pos u1l2_le_u1u2 have "0 = min (min (0 * l2) (0 * u2)) (min (u1 * l2) (u1 * u2))"
-    by arith
-  with l1u2_neg min1 have minth: "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <=
-    min (min (0 * l2) (0 * u2)) (min (u1 * l2) (u1 * u2))" by simp
-  from l1u2_le_l1l2 l1l2_le_u1l2 u1l2_le_u1u2 
-  have max1: "u1*u2 = max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" 
-    by arith
-  from u1l2_pos u1l2_le_u1u2
-  have "u1*u2 = max (max (0 * l2) (0 * u2)) (max (u1 * l2) (u1 * u2))" by arith 
-  with max1 have "max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2)) =
-    max (max (0 * l2) (0 * u2)) (max (u1 * l2) (u1 * u2))" by simp
-  then have maxth: " max (max (0 * l2) (0 * u2)) (max (u1 * l2) (u1 * u2)) <=
-    max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" by simp
-  from x1_0_u1 x2_lu trv_0 l2_pos
-  have x1x2_0_u: "min (min (0 * l2) (0 * u2)) (min (u1 * l2) (u1 * u2)) <= x1 * x2 &
-    x1 * x2 <= max (max (0 * l2) (0 * u2)) (max (u1 * l2) (u1 * u2))" 
-    by (rule zinterval_lposlpos)
-  thus ?thesis using minth maxth by (rule subinterval)
+
+proof-
+    from x1_lu x1_pos have x1_0_u1 : "0 <= x1 \<and> x1 <= u1" by simp
+    from l1_neg have ml1_pos : "0 <= -l1" by simp
+    from x1_lu x1_pos have u1_pos : "0 <= u1" by arith
+    from x2_lu l2_pos have u2_pos : "0 <= u2" by arith
+    from x2_lu have l2_le_u2 : "l2 <= u2" by arith
+    from l2_le_u2 u1_pos 
+     have u1l2_le_u1u2 : "u1*l2 <= u1*u2" by (simp add: zmult_zle_mono)
+    have trv_0 : "(0::int) <= 0" by simp
+    have "0*0 <= u1*l2" 
+      by (simp only: zmult_mono[OF trv_0 trv_0 u1_pos l2_pos])
+    then have u1l2_pos : "0 <= u1*l2" by simp
+      from l1_neg have ml1_pos : "0 <= -l1" by simp
+      from ml1_pos l2_pos have "0*0 <= (-l1)*l2" 
+	by (simp only: zmult_mono[OF trv_0 trv_0 ml1_pos l2_pos])
+      then have "0 <= -(l1*l2)" by simp  
+      then have "0 - (-(l1*l2)) <= 0" by arith 
+      then
+      have l1l2_neg : "l1*l2 <= 0" by simp
+      from ml1_pos u2_pos have "0*0 <= (-l1)*u2" 
+	by (simp only: zmult_mono[OF trv_0 trv_0 ml1_pos u2_pos])
+      then have "0 <= -(l1*u2)" by simp  
+      then have "0 - (-(l1*u2)) <= 0" by arith 
+      then
+      have l1u2_neg : "l1*u2 <= 0" by simp
+      from l1l2_neg u1l2_pos have l1l2_le_u1l2: "l1*l2 <= u1*l2" by simp
+      from l1u2_neg u1l2_pos have l1u2_le_u1l2 : "l1*u2 <= u1*l2" by simp
+      from ml1_pos l2_le_u2 have "(-l1)*l2 <= (-l1)*u2"
+	by (simp only: zmult_zle_mono) 
+      then have l1u2_le_l1l2 : "l1*u2 <= l1*l2" by simp
+      from l1u2_le_l1l2 l1l2_le_u1l2 u1l2_le_u1u2 
+      have min1 : "l1*u2 = min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2))" 
+	by arith
+      from u1l2_pos u1l2_le_u1u2 have "0 = min (min (0 * l2) (0 * u2)) (min (u1 * l2) (u1 * u2))" by arith
+      with l1u2_neg min1 have minth : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= min (min (0 * l2) (0 * u2)) (min (u1 * l2) (u1 * u2))" by simp
+      from l1u2_le_l1l2 l1l2_le_u1l2 u1l2_le_u1u2 
+      have max1 : "u1*u2 = max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" 
+	by arith
+      from u1l2_pos u1l2_le_u1u2 have "u1*u2 = max (max (0 * l2) (0 * u2)) (max (u1 * l2) (u1 * u2))" by arith 
+      with  max1 have "max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2)) = max (max (0 * l2) (0 * u2)) (max (u1 * l2) (u1 * u2))" by simp
+      then have maxth : " max (max (0 * l2) (0 * u2)) (max (u1 * l2) (u1 * u2)) <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" by simp
+    have x1x2_0_u : "min (min (0 * l2) (0 * u2)) (min (u1 * l2) (u1 * u2)) <= x1 * x2 &
+x1 * x2 <= max (max (0 * l2) (0 * u2)) (max (u1 * l2) (u1 * u2))" 
+      by (simp only: zinterval_lposlpos[OF x1_0_u1 x2_lu trv_0 l2_pos],simp)
+      from minth maxth x1x2_0_u show ?thesis by (simp add: subinterval[OF _ minth maxth])
 qed
 
 lemma zinterval_lneglneg :
@@ -220,100 +240,101 @@
   and     x1_pos : "0 <= x1" 
   and     l2_neg : "l2 <= 0"
   and     x2_pos : "0 <= x2"
-  shows "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
+  shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
   \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))"
-proof -
-  from x1_lu x1_pos have x1_0_u1: "0 <= x1 \<and> x1 <= u1" by simp
-  from l1_neg have ml1_pos: "0 <= -l1" by simp
-  from l1_neg have l1_le0: "l1 <= 0" by simp
-  from x1_lu x1_pos have u1_pos: "0 <= u1" by arith
-  from x2_lu x2_pos have x2_0_u2: "0 <= x2 \<and> x2 <= u2" by simp
-  from l2_neg have ml2_pos: "0 <= -l2" by simp
-  from l2_neg have l2_le0: "l2 <= 0" by simp
-  from x2_lu x2_pos have u2_pos: "0 <= u2" by arith
-  have trv_0: "(0::int) <= 0" by simp
 
-  from x1_lu x2_0_u2 l1_le0 x1_pos trv_0
-  have x1x2_th1: 
-    "min (min (l1 * 0) (l1 * u2)) (min (u1 * 0) (u1 * u2)) \<le> x1 * x2 \<and>
-    x1 * x2 \<le> max (max (l1 * 0) (l1 * u2)) (max (u1 * 0) (u1 * u2))"
-    by (rule zinterval_lneglpos)
+proof-
+    from x1_lu x1_pos have x1_0_u1 : "0 <= x1 \<and> x1 <= u1" by simp
+    from l1_neg have ml1_pos : "0 <= -l1" by simp
+    from l1_neg have l1_le0 : "l1 <= 0" by simp
+    from x1_lu x1_pos have u1_pos : "0 <= u1" by arith
+    from x2_lu x2_pos have x2_0_u2 : "0 <= x2 \<and> x2 <= u2" by simp
+    from l2_neg have ml2_pos : "0 <= -l2" by simp
+    from l2_neg have l2_le0 : "l2 <= 0" by simp
+    from x2_lu x2_pos have u2_pos : "0 <= u2" by arith
+    have trv_0 : "(0::int) <= 0" by simp
+
+    have x1x2_th1 : 
+      "min (min (l1 * 0) (l1 * u2)) (min (u1 * 0) (u1 * u2)) \<le> x1 * x2 \<and>
+      x1 * x2 \<le> max (max (l1 * 0) (l1 * u2)) (max (u1 * 0) (u1 * u2))"
+      by (rule_tac  zinterval_lneglpos[OF x1_lu x2_0_u2 l1_le0 x1_pos trv_0])
     
