TFL/examples/Subst/Unify1.ML
changeset 3208 8336393de482
parent 3207 fe79ad367d77
child 3209 ccb55f3121d1
--- a/TFL/examples/Subst/Unify1.ML	Thu May 15 15:51:47 1997 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,637 +0,0 @@
-(*---------------------------------------------------------------------------
- * This file defines a nested unification algorithm, then proves that it 
- * terminates, then proves 2 correctness theorems: that when the algorithm
- * succeeds, it 1) returns an MGU; and 2) returns an idempotent substitution.
- * Although the proofs may seem long, they are actually quite direct, in that
- * the correctness and termination properties are not mingled as much as in 
- * previous proofs of this algorithm. 
- *
- * Our approach for nested recursive functions is as follows: 
- *
- *    0. Prove the wellfoundedness of the termination relation.
- *    1. Prove the non-nested termination conditions.
- *    2. Eliminate (0) and (1) from the recursion equations and the 
- *       induction theorem.
- *    3. Prove the nested termination conditions by using the induction 
- *       theorem from (2) and by using the recursion equations from (2). 
- *       These are constrained by the nested termination conditions, but 
- *       things work out magically (by wellfoundedness of the termination 
- *       relation).
- *    4. Eliminate the nested TCs from the results of (2).
- *    5. Prove further correctness properties using the results of (4).
- *
- * Deeper nestings require iteration of steps (3) and (4).
- *---------------------------------------------------------------------------*)
-
-Thry.add_datatype_facts
-   (UTerm.thy, ("uterm",["Var", "Const", "Comb"]), uterm.induct_tac);
-
-Thry.add_datatype_facts 
-   (Unify1.thy, ("subst",["Fail", "Subst"]), Unify1.subst.induct_tac);
-
-(* This is just a wrapper for the definition mechanism. *)
-local fun cread thy s = read_cterm (sign_of thy) (s, (TVar(("DUMMY",0),[])));
-in
-fun Rfunc thy R eqs =
-   let val _ = reset_count()
-       val _ =  tych_counting true
-       val read = term_of o cread thy;
-       val {induction,rules,theory,tcs} = Tfl.Rfunction thy (read R) (read eqs)
-   in {induction=induction, rules=rules, theory=theory, 
-       typechecks = count(), tcs = tcs}
-   end
-end;
-
-(*---------------------------------------------------------------------------
- * The algorithm.
- *---------------------------------------------------------------------------*)
-val {theory,induction,rules,tcs,typechecks} =
-Rfunc Unify1.thy "R"
-  "(Unify(Const m, Const n)  = (if (m=n) then Subst[] else Fail))    & \
-\  (Unify(Const m, Comb M N) = Fail)                                 & \
-\  (Unify(Const m, Var v)    = Subst[(v,Const m)])                   & \
-\  (Unify(Var v, M) = (if (Var v <: M) then Fail else Subst[(v,M)])) & \
-\  (Unify(Comb M N, Const x) = Fail)                                 & \
-\  (Unify(Comb M N, Var v) = (if (Var v <: Comb M N) then Fail  \
-\                             else Subst[(v,Comb M N)]))             & \
-\  (Unify(Comb M1 N1, Comb M2 N2) =  \
-\     (case Unify(M1,M2) \
-\       of Fail => Fail \
-\        | Subst theta => (case Unify(N1 <| theta, N2 <| theta) \
-\                           of Fail => Fail \
-\                             | Subst sigma => Subst (theta <> sigma))))";
-
-
-
-open Unify1;
-
-(*---------------------------------------------------------------------------
- * A slightly augmented strip_tac. 
- *---------------------------------------------------------------------------*)
-(* Needs a correct "CHANGED" to work! This one taken from Carsten's version. *)
-(*Returns all changed states*)
-fun CHANGED tac st = 
-    let fun diff st' = not (eq_thm(st,st'))
-    in  Sequence.filters diff (tac st)  end;
-
-fun my_strip_tac i = 
-   CHANGED (strip_tac i 
-            THEN REPEAT ((etac exE ORELSE' etac conjE) i)
-            THEN TRY (hyp_subst_tac i));
-
-(*---------------------------------------------------------------------------
- * A slightly augmented fast_tac for sets. It handles the case where the 
- * top connective is "=".
