src/HOL/IMP/VCG_Total_EX2.thy
changeset 67019 7a3724078363
child 67406 23307fd33906
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/IMP/VCG_Total_EX2.thy	Tue Nov 07 14:52:27 2017 +0100
@@ -0,0 +1,134 @@
+(* Author: Tobias Nipkow *)
+
+theory VCG_Total_EX2
+imports Hoare_Total_EX2
+begin
+
+subsection "Verification Conditions for Total Correctness"
+
+text \<open>
+Theory \<open>VCG_Total_EX\<close> conatins a VCG built on top of a Hoare logic without logical variables.
+As a result the completeness proof runs into a problem. This theory uses a Hoare logic
+with logical variables and proves soundness and completeness.
+\<close>
+
+text{* Annotated commands: commands where loops are annotated with
+invariants. *}
+
+datatype acom =
+  Askip                  ("SKIP") |
+  Aassign vname aexp     ("(_ ::= _)" [1000, 61] 61) |
+  Aseq   acom acom       ("_;;/ _"  [60, 61] 60) |
+  Aif bexp acom acom     ("(IF _/ THEN _/ ELSE _)"  [0, 0, 61] 61) |
+  Awhile assn2 lvname bexp acom
+    ("({_'/_}/ WHILE _/ DO _)"  [0, 0, 0, 61] 61)
+
+notation com.SKIP ("SKIP")
+
+text{* Strip annotations: *}
+
+fun strip :: "acom \<Rightarrow> com" where
+"strip SKIP = SKIP" |
+"strip (x ::= a) = (x ::= a)" |
+"strip (C\<^sub>1;; C\<^sub>2) = (strip C\<^sub>1;; strip C\<^sub>2)" |
+"strip (IF b THEN C\<^sub>1 ELSE C\<^sub>2) = (IF b THEN strip C\<^sub>1 ELSE strip C\<^sub>2)" |
+"strip ({_/_} WHILE b DO C) = (WHILE b DO strip C)"
+
+text{* Weakest precondition from annotated commands: *}
+
+fun pre :: "acom \<Rightarrow> assn2 \<Rightarrow> assn2" where
+"pre SKIP Q = Q" |
+"pre (x ::= a) Q = (\<lambda>l s. Q l (s(x := aval a s)))" |
+"pre (C\<^sub>1;; C\<^sub>2) Q = pre C\<^sub>1 (pre C\<^sub>2 Q)" |
+"pre (IF b THEN C\<^sub>1 ELSE C\<^sub>2) Q =
+  (\<lambda>l s. if bval b s then pre C\<^sub>1 Q l s else pre C\<^sub>2 Q l s)" |
+"pre ({I/x} WHILE b DO C) Q = (\<lambda>l s. EX n. I (l(x:=n)) s)"
+
+text{* Verification condition: *}
+
+fun vc :: "acom \<Rightarrow> assn2 \<Rightarrow> bool" where
+"vc SKIP Q = True" |
+"vc (x ::= a) Q = True" |
+"vc (C\<^sub>1;; C\<^sub>2) Q = (vc C\<^sub>1 (pre C\<^sub>2 Q) \<and> vc C\<^sub>2 Q)" |
+"vc (IF b THEN C\<^sub>1 ELSE C\<^sub>2) Q = (vc C\<^sub>1 Q \<and> vc C\<^sub>2 Q)" |
+"vc ({I/x} WHILE b DO C) Q =
+  (\<forall>l s. (I (l(x:=Suc(l x))) s \<longrightarrow> pre C I l s) \<and>
+       (l x > 0 \<and> I l s \<longrightarrow> bval b s) \<and>
+       (I (l(x := 0)) s \<longrightarrow> \<not> bval b s \<and> Q l s) \<and>
+       vc C I)"
+
+lemma vc_sound: "vc C Q \<Longrightarrow> \<turnstile>\<^sub>t {pre C Q} strip C {Q}"
+proof(induction C arbitrary: Q)
+  case (Awhile I x b C)
+  show ?case
+  proof(simp, rule weaken_post[OF While[of I x]], goal_cases)
+    case 1 show ?case
+      using Awhile.IH[of "I"] Awhile.prems by (auto intro: strengthen_pre)
+  next
+    case 3 show ?case
+      using Awhile.prems by (simp) (metis fun_upd_triv)
+  qed (insert Awhile.prems, auto)
+qed (auto intro: conseq Seq If simp: Skip Assign)
+
+
+text{* Completeness: *}
+
+lemma pre_mono:
+  "\<forall>l s. P l s \<longrightarrow> P' l s \<Longrightarrow> pre C P l s \<Longrightarrow> pre C P' l s"
+proof (induction C arbitrary: P P' l s)
+  case Aseq thus ?case by simp metis
+qed simp_all
+
+lemma vc_mono:
+  "\<forall>l s. P l s \<longrightarrow> P' l s \<Longrightarrow> vc C P \<Longrightarrow> vc C P'"
+proof(induction C arbitrary: P P')
+  case Aseq thus ?case by simp (metis pre_mono)
+qed simp_all
+
+lemma vc_complete:
+ "\<turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> \<exists>C. strip C = c \<and> vc C Q \<and> (\<forall>l s. P l s \<longrightarrow> pre C Q l s)"
+  (is "_ \<Longrightarrow> \<exists>C. ?G P c Q C")
+proof (induction rule: hoaret.induct)
+  case Skip
+  show ?case (is "\<exists>C. ?C C")
+  proof show "?C Askip" by simp qed
+next
+  case (Assign P a x)
+  show ?case (is "\<exists>C. ?C C")
+  proof show "?C(Aassign x a)" by simp qed
+next
+  case (Seq P c1 Q c2 R)
+  from Seq.IH obtain C1 where ih1: "?G P c1 Q C1" by blast
+  from Seq.IH obtain C2 where ih2: "?G Q c2 R C2" by blast
+  show ?case (is "\<exists>C. ?C C")
+  proof
+    show "?C(Aseq C1 C2)"
+      using ih1 ih2 by (fastforce elim!: pre_mono vc_mono)
+  qed
+next
+  case (If P b c1 Q c2)
+  from If.IH obtain C1 where ih1: "?G (\<lambda>l s. P l s \<and> bval b s) c1 Q C1"
+    by blast
+  from If.IH obtain C2 where ih2: "?G (\<lambda>l s. P l s \<and> \<not>bval b s) c2 Q C2"
+    by blast
+  show ?case (is "\<exists>C. ?C C")
+  proof
+    show "?C(Aif b C1 C2)" using ih1 ih2 by simp
+  qed
+next
+  case (While P x c b)
+  from While.IH obtain C where
+    ih: "?G (\<lambda>l s. P (l(x:=Suc(l x))) s \<and> bval b s) c P C"
+    by blast
+  show ?case (is "\<exists>C. ?C C")
+  proof
+    have "vc ({P/x} WHILE b DO C) (\<lambda>l. P (l(x := 0)))"
+      using ih While.hyps(2,3)
+      by simp (metis fun_upd_same zero_less_Suc)
+    thus "?C(Awhile P x b C)" using ih by simp
+ qed
+next
+  case conseq thus ?case by(fast elim!: pre_mono vc_mono)
+qed
+
+end