-  have x1x2_eq_x2x1: "x1*x2 = x2*x1" by (simp add: mult_ac)
-  from x2_lu x1_0_u1 l2_le0 x2_pos trv_0
-  have
-    "min (min (l2 * 0) (l2 * u1)) (min (u2 * 0) (u2 * u1)) \<le> x2 * x1 \<and>
-    x2 * x1 \<le> max (max (l2 * 0) (l2 * u1)) (max (u2 * 0) (u2 * u1))"
-    by (rule zinterval_lneglpos)
+    have x1x2_eq_x2x1 : "x1*x2 = x2*x1" by (simp add: mult_ac)
+    have
+      "min (min (l2 * 0) (l2 * u1)) (min (u2 * 0) (u2 * u1)) \<le> x2 * x1 \<and>
+      x2 * x1 \<le> max (max (l2 * 0) (l2 * u1)) (max (u2 * 0) (u2 * u1))"
+      by (rule_tac  zinterval_lneglpos[OF x2_lu x1_0_u1 l2_le0 x2_pos trv_0])
     
-  then have x1x2_th2: 
-    "min (min (l2 * 0) (l2 * u1)) (min (u2 * 0) (u2 * u1)) \<le> x1 * x2 \<and>
-    x1 * x2 \<le> max (max (l2 * 0) (l2 * u1)) (max (u2 * 0) (u2 * u1))"
-    by (simp add: x1x2_eq_x2x1)
+    then have x1x2_th2 : 
+      "min (min (l2 * 0) (l2 * u1)) (min (u2 * 0) (u2 * u1)) \<le> x1 * x2 \<and>
+      x1 * x2 \<le> max (max (l2 * 0) (l2 * u1)) (max (u2 * 0) (u2 * u1))"
+      by (simp add: x1x2_eq_x2x1)
 
-  from x1x2_th1 x1x2_th2 have x1x2_th3:
-    "min (min (min (l1 * 0) (l1 * u2)) (min (u1 * 0) (u1 * u2)))
-    (min (min (l2 * 0) (l2 * u1)) (min (u2 * 0) (u2 * u1)))
-    \<le> x1 * x2 \<and>
-    x1 * x2
-    \<le> max (max (max (l1 * 0) (l1 * u2)) (max (u1 * 0) (u1 * u2)))
-    (max (max (l2 * 0) (l2 * u1)) (max (u2 * 0) (u2 * u1)))"
-    by (rule zintervals_min)
+    from x1x2_th1 x1x2_th2 have x1x2_th3:
+      "min (min (min (l1 * 0) (l1 * u2)) (min (u1 * 0) (u1 * u2)))
+      (min (min (l2 * 0) (l2 * u1)) (min (u2 * 0) (u2 * u1)))
+      \<le> x1 * x2 \<and>
+      x1 * x2
+      \<le> max (max (max (l1 * 0) (l1 * u2)) (max (u1 * 0) (u1 * u2)))
+      (max (max (l2 * 0) (l2 * u1)) (max (u2 * 0) (u2 * u1)))"
+      by (rule_tac zintervals_min[OF x1x2_th1 x1x2_th2])
 
-  from trv_0 trv_0 ml1_pos u2_pos 
-  have "0*0 <= -l1*u2" by (rule zmult_mono) 
-  then have l1u2_neg: "l1*u2 <= 0" by simp
-  from l1u2_neg have min_l1u2_0: "min (0) (l1*u2) = l1*u2" by arith
-  from l1u2_neg have max_l1u2_0: "max (0) (l1*u2) = 0" by arith
-  from trv_0 trv_0 u1_pos u2_pos
-  have "0*0 <= u1*u2" by (rule zmult_mono) 
-  then have u1u2_pos: "0 <= u1*u2" by simp
-  from u1u2_pos have min_0_u1u2: "min 0 (u1*u2) = 0" by arith
-  from u1u2_pos have max_0_u1u2: "max 0 (u1*u2) = u1*u2" by arith
-  from trv_0 trv_0 ml2_pos u1_pos have "0*0 <= -l2*u1" 
-    by (rule zmult_mono) 
-  then have l2u1_neg: "l2*u1 <= 0" by simp
-  from l2u1_neg have min_l2u1_0: "min 0 (l2*u1) = l2*u1" by arith
-  from l2u1_neg have max_l2u1_0: "max 0 (l2*u1) = 0" by arith
-  from min_l1u2_0 min_0_u1u2 min_l2u1_0 
-  have min_th1:
-    "min (l2*u1) (l1*u2) <= min (min (min (l1 * 0) (l1 * u2)) (min (u1 * 0) (u1 * u2)))
-    (min (min (l2 * 0) (l2 * u1)) (min (u2 * 0) (u2 * u1)))"
-    by (simp add: min_commute mult_ac)
-  from max_l1u2_0 max_0_u1u2 max_l2u1_0 
-  have max_th1: "max (max (max (l1 * 0) (l1 * u2)) (max (u1 * 0) (u1 * u2)))
-    (max (max (l2 * 0) (l2 * u1)) (max (u2 * 0) (u2 * u1))) <= u1*u2"
-    by (simp add: max_commute mult_ac)
-  from x1x2_th3 min_th1 max_th1
-  have x1x2_th4: "min (l2*u1) (l1*u2) <= x1*x2 \<and> x1*x2 <= u1*u2" 
-    by (rule subinterval)
+    from ml1_pos u2_pos 
+    have "0*0 <= -l1*u2" 
+      by (simp only: zmult_mono[OF trv_0 trv_0 ml1_pos u2_pos]) 
+    then have l1u2_neg : "l1*u2 <= 0" by simp
+    from l1u2_neg have min_l1u2_0 : "min (0) (l1*u2) = l1*u2" by arith
+    from l1u2_neg have max_l1u2_0 : "max (0) (l1*u2) = 0" by arith
+    from u1_pos u2_pos 
+    have "0*0 <= u1*u2" 
+      by (simp only: zmult_mono[OF trv_0 trv_0 u1_pos u2_pos]) 
+    then have u1u2_pos :"0 <= u1*u2" by simp
+    from u1u2_pos have min_0_u1u2 : "min 0 (u1*u2) = 0" by arith
+    from u1u2_pos have max_0_u1u2 : "max 0 (u1*u2) = u1*u2" by arith
+    from ml2_pos u1_pos have "0*0 <= -l2*u1" 
+      by (simp only: zmult_mono[OF trv_0 trv_0 ml2_pos u1_pos]) 
+    then have l2u1_neg : "l2*u1 <= 0" by simp
+    from l2u1_neg have min_l2u1_0 : "min 0 (l2*u1) = l2*u1" by arith
+    from l2u1_neg have max_l2u1_0 : "max 0 (l2*u1) = 0" by arith
+    from min_l1u2_0 min_0_u1u2 min_l2u1_0 
+    have min_th1: 
+      " min (l2*u1) (l1*u2) <= min (min (min (l1 * 0) (l1 * u2)) (min (u1 * 0) (u1 * u2)))
+      (min (min (l2 * 0) (l2 * u1)) (min (u2 * 0) (u2 * u1)))"
+      by (simp add: min_commute mult_ac)
+    from max_l1u2_0 max_0_u1u2 max_l2u1_0 
+    have max_th1: "max (max (max (l1 * 0) (l1 * u2)) (max (u1 * 0) (u1 * u2)))
+      (max (max (l2 * 0) (l2 * u1)) (max (u2 * 0) (u2 * u1))) <= u1*u2"
+      by (simp add: max_commute mult_ac)
+    have x1x2_th4: "min (l2*u1) (l1*u2) <= x1*x2 \<and> x1*x2 <= u1*u2" 
+      by (rule_tac subinterval[OF x1x2_th3 min_th1 max_th1])
     