- *---------------------------------------------------------------------------*)
-fun my_fast_set_tac i = (TRY(rtac set_ext i) THEN fast_tac set_cs i);
-
-
-(*---------------------------------------------------------------------------
- * Wellfoundedness of proper subset on finite sets.
- *---------------------------------------------------------------------------*)
-goalw Unify1.thy [R0_def] "wf(R0)";
-by (rtac ((wf_subset RS mp) RS mp) 1);
-by (rtac wf_measure 1);
-by(simp_tac(!simpset addsimps[measure_def,inv_image_def,symmetric less_def])1);
-by (my_strip_tac 1);
-by (forward_tac[ssubset_card] 1);
-by (fast_tac set_cs 1);
-val wf_R0 = result();
-
-
-(*---------------------------------------------------------------------------
- * Tactic for selecting and working on the first projection of R.
- *---------------------------------------------------------------------------*)
-fun R0_tac thms i =
-  (simp_tac (!simpset addsimps (thms@[R_def,lex_prod_def,
-               measure_def,inv_image_def,point_to_prod_def])) i THEN
-   REPEAT (rtac exI i) THEN
-   REPEAT ((rtac conjI THEN' rtac refl) i) THEN
-   rtac disjI1 i THEN
-   simp_tac (!simpset addsimps [R0_def,finite_vars_of]) i);
-
-
-
-(*---------------------------------------------------------------------------
- * Tactic for selecting and working on the second projection of R.
- *---------------------------------------------------------------------------*)
-fun R1_tac thms i = 
-   (simp_tac (!simpset addsimps (thms@[R_def,lex_prod_def,
-                 measure_def,inv_image_def,point_to_prod_def])) i THEN 
-    REPEAT (rtac exI i) THEN 
-    REPEAT ((rtac conjI THEN' rtac refl) i) THEN
-    rtac disjI2 i THEN
-    asm_simp_tac (!simpset addsimps [R1_def,rprod_def]) i);
-
-
-(*---------------------------------------------------------------------------
- * The non-nested TC plus the wellfoundedness of R.
- *---------------------------------------------------------------------------*)
-tgoalw Unify1.thy [] rules;
-by (rtac conjI 1);
-(* TC *)
-by (my_strip_tac 1);
-by (cut_facts_tac [monotone_vars_of] 1); 
-by (asm_full_simp_tac(!simpset addsimps [subseteq_iff_subset_eq]) 1);
-by (etac disjE 1);
-by (R0_tac[] 1);
-by (R1_tac[] 1);
-by (REPEAT (rtac exI 1) THEN REPEAT ((rtac conjI THEN' rtac refl) 1));
-by (simp_tac
-     (!simpset addsimps [measure_def,inv_image_def,less_eq,less_add_Suc1]) 1);
-
-(* Wellfoundedness of R *)
-by (simp_tac (!simpset addsimps [Unify1.R_def,Unify1.R1_def]) 1);
-by (REPEAT (resolve_tac [wf_inv_image,wf_lex_prod,wf_R0,
-                         wf_rel_prod, wf_measure] 1));
-val tc0 = result();
-
-
-(*---------------------------------------------------------------------------
- * Eliminate tc0 from the recursion equations and the induction theorem.
- *---------------------------------------------------------------------------*)
-val [tc,wfr] = Prim.Rules.CONJUNCTS tc0;
-val rules1 = implies_intr_hyps rules;
-val rules2 = wfr RS rules1;
-
-val [a,b,c,d,e,f,g] = Prim.Rules.CONJUNCTS rules2;
-val g' = tc RS (g RS mp);
-val rules4 = standard (Prim.Rules.LIST_CONJ[a,b,c,d,e,f,g']);
-
-val induction1 = implies_intr_hyps induction;
-val induction2 = wfr RS induction1;
-val induction3 = tc RS induction2;
-
-val induction4 = standard
- (rewrite_rule[fst_conv RS eq_reflection, snd_conv RS eq_reflection]
-   (induction3 RS (read_instantiate_sg (sign_of theory)
-      [("x","%p. Phi (fst p) (snd p)")] spec)));
-
-
-(*---------------------------------------------------------------------------
- * Some theorems about transitivity of WF combinators. Only the last
- * (transR) is used, in the proof of termination. The others are generic and
- * should maybe go somewhere.