-  have "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) =
-    min (min (l1*l2) (u1*u2)) (min (l1*u2) (l2*u1))"
-    by (simp add: min_min_commute min_commute mult_ac) 
-  moreover have "min (min (l1*l2) (u1*u2)) (min (l1*u2) (l2*u1)) <= min (l1*u2) (l2*u1)" 
-    by (rule min_le_I2)
-  ultimately have "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= min (l1*u2) (l2*u1)"
-    by simp 
-  then  have min_le1: "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <=min (l2*u1) (l1*u2)" 
-    by (simp add: min_commute mult_ac)
-  have "u1*u2 <= max (u1*l2) (u1*u2)" 
-    by (rule le_maxI2) 
+    have " min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) = min (min (l1*l2) (u1*u2)) (min (l1*u2) (l2*u1))" by (simp add: min_min_commute min_commute mult_ac) 
+    moreover 
+    have " min (min (l1*l2) (u1*u2)) (min (l1*u2) (l2*u1)) <= min (l1*u2) (l2*u1)" 
+      by 
+    (rule_tac min_le_I2 [of "(min (l1*l2) (u1*u2))" "(min (l1*u2) (l2*u1))"]) 
+    ultimately have "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= min (l1*u2) (l2*u1)" by simp 
+    then 
+    have min_le1: "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <=min (l2*u1) (l1*u2)" 
+      by (simp add: min_commute mult_ac)
+    have "u1*u2 <= max (u1*l2) (u1*u2)" 
+      by (rule_tac le_maxI2[of  "u1*u2" "u1*l2"]) 
     
-  moreover have "max (u1*l2) (u1*u2) <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))"
-    by (rule le_maxI2)
-  then have max_le1: "u1*u2 <= max (max (l1 * l2) (l1 * u2)) (max (u1 * l2) (u1 * u2))" 
-    by simp
-  with x1x2_th4 min_le1 show ?thesis by (rule subinterval)
-qed
+    moreover have "max (u1*l2) (u1*u2) <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))"
+      by(rule_tac le_maxI2[of "(max (u1*l2) (u1*u2))" "(max (l1*l2) (l1*u2))"])
+    then 
+    have max_le1:"u1*u2 <= max (max (l1 * l2) (l1 * u2)) (max (u1 * l2) (u1 * u2))" 
+      by simp
+    show ?thesis by (simp add: subinterval[OF x1x2_th4 min_le1 max_le1])
+  qed
 
 lemma zinterval_lpos:
   assumes x1_lu : "l1 <= (x1::int) \<and> x1 <= u1"
   and     x2_lu : "l2 <= (x2::int) \<and> x2 <= u2"
   and     l1_pos: "0 <= l1"
-  shows "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
+  shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
   \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))"
-proof -
+proof-
   from x1_lu have l1_le : "l1 <= x1" by simp
   from x1_lu have x1_le : "x1 <= u1" by simp
   from x2_lu have l2_le : "l2 <= x2" by simp
@@ -321,168 +342,172 @@
   from x1_lu have l1_leu : "l1 <= u1" by arith
   from x2_lu have l2_leu : "l2 <= u2" by arith
   have "(0 <= l2) \<or> (l2 < 0 \<and> 0<= x2) \<or> (x2 <0 \<and> 0 <= u2) \<or> (u2 <0)" by arith
-  thus ?thesis
-  proof (elim disjE conjE)
+  moreover
+  {
     assume l2_pos: "0 <= l2"
-    with x1_lu x2_lu l1_pos show ?thesis by (rule zinterval_lposlpos)
-  next
-    assume l2_neg: "l2 < 0" and x2_pos: "0<= x2"
-    from l2_neg have l2_le_0 : "l2 <= 0" by arith
-    from x2_lu x1_lu l2_le_0 x2_pos l1_pos
-    have th1: 
-      "min (min (l2 * l1) (l2 * u1)) (min (u2 * l1) (u2 * u1)) \<le> x2 * x1 \<and>
-      x2 * x1 \<le> max (max (l2 * l1) (l2 * u1)) (max (u2 * l1) (u2 * u1))" 
-      by (rule zinterval_lneglpos)
-    have mth1: "min (min (l2 * l1) (l2 * u1)) (min (u2 * l1) (u2 * u1)) =
-      min (min (l1 * l2) (l1 * u2)) (min (u1 * l2) (u1 * u2))" 
-      by (simp add: min_min_commute mult_ac)
-    have mth2: "max (max (l2 * l1) (l2 * u1)) (max (u2 * l1) (u2 * u1)) =
-      max (max (l1 * l2) (l1 * u2)) (max (u1 * l2) (u1 * u2))"
-      by (simp add: max_max_commute mult_ac)
-    have x1x2_th: "x2*x1 = x1*x2" by (simp add: mult_ac)
-    from th1 mth1 mth2 x1x2_th have 
-      "min (min (l1 * l2) (l1 * u2)) (min (u1 * l2) (u1 * u2)) \<le> x1 * x2 \<and>
-      x1 * x2 \<le> max (max (l1 * l2) (l1 * u2)) (max (u1 * l2) (u1 * u2))"
-      by auto
-    thus ?thesis by simp
-  next
-    assume x2_neg: "x2 <0" and u2_pos: "0 <= u2"
-    from x2_lu x2_neg have mx2_mu2_ml2: "-u2 <= -x2 \<and> -x2 <= -l2" by simp
-    from u2_pos have mu2_neg: "-u2 <= 0" by simp
-    from x2_neg have mx2_pos: "0 <= -x2" by simp
-    from mx2_mu2_ml2 x1_lu mu2_neg mx2_pos l1_pos
-    have mx1x2_lu: 
-      "min (min (- u2 * l1) (- u2 * u1)) (min (- l2 * l1) (- l2 * u1))
-      \<le> - x2 * x1 \<and>
-      - x2 * x1 \<le> max (max (- u2 * l1) (- u2 * u1)) (max (- l2 * l1) (- l2 * u1))"      
-      by (rule zinterval_lneglpos)
-    have min_eq_mmax: 
+    have ?thesis by (simp add: zinterval_lposlpos[OF x1_lu x2_lu l1_pos l2_pos])
+  }
+moreover
+{
+  assume  l2_neg : "l2 < 0" and x2_pos: "0<= x2"
+  from l2_neg have l2_le_0 : "l2 <= 0" by arith
+  thm zinterval_lneglpos[OF x2_lu x1_lu l2_le_0 x2_pos l1_pos]
+have th1 : 
+  "min (min (l2 * l1) (l2 * u1)) (min (u2 * l1) (u2 * u1)) \<le> x2 * x1 \<and>
+  x2 * x1 \<le> max (max (l2 * l1) (l2 * u1)) (max (u2 * l1) (u2 * u1))" 
+  by (simp add : zinterval_lneglpos[OF x2_lu x1_lu l2_le_0 x2_pos l1_pos])
+have mth1 : "min (min (l2 * l1) (l2 * u1)) (min (u2 * l1) (u2 * u1)) = min (min (l1 * l2) (l1 * u2)) (min (u1 * l2) (u1 * u2))" 
+  by (simp add: min_min_commute mult_ac)
+have mth2: "max (max (l2 * l1) (l2 * u1)) (max (u2 * l1) (u2 * u1)) = max (max (l1 * l2) (l1 * u2)) (max (u1 * l2) (u1 * u2))"
+  by (simp add: max_max_commute mult_ac)
+have x1x2_th : "x2*x1 = x1*x2" by (simp add: mult_ac)
+from th1 mth1 mth2 x1x2_th have 
+   "min (min (l1 * l2) (l1 * u2)) (min (u1 * l2) (u1 * u2)) \<le> x1 * x2 \<and>
+   x1 * x2 \<le> max (max (l1 * l2) (l1 * u2)) (max (u1 * l2) (u1 * u2))"
+by auto
+    then have ?thesis by simp 
+}
+moreover
+{
+  assume x2_neg : "x2 <0" and u2_pos : "0 <= u2"
+  from x2_lu x2_neg have mx2_mu2_ml2 : "-u2 <= -x2 \<and> -x2 <= -l2" by simp
+  from u2_pos have mu2_neg : "-u2 <= 0" by simp
+  from x2_neg have mx2_pos : "0 <= -x2" by simp
+thm zinterval_lneglpos[OF mx2_mu2_ml2 x1_lu mu2_neg mx2_pos l1_pos]
+    have mx1x2_lu : 
+"min (min (- u2 * l1) (- u2 * u1)) (min (- l2 * l1) (- l2 * u1))
+\<le> - x2 * x1 \<and>
+- x2 * x1 \<le> max (max (- u2 * l1) (- u2 * u1)) (max (- l2 * l1) (- l2 * u1))"      
+      by (simp only: zinterval_lneglpos [OF  mx2_mu2_ml2 x1_lu mu2_neg mx2_pos l1_pos],simp)
+    have min_eq_mmax : 
       "min (min (- u2 * l1) (- u2 * u1)) (min (- l2 * l1) (- l2 * u1)) = 
       - max (max (u2 * l1) (u2 * u1)) (max (l2 * l1) (l2 * u1))" 
       by (simp add: min_max_minus max_min_minus)
-    have max_eq_mmin: 
+    have max_eq_mmin : 
       " max (max (- u2 * l1) (- u2 * u1)) (max (- l2 * l1) (- l2 * u1)) = 
       -min (min (u2 * l1) (u2 * u1)) (min (l2 * l1) (l2 * u1))"
       by (simp add: min_max_minus max_min_minus)
     from mx1x2_lu min_eq_mmax max_eq_mmin 
     have "- max (max (u2 * l1) (u2 * u1)) (max (l2 * l1) (l2 * u1))<= - x1 * x2 &
       - x1*x2 <=  -min (min (u2 * l1) (u2 * u1)) (min (l2 * l1) (l2 * u1))" by (simp add: mult_ac)
-    thus ?thesis by (simp add: min_min_commute min_commute max_commute max_max_commute mult_ac)
-  next
-    assume u2_neg: "u2 < 0"
-    from x2_lu have mx2_lu: "-u2 <= -x2 \<and> -x2 <= -l2" by arith
-    from u2_neg have mu2_pos: "0 <= -u2" by arith
-    from x1_lu mx2_lu l1_pos mu2_pos
-    have "min (min (l1 * - u2) (l1 * - l2)) (min (u1 * - u2) (u1 * - l2))
-      \<le> x1 * - x2 \<and>
-      x1 * - x2 \<le> max (max (l1 * - u2) (l1 * - l2)) (max (u1 * - u2) (u1 * - l2))"
-      by (rule zinterval_lposlpos)
-    then have mx1x2_lu:
-      "min (min (-l1 * u2) (- l1 * l2)) (min (- u1 * u2) (- u1 * l2)) \<le> - x1 * x2 \<and>
-      - x1 * x2 \<le> max (max (- l1 * u2) (- l1 * l2)) (max (- u1 * u2) (- u1 * l2))"
-      by simp
-    moreover have "min (min (-l1 * u2) (- l1 * l2)) (min (- u1 * u2) (- u1 * l2)) =
-      - max (max (l1 * u2) ( l1 * l2)) (max ( u1 * u2) ( u1 * l2)) " 
-      by (simp add: min_max_minus max_min_minus)
-    moreover have
-      "max (max (- l1 * u2) (- l1 * l2)) (max (- u1 * u2) (- u1 * l2)) =
-      - min (min (l1 * u2) (l1 * l2)) (min (u1 * u2) (u1 * l2))"
-      by (simp add: min_max_minus max_min_minus)
-    ultimately have "- max (max (l1 * u2) ( l1 * l2)) (max ( u1 * u2) ( u1 * l2))\<le> - x1 * x2 \<and>
-      - x1 * x2 \<le> - min (min (l1 * u2) (l1 * l2)) (min (u1 * u2) (u1 * l2)) " by simp
-    thus ?thesis by (simp add: max_commute min_commute)
-  qed
+ then have ?thesis by (simp add: min_min_commute min_commute max_commute max_max_commute mult_ac) 
+
+}
+moreover
+{
+  assume u2_neg : "u2 < 0"
+  from x2_lu have mx2_lu : "-u2 <= -x2 \<and> -x2 <= -l2" by arith
+  from u2_neg have mu2_pos : "0 <= -u2" by arith
+thm zinterval_lposlpos [OF x1_lu mx2_lu l1_pos mu2_pos]
+have "min (min (l1 * - u2) (l1 * - l2)) (min (u1 * - u2) (u1 * - l2))
+\<le> x1 * - x2 \<and>
+x1 * - x2 \<le> max (max (l1 * - u2) (l1 * - l2)) (max (u1 * - u2) (u1 * - l2))
+  " by (rule_tac zinterval_lposlpos [OF x1_lu mx2_lu l1_pos mu2_pos])
+then have mx1x2_lu:
+  "min (min (-l1 * u2) (- l1 * l2)) (min (- u1 * u2) (- u1 * l2)) \<le> - x1 * x2 \<and>
+- x1 * x2 \<le> max (max (- l1 * u2) (- l1 * l2)) (max (- u1 * u2) (- u1 * l2))
+  " by simp
+moreover have "min (min (-l1 * u2) (- l1 * l2)) (min (- u1 * u2) (- u1 * l2)) =- max (max (l1 * u2) ( l1 * l2)) (max ( u1 * u2) ( u1 * l2)) " 
+  by (simp add: min_max_minus max_min_minus)
+moreover 
+have 
+"max (max (- l1 * u2) (- l1 * l2)) (max (- u1 * u2) (- u1 * l2)) = - min (min (l1 * u2) (l1 * l2)) (min (u1 * u2) (u1 * l2))"
+ by (simp add: min_max_minus max_min_minus)
+thm subinterval[OF mx1x2_lu]
+ultimately have "- max (max (l1 * u2) ( l1 * l2)) (max ( u1 * u2) ( u1 * l2))\<le> - x1 * x2 \<and>
+- x1 * x2 \<le> - min (min (l1 * u2) (l1 * l2)) (min (u1 * u2) (u1 * l2)) " by simp
+ then have ?thesis by (simp add: max_commute min_commute)
+}
+ultimately show ?thesis by blast
 qed
 