- *---------------------------------------------------------------------------*)
-goalw WF1.thy [trans_def,lex_prod_def,mem_Collect_eq RS eq_reflection]
-           "trans R1 & trans R2 --> trans (R1 ** R2)";
-by (my_strip_tac 1);
-by (res_inst_tac [("x","a")] exI 1);
-by (res_inst_tac [("x","a'a")] exI 1);
-by (res_inst_tac [("x","b")] exI 1);
-by (res_inst_tac [("x","b'a")] exI 1);
-by (REPEAT (rewrite_tac [Pair_eq RS eq_reflection] THEN my_strip_tac 1));
-by (Simp_tac 1);
-by (REPEAT (etac disjE 1));
-by (rtac disjI1 1);
-by (ALLGOALS (fast_tac set_cs));
-val trans_lex_prod = result() RS mp;
-
-
-goalw WF1.thy [trans_def,rprod_def,mem_Collect_eq RS eq_reflection]
-           "trans R1 & trans R2 --> trans (rprod R1  R2)";
-by (my_strip_tac 1);
-by (res_inst_tac [("x","a")] exI 1);
-by (res_inst_tac [("x","a'a")] exI 1);
-by (res_inst_tac [("x","b")] exI 1);
-by (res_inst_tac [("x","b'a")] exI 1);
-by (REPEAT (rewrite_tac [Pair_eq RS eq_reflection] THEN my_strip_tac 1));
-by (Simp_tac 1);
-by (fast_tac set_cs 1);
-val trans_rprod = result() RS mp;
-
-
-goalw Unify1.thy [trans_def,inv_image_def,mem_Collect_eq RS eq_reflection]
- "trans r --> trans (inv_image r f)";
-by (rewrite_tac [fst_conv RS eq_reflection, snd_conv RS eq_reflection]);
-by (fast_tac set_cs 1);
-val trans_inv_image = result() RS mp;
-
-goalw Unify1.thy [R0_def, trans_def, mem_Collect_eq RS eq_reflection]
- "trans R0";
-by (rewrite_tac [fst_conv RS eq_reflection,snd_conv RS eq_reflection,
-                 ssubset_def, set_eq_subset RS eq_reflection]);
-by (fast_tac set_cs 1);
-val trans_R0 = result();
-
-goalw Unify1.thy [R_def,R1_def,measure_def] "trans R";
-by (REPEAT (resolve_tac[trans_inv_image,trans_lex_prod,conjI, trans_R0,
-                        trans_rprod, trans_inv_image, trans_trancl] 1));
-val transR = result();
-
-
-(*---------------------------------------------------------------------------
- * The following lemma is used in the last step of the termination proof for 
- * the nested call in Unify. Loosely, it says that R doesn't care so much
- * about term structure.
- *---------------------------------------------------------------------------*)
-goalw Unify1.thy [R_def,lex_prod_def, inv_image_def,point_to_prod_def]
-     "((X,Y), (Comb A (Comb B C), Comb D (Comb E F))) : R --> \
-    \ ((X,Y), (Comb (Comb A B) C, Comb (Comb D E) F)) : R";
-by (Simp_tac 1);
-by (my_strip_tac 1);
-by (REPEAT (rtac exI 1) THEN REPEAT ((rtac conjI THEN' rtac refl) 1));
-by (etac disjE 1);
-by (rtac disjI1 1);
-by (subgoal_tac "(vars_of A Un vars_of B Un vars_of C Un \
-                \  (vars_of D Un vars_of E Un vars_of F)) = \
-                \ (vars_of A Un (vars_of B Un vars_of C) Un \
-                \  (vars_of D Un (vars_of E Un vars_of F)))" 1);
-by (my_fast_set_tac 2);
-by (Asm_simp_tac 1);
-by (rtac disjI2 1);
-by (etac conjE 1);
-by (Asm_simp_tac 1);
-by (rtac conjI 1);
-by (my_fast_set_tac 1);
-by (asm_full_simp_tac (!simpset addsimps [R1_def, measure_def, rprod_def,
-                                          less_eq, inv_image_def]) 1);
-by (my_strip_tac 1);
-by (REPEAT (rtac exI 1) THEN REPEAT ((rtac conjI THEN' rtac refl) 1));
-by (asm_full_simp_tac (HOL_ss addsimps [uterm_size_Comb,
-                                        add_Suc_right,add_Suc,add_assoc]) 1);
-val Rassoc = result() RS mp;
-
-
-(*---------------------------------------------------------------------------
- * Rewriting support.