 lemma zinterval_uneg :
 assumes x1_lu : "l1 <= (x1::int) \<and> x1 <= u1"
   and     x2_lu : "l2 <= (x2::int) \<and> x2 <= u2"
   and     u1_neg: "u1 <= 0"
-  shows "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
+  shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
   \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))"
-proof -
+proof-
   from x1_lu  have mx1_lu : "-u1 <= -x1 \<and> -x1 <= -l1" by arith
   from u1_neg have mu1_pos : "0 <= -u1" by arith
-  with mx1_lu x2_lu have mx1x2_lu : 
+  thm zinterval_lpos [OF mx1_lu x2_lu mu1_pos]
+  have mx1x2_lu : 
     "min (min (- u1 * l2) (- u1 * u2)) (min (- l1 * l2) (- l1 * u2))
     \<le> - x1 * x2 \<and> - x1 * x2 \<le> 
     max (max (- u1 * l2) (- u1 * u2)) (max (- l1 * l2) (- l1 * u2))"
-    by (rule zinterval_lpos)
-  moreover have 
-    "min (min (- u1 * l2) (- u1 * u2)) (min (- l1 * l2) (- l1 * u2)) =
-    - max (max (u1 * l2) (u1 * u2)) (max (l1 * l2) (l1 * u2))"
-    by (simp add: min_max_minus max_min_minus)
-  moreover have 
-    "max (max (- u1 * l2) (- u1 * u2)) (max (- l1 * l2) (- l1 * u2)) =
-    - min (min (u1 * l2) ( u1 * u2)) (min (l1 * l2) (l1 * u2))"
-    by (simp add: min_max_minus max_min_minus)
-  ultimately have "- max (max (u1 * l2) (u1 * u2)) (max (l1 * l2) (l1 * u2)) \<le> - x1 * x2 \<and>
-    - x1 * x2 \<le>  - min (min (u1 * l2) ( u1 * u2)) (min (l1 * l2) (l1 * u2))" by simp
-  then show ?thesis by (simp add: min_commute max_commute mult_ac)
+by (rule_tac zinterval_lpos [OF mx1_lu x2_lu mu1_pos])
+moreover have 
+  "min (min (- u1 * l2) (- u1 * u2)) (min (- l1 * l2) (- l1 * u2)) = - max (max (u1 * l2) (u1 * u2)) (max (l1 * l2) (l1 * u2))" by (simp add: min_max_minus max_min_minus)
+moreover have 
+  "max (max (- u1 * l2) (- u1 * u2)) (max (- l1 * l2) (- l1 * u2)) = - min (min (u1 * l2) ( u1 * u2)) (min (l1 * l2) (l1 * u2))" by (simp add: min_max_minus max_min_minus)
+ultimately have "- max (max (u1 * l2) (u1 * u2)) (max (l1 * l2) (l1 * u2))\<le> - x1 * x2 \<and> - x1 * x2 \<le>  - min (min (u1 * l2) ( u1 * u2)) (min (l1 * l2) (l1 * u2))" by simp
+then show ?thesis by (simp add: min_commute max_commute mult_ac)
 qed
 
 lemma zinterval_lnegxpos:
-  assumes x1_lu : "l1 <= (x1::int) \<and> x1 <= u1"
+assumes x1_lu : "l1 <= (x1::int) \<and> x1 <= u1"
   and     x2_lu : "l2 <= (x2::int) \<and> x2 <= u2"
   and     l1_neg: "l1 <= 0"
   and     x1_pos: "0<= x1"
-  shows "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
+  shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
   \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))"
-proof -
+proof-
   have "(0 <= l2) \<or> (l2 < 0 \<and> 0<= x2) \<or> (x2 <0 \<and> 0 <= u2) \<or> (u2 <= 0)" by arith
-  thus ?thesis
-  proof (elim disjE conjE)
+  moreover
+  {
     assume l2_pos: "0 <= l2"
-    with x2_lu x1_lu have 
+    thm zinterval_lpos [OF x2_lu x1_lu l2_pos]
+    have 
       "min (min (l2 * l1) (l2 * u1)) (min (u2 * l1) (u2 * u1)) \<le> x2 * x1 \<and>
       x2 * x1 \<le> max (max (l2 * l1) (l2 * u1)) (max (u2 * l1) (u2 * u1))"
-      by (rule zinterval_lpos)
-    moreover have "min (min (l2 * l1) (l2 * u1)) (min (u2 * l1) (u2 * u1)) =
-      min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2))"
-      by (simp add: mult_ac min_commute min_min_commute)
-    moreover have "max (max (l2 * l1) (l2 * u1)) (max (u2 * l1) (u2 * u1)) =
-      max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))"
-      by (simp add: mult_ac max_commute max_max_commute)
-    ultimately show ?thesis by (simp add: mult_ac)
-  next
-    assume l2_neg: "l2 < 0" and x2_pos: " 0<= x2"
-    from l1_neg have l1_le0: "l1 <= 0" by simp
-    from l2_neg have l2_le0: "l2 <= 0" by simp
-    from x1_lu x2_lu l1_le0 x1_pos l2_le0 x2_pos
-    show ?thesis by (rule zinterval_lneglneg)
-  next
-    assume x2_neg: "x2 <0" and u2_pos: "0 <= u2"
-    from x2_lu have mx2_lu: "-u2 <= -x2 \<and> -x2 <= -l2" by arith
-    from x2_neg have mx2_pos: "0 <= -x2" by simp
-    from u2_pos have mu2_neg: "-u2 <= 0" by simp
-    from l1_neg have l1_le0: "l1 <= 0" by simp
-    from x1_lu mx2_lu l1_le0 x1_pos mu2_neg mx2_pos
-    have "min (min (l1 * - u2) (l1 * - l2)) (min (u1 * - u2) (u1 * - l2))
-      \<le> x1 * - x2 \<and>
-      x1 * - x2 \<le> max (max (l1 * - u2) (l1 * - l2)) (max (u1 * - u2) (u1 * - l2))"
-      by (rule zinterval_lneglneg)
-    then have "min (min (- l1 * u2) (- l1 * l2)) (min (- u1 * u2) (- u1 * l2))
-      \<le> - x1 * x2 \<and>
-      - x1 * x2 \<le> max (max (- l1 * u2) (- l1 * l2)) (max (- u1 * u2) (- u1 * l2))"
-      by simp
-    moreover have "min (min (- l1 * u2) (- l1 * l2)) (min (- u1 * u2) (- u1 * l2)) =
-      - max (max (l1 * u2) (l1 * l2)) (max (u1 * u2) (u1 * l2))"
-      by (simp add: min_max_minus max_min_minus)
-    moreover have "max (max (- l1 * u2) (- l1 * l2)) (max (- u1 * u2) (- u1 * l2)) =
-      - min (min (l1 * u2) (l1 * l2)) (min (u1 * u2) (u1 * l2))"
-      by (simp add: min_max_minus max_min_minus)
-    ultimately have "- max (max (l1 * u2) (l1 * l2)) (max (u1 * u2) (u1 * l2)) \<le> - x1 * x2 \<and>
-      - x1 * x2 \<le>  - min (min (l1 * u2) (l1 * l2)) (min (u1 * u2) (u1 * l2))"
-      by simp
-    thus ?thesis by (simp add: min_commute max_commute mult_ac) 
-  next
-    assume u2_neg: "u2 <= 0"
-    with x2_lu x1_lu
-    have "min (min (l2 * l1) (l2 * u1)) (min (u2 * l1) (u2 * u1)) \<le> x2 * x1 \<and>
-      x2 * x1 \<le> max (max (l2 * l1) (l2 * u1)) (max (u2 * l1) (u2 * u1))"
-      by (rule zinterval_uneg)
-    thus ?thesis by (simp add: mult_ac min_commute max_commute min_min_commute max_max_commute)
-  qed
+      by (rule_tac zinterval_lpos [OF x2_lu x1_lu l2_pos])
+ moreover have "min (min (l2 * l1) (l2 * u1)) (min (u2 * l1) (u2 * u1)) = min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2))" by (simp add: mult_ac min_commute min_min_commute)
+moreover have "max (max (l2 * l1) (l2 * u1)) (max (u2 * l1) (u2 * u1)) = max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))"
+  by (simp add: mult_ac max_commute max_max_commute)
+ultimately have ?thesis by (simp add: mult_ac)
+
+}
+
+moreover
+{
+  assume l2_neg: "l2 < 0" and x2_pos: " 0<= x2"
+  from l1_neg have l1_le0 : "l1 <= 0" by simp
+  from l2_neg have l2_le0 : "l2 <= 0" by simp
+ have ?thesis by (simp add: zinterval_lneglneg [OF x1_lu x2_lu l1_le0 x1_pos l2_le0 x2_pos])
+}
+
+moreover
+{
+ assume x2_neg: "x2 <0" and u2_pos: "0 <= u2"
+ from x2_lu have mx2_lu: "-u2 <= -x2 \<and> -x2 <= -l2" by arith
+ from x2_neg have mx2_pos: "0 <= -x2" by simp
+ from u2_pos have mu2_neg: "-u2 <= 0" by simp
+ from l1_neg have l1_le0 : "l1 <= 0" by simp
+thm zinterval_lneglneg [OF x1_lu mx2_lu l1_le0 x1_pos mu2_neg mx2_pos]
+have "min (min (l1 * - u2) (l1 * - l2)) (min (u1 * - u2) (u1 * - l2))
+\<le> x1 * - x2 \<and>
+x1 * - x2 \<le> max (max (l1 * - u2) (l1 * - l2)) (max (u1 * - u2) (u1 * - l2))" by (rule_tac zinterval_lneglneg [OF x1_lu mx2_lu l1_le0 x1_pos mu2_neg mx2_pos])
+then have "min (min (- l1 * u2) (- l1 * l2)) (min (- u1 * u2) (- u1 * l2))
+\<le> - x1 * x2 \<and>
+- x1 * x2 \<le> max (max (- l1 * u2) (- l1 * l2)) (max (- u1 * u2) (- u1 * l2))" by simp
+moreover have "min (min (- l1 * u2) (- l1 * l2)) (min (- u1 * u2) (- u1 * l2)) = - max (max (l1 * u2) (l1 * l2)) (max (u1 * u2) (u1 * l2))" by (simp add: min_max_minus max_min_minus)
+moreover have "max (max (- l1 * u2) (- l1 * l2)) (max (- u1 * u2) (- u1 * l2)) = - min (min (l1 * u2) (l1 * l2)) (min (u1 * u2) (u1 * l2))" by (simp add: min_max_minus max_min_minus)
+ultimately have "- max (max (l1 * u2) (l1 * l2)) (max (u1 * u2) (u1 * l2))\<le> - x1 * x2 \<and>
+- x1 * x2 \<le>  - min (min (l1 * u2) (l1 * l2)) (min (u1 * u2) (u1 * l2))" by simp
+
+then have ?thesis by (simp add: min_commute max_commute mult_ac) 
+}
+
+moreover
+{
+ assume u2_neg: "u2 <= 0"
+ thm zinterval_uneg[OF x2_lu x1_lu u2_neg]
+have "min (min (l2 * l1) (l2 * u1)) (min (u2 * l1) (u2 * u1)) \<le> x2 * x1 \<and>
+x2 * x1 \<le> max (max (l2 * l1) (l2 * u1)) (max (u2 * l1) (u2 * u1))" by (rule_tac zinterval_uneg[OF x2_lu x1_lu u2_neg])
+then have ?thesis by (simp add: mult_ac min_commute max_commute min_min_commute max_max_commute)
+}
+ultimately show ?thesis by blast
+
 qed
 
 lemma zinterval_xnegupos: 
@@ -490,167 +515,200 @@
   and     x2_lu : "l2 <= (x2::int) \<and> x2 <= u2"
   and     x1_neg: "x1 <= 0"
   and     u1_pos: "0<= u1"
-  shows "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
+  shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
   \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))"
-proof -
+proof-
   from x1_lu have mx1_lu : "-u1 <= -x1 \<and> -x1 <= -l1" by arith 
   from u1_pos have mu1_neg : "-u1 <= 0" by simp
   from x1_neg have mx1_pos : "0 <= -x1" by simp
-  with mx1_lu x2_lu mu1_neg
+  thm zinterval_lnegxpos[OF mx1_lu x2_lu mu1_neg mx1_pos ]
   have "min (min (- u1 * l2) (- u1 * u2)) (min (- l1 * l2) (- l1 * u2))
-    \<le> - x1 * x2 \<and>
-    - x1 * x2 \<le> max (max (- u1 * l2) (- u1 * u2)) (max (- l1 * l2) (- l1 * u2))"
-    by (rule zinterval_lnegxpos)
-  moreover have "min (min (- u1 * l2) (- u1 * u2)) (min (- l1 * l2) (- l1 * u2)) =
-    - max (max (u1 * l2) (u1 * u2)) (max (l1 * l2) (l1 * u2))" 
+\<le> - x1 * x2 \<and>
+- x1 * x2 \<le> max (max (- u1 * l2) (- u1 * u2)) (max (- l1 * l2) (- l1 * u2))"
+    by (rule_tac zinterval_lnegxpos[OF mx1_lu x2_lu mu1_neg mx1_pos ])
+  moreover have 
+    "min (min (- u1 * l2) (- u1 * u2)) (min (- l1 * l2) (- l1 * u2)) = - max (max (u1 * l2) (u1 * u2)) (max (l1 * l2) (l1 * u2))" 
     by (simp add: min_max_minus max_min_minus)
-  moreover have "max (max (- u1 * l2) (- u1 * u2)) (max (- l1 * l2) (- l1 * u2)) =
-    - min (min (u1 * l2) (u1 * u2)) (min (l1 * l2) (l1 * u2))" 
+  moreover have 
+    "max (max (- u1 * l2) (- u1 * u2)) (max (- l1 * l2) (- l1 * u2)) = - min (min (u1 * l2) (u1 * u2)) (min (l1 * l2) (l1 * u2))" 
     by (simp add: min_max_minus max_min_minus)
-  ultimately have "- max (max (u1 * l2) (u1 * u2)) (max (l1 * l2) (l1 * u2)) \<le> - x1 * x2 \<and>
-    - x1 * x2 \<le> - min (min (u1 * l2) (u1 * u2)) (min (l1 * l2) (l1 * u2))" 
+  ultimately have "- max (max (u1 * l2) (u1 * u2)) (max (l1 * l2) (l1 * u2))\<le> - x1 * x2 \<and>
+- x1 * x2 \<le> - min (min (u1 * l2) (u1 * u2)) (min (l1 * l2) (l1 * u2))" 
     by simp
-  then show ?thesis by (simp add: mult_ac min_commute max_commute)
+then show ?thesis by (simp add: mult_ac min_commute max_commute)
 qed
 