- *---------------------------------------------------------------------------*)
-
-val termin_ss = (!simpset addsimps (srange_iff::(subst_rews@al_rews)));
-
-
-(*---------------------------------------------------------------------------
- * This lemma proves the nested termination condition for the base cases 
- * 3, 4, and 6. It's a clumsy formulation (requiring two conjuncts, each with
- * exactly the same proof) of a more general theorem.
- *---------------------------------------------------------------------------*)
-goal theory "(~(Var x <: M)) --> [(x, M)] = theta -->       \
-\ (! N1 N2. (((N1 <| theta, N2 <| theta), (Comb M N1, Comb (Var x) N2)) : R) \
-\       &   (((N1 <| theta, N2 <| theta), (Comb(Var x) N1, Comb M N2)) : R))";
-by (my_strip_tac 1);
-by (case_tac "Var x = M" 1);
-by (hyp_subst_tac 1);
-by (case_tac "x:(vars_of N1 Un vars_of N2)" 1);
-let val case1 = 
-   EVERY1[R1_tac[id_subst_lemma], rtac conjI, my_fast_set_tac,
-          REPEAT o (rtac exI), REPEAT o (rtac conjI THEN' rtac refl),
-          simp_tac (!simpset addsimps [measure_def,inv_image_def,less_eq])];
-in by (rtac conjI 1);
-   by case1;
-   by case1
-end;
-
-let val case2 = 
-   EVERY1[R0_tac[id_subst_lemma],
-          simp_tac (!simpset addsimps [ssubset_def,set_eq_subset]),
-          fast_tac set_cs]
-in by (rtac conjI 1);
-   by case2;
-   by case2
-end;
-
-let val case3 =  
- EVERY1 [R0_tac[],
-        cut_inst_tac [("s2","[(x, M)]"), ("v2", "x"), ("t2","N1")] Var_elim] 
- THEN ALLGOALS(asm_simp_tac(termin_ss addsimps [vars_iff_occseq]))
- THEN cut_inst_tac [("s2","[(x, M)]"),("v2", "x"), ("t2","N2")] Var_elim 1
- THEN ALLGOALS(asm_simp_tac(termin_ss addsimps [vars_iff_occseq]))
- THEN EVERY1 [simp_tac (HOL_ss addsimps [ssubset_def]),
-             rtac conjI, simp_tac (HOL_ss addsimps [subset_iff]),
-             my_strip_tac, etac UnE, dtac Var_intro] 
- THEN dtac Var_intro 2
- THEN ALLGOALS (asm_full_simp_tac (termin_ss addsimps [set_eq_subset])) 
- THEN TRYALL (fast_tac set_cs)
-in 
-  by (rtac conjI 1);
-  by case3;
-  by case3
-end;
-val var_elimR = result() RS mp RS mp RS spec RS spec;
-
-
-val Some{nchotomy = subst_nchotomy,...} = 
-    assoc(Thry.datatype_facts theory,"subst");
-
-(*---------------------------------------------------------------------------
- * Do a case analysis on something of type 'a subst. 
- *---------------------------------------------------------------------------*)
-
-fun Subst_case_tac theta =
-(cut_inst_tac theta (standard (Prim.Rules.SPEC_ALL subst_nchotomy)) 1 
-  THEN etac disjE 1 
-  THEN rotate_tac ~1 1 
-  THEN Asm_full_simp_