 lemma abs_mul: 
-  assumes x1_lu: "l1 <= (x1::int) \<and> x1 <= u1"
-  and     x2_lu: "l2 <= (x2::int) \<and> x2 <= u2"
-  shows "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
+  assumes x1_lu : "l1 <= (x1::int) \<and> x1 <= u1"
+  and     x2_lu : "l2 <= (x2::int) \<and> x2 <= u2"
+  shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 
   \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))"
-proof -
+proof-
   have "(0 <= l1) \<or> (l1 <= 0 \<and> 0<= x1) \<or> (x1 <=0 \<and> 0 <= u1) \<or> (u1 <= 0)" 
     by arith
-  thus ?thesis
-  proof (elim disjE conjE)
+  moreover
+  {
     assume l1_pos: "0 <= l1"
-    with x1_lu x2_lu show ?thesis by (rule zinterval_lpos)
-  next
-    assume l1_neg: "l1 <= 0" and x1_pos: "0 <= x1"
-    with x1_lu x2_lu show ?thesis by (rule zinterval_lnegxpos)
-  next
-    assume x1_neg: "x1 <= 0" and u1_pos: "0 <= u1"
-    from x1_lu x2_lu x1_neg u1_pos show ?thesis by (rule zinterval_xnegupos)
-  next
+    have ?thesis by (rule_tac zinterval_lpos [OF x1_lu x2_lu l1_pos])
+  }
+  
+  moreover
+  {
+    assume l1_neg :"l1 <= 0" and x1_pos: "0<= x1"
+    have ?thesis by (rule_tac zinterval_lnegxpos[OF x1_lu x2_lu l1_neg x1_pos])
+  }
+  
+  moreover
+  {
+    assume x1_neg : "x1 <= 0" and u1_pos: "0 <= u1"
+    have ?thesis by (rule_tac zinterval_xnegupos [OF x1_lu x2_lu x1_neg u1_pos])
+  }
+  
+  moreover
+  {
     assume u1_neg: "u1 <= 0"
-    with x1_lu x2_lu show ?thesis by (rule zinterval_uneg)
-  qed
+    have ?thesis by (rule_tac zinterval_uneg [OF x1_lu x2_lu u1_neg])
+  }
+  
+  ultimately show ?thesis by blast
 qed
 
 lemma mult_x_mono_lpos : 
-  assumes l_pos : "0 <= (l::int)"
-  and     x_lu : "l <= (x::int) \<and> x <= u"
+assumes l_pos : "0 <= (l::int)"
+  and   x_lu : "l <= (x::int) \<and> x <= u"
   shows "l*l <= x*x \<and> x*x <= u*u"
-proof -
+
+proof-
   from x_lu have x_l : "l <= x" by arith
-  from l_pos l_pos x_l x_l have xx_l : "l*l <= x*x"
-    by (rule zmult_mono)
+  thm zmult_mono[OF l_pos l_pos x_l x_l]
+  then have xx_l : "l*l <= x*x"
+    by (simp add: zmult_mono[OF l_pos l_pos x_l x_l])
   moreover 
   from x_lu have x_u : "x <= u" by arith
   from l_pos x_l have x_pos : "0 <= x" by arith
-  from x_pos x_pos x_u x_u have xx_u : "x*x <= u*u"
-    by (rule zmult_mono)
-  ultimately show ?thesis by simp
+  thm zmult_mono[OF x_pos x_pos x_u x_u]
+  then have xx_u : "x*x <= u*u"
+    by (simp add: zmult_mono[OF x_pos x_pos x_u x_u])
+ultimately show ?thesis by simp
 qed
 
 lemma mult_x_mono_luneg : 
-  assumes l_neg: "(l::int) <= 0"
-  and     u_neg: "u <= 0"
-  and     x_lu: "l <= (x::int) \<and> x <= u"
+assumes l_neg : "(l::int) <= 0"
+  and   u_neg : "u <= 0"
+  and   x_lu : "l <= (x::int) \<and> x <= u"
   shows "u*u <= x*x \<and> x*x <= l*l"
-proof -
-  from u_neg have "0<= -u" by simp
-  moreover from x_lu have "-u <= -x \<and> -x <= -l" by arith
-  ultimately have "- u * - u \<le> - x * - x \<and> - x * - x \<le> - l * - l"
-    by (rule mult_x_mono_lpos)
+
+proof-
+  from x_lu have mx_lu : "-u <= -x \<and> -x <= -l" by arith
+  from u_neg have mu_pos : "0<= -u" by simp
+  thm mult_x_mono_lpos[OF mu_pos mx_lu]
+  have "- u * - u \<le> - x * - x \<and> - x * - x \<le> - l * - l"
+    by (rule_tac mult_x_mono_lpos[OF mu_pos mx_lu])
   then show ?thesis by simp
 qed
 
 lemma mult_x_mono_lxnegupos : 
-  assumes l_neg: "(l::int) <= 0"
-  and     u_pos: "0 <= u"
-  and     x_neg: "x <= 0"
-  and     x_lu: "l <= (x::int) \<and> x <= u"
+assumes l_neg : "(l::int) <= 0"
+  and   u_pos : "0 <= u"
+  and   x_neg : "x <= 0"
+  and   x_lu : "l <= (x::int) \<and> x <= u"
   shows "0 <= x*x \<and> x*x <= max (l*l) (u*u)"
-proof -
-  have "(0::int) <= 0" by arith
-  moreover from x_lu x_neg have "0 <= - x \<and> - x <= - l" by arith
-  ultimately have "0 * 0 \<le> - x * - x \<and> - x * - x \<le> - l * - l" 
-    by (rule mult_x_mono_lpos)
+proof-
+  from x_lu x_neg have mx_0l : "0 <= - x \<and> - x <= - l" by arith
+  have trv_0 : "(0::int) <= 0" by arith
+  thm mult_x_mono_lpos[OF trv_0 mx_0l]
+  have "0 * 0 \<le> - x * - x \<and> - x * - x \<le> - l * - l"
+    by (rule_tac  mult_x_mono_lpos[OF trv_0 mx_0l])
   then have xx_0ll : "0 <= x*x \<and> x*x <= l*l" by simp
   have "l*l <= max (l*l) (u*u)" by (simp add: le_maxI1)
   with xx_0ll show ?thesis by arith
 qed
 
 lemma mult_x_mono_lnegupos : 
-  assumes l_neg: "(l::int) <= 0"
-  and     u_pos: "0 <= u"
-  and     x_lu: "l <= (x::int) \<and> x <= u"
+assumes l_neg : "(l::int) <= 0"
+  and   u_pos : "0 <= u"
+  and   x_lu : "l <= (x::int) \<and> x <= u"
   shows "0 <= x*x \<and> x*x <= max (l*l) (u*u)"
-proof -
-  have "0 <= x \<or> x <= 0" by arith
-  thus ?thesis
-  proof
-    assume x_neg: "x <= 0"
-    from l_neg u_pos x_neg x_lu show ?thesis by (rule mult_x_mono_lxnegupos)
-  next
-    assume x_pos: "0 <= x"
-    from x_lu have mx_lu: "-u <= -x \<and> -x <= -l" by arith
-    from x_pos have mx_neg: "-x <= 0" by simp
-    from u_pos have mu_neg: "-u <= 0" by simp
-    from x_lu x_pos have ml_pos: "0 <= -l" by simp
-    from mu_neg ml_pos mx_neg mx_lu
-    have "0 \<le> - x * - x \<and> - x * - x \<le> max (- u * - u) (- l * - l)"
-      by (rule mult_x_mono_lxnegupos)
-    thus ?thesis by (simp add: max_commute)
-  qed
+proof-
+  have "0<= x \<or> x <= 0" by arith
+moreover
+{
+  assume x_neg : "x <= 0"
+  thm mult_x_mono_lxnegupos[OF l_neg u_pos x_neg x_lu]
+  have ?thesis by (rule_tac mult_x_mono_lxnegupos[OF l_neg u_pos x_neg x_lu])
+}
+moreover
+
+{
+  assume x_pos : "0 <= x"
+  from x_lu have mx_lu : "-u <= -x \<and> -x <= -l" by arith
+  from x_pos have mx_neg : "-x <= 0" by simp
+  from u_pos have mu_neg : "-u <= 0" by simp
+  from x_lu x_pos have ml_pos : "0 <= -l" by simp
+  thm mult_x_mono_lxnegupos[OF mu_neg ml_pos mx_neg mx_lu]
+  have "0 \<le> - x * - x \<and> - x * - x \<le> max (- u * - u) (- l * - l)"
+    by (rule_tac mult_x_mono_lxnegupos[OF mu_neg ml_pos mx_neg mx_lu])
+  then have ?thesis by (simp add: max_commute)
+
+}
+ultimately show ?thesis by blast
+
 qed
-
 lemma abs_mul_x:
-  assumes x_lu: "l <= (x::int) \<and> x <= u"
-  shows
+  assumes x_lu : "l <= (x::int) \<and> x <= u"
+  shows 
   "(if 0 <= l then l*l  else if u <= 0 then u*u else 0) <= x*x
   \<and> x*x <= (if 0 <= l then u*u  else if u <= 0 then l*l else (max (l*l) (u*u)))"
-proof -
+proof-
   have "(0 <= l) \<or> (l < 0 \<and> u <= 0) \<or> (l < 0 \<and> 0 < u)" by arith 
-  thus ?thesis
-  proof (elim disjE conjE)
-    assume l_pos: "0 <= l"
+  
+  moreover
+  {
+    assume l_pos : "0 <= l"
     from l_pos have "(if 0 <= l then l*l  else if u <= 0 then u*u else 0) = l*l"
       by simp
-    moreover from l_pos have "(if 0 <= l then u*u  else if u <= 0 then l*l else (max (l*l) (u*u))) = u*u"
-      by simp
-    moreover from l_pos x_lu have "l * l \<le> x * x \<and> x * x \<le> u * u" 
-      by (rule mult_x_mono_lpos)
-    ultimately show ?thesis by simp 
-  next
-    assume l_neg: "l < 0" and u_neg: "u <= 0"  
-    from l_neg have l_le0: "l <= 0" by simp
+    moreover from l_pos have "(if 0 <= l then u*u  else if u <= 0 then l*l else (max (l*l) (u*u))) = u*u" by simp
+    
+    moreover have "l * l \<le> x * x \<and> x * x \<le> u * u" 
+      by (rule_tac  mult_x_mono_lpos[OF l_pos x_lu])
+    ultimately have ?thesis by simp 
+  }
+  
+  moreover
+  {
+    assume l_neg : "l < 0"  and u_neg : "u <= 0"  
+    from l_neg have l_le0 : "l <= 0" by simp
     from l_neg u_neg have "(if 0 <= l then l*l  else if u <= 0 then u*u else 0) = u*u"
       by simp
-    moreover
-    from l_neg u_neg have "(if 0 <= l then u*u  else if u <= 0 then l*l else (max (l*l) (u*u))) = l*l"
-      by simp
-    moreover from l_le0 u_neg x_lu
+    moreover 
+    from l_neg u_neg have "(if 0 <= l then u*u  else if u <= 0 then l*l else (max (l*l) (u*u))) = l*l" by simp
+    moreover 
     have "u * u \<le> x * x \<and> x * x \<le> l * l" 
-      by (rule mult_x_mono_luneg)
-    ultimately show ?thesis by simp
-  next
-    assume l_neg: "l < 0" and u_pos: "0 < u"
-    from l_neg have l_le0: "l <= 0" by simp
-    from u_pos have u_ge0: "0 <= u" by simp
+      by (rule_tac mult_x_mono_luneg[OF l_le0 u_neg x_lu])
+    
+    ultimately have ?thesis by simp 
+  }
+  moreover
+  {
+    assume l_neg : "l < 0" and u_pos: "0 < u"
+    from l_neg have l_le0 : "l <= 0" by simp
+    from u_pos have u_ge0 : "0 <= u" by simp
     from l_neg u_pos have "(if 0 <= l then l*l  else if u <= 0 then u*u else 0) = 0"
       by simp
-    moreover from l_neg u_pos have "(if 0 <= l then u*u else
-      if u <= 0 then l*l else (max (l*l) (u*u))) = max (l*l) (u*u)" by simp
-    moreover from l_le0 u_ge0 x_lu have "0 \<le> x * x \<and> x * x \<le> max (l * l) (u * u)" 
-      by (rule mult_x_mono_lnegupos)
-    ultimately show ?thesis by simp 
-  qed
+    moreover from l_neg u_pos have "(if 0 <= l then u*u  else if u <= 0 then l*l else (max (l*l) (u*u))) = max (l*l) (u*u)" by simp
+    moreover have "0 \<le> x * x \<and> x * x \<le> max (l * l) (u * u)" 
+      by (rule_tac mult_x_mono_lnegupos[OF l_le0 u_ge0 x_lu])
+    
+    ultimately have ?thesis by simp 
+    
+  }
+  
+  ultimately show ?thesis by blast
 qed
 
 
-use "barith.ML"
+use"barith.ML"
 setup Barith.setup
 
 end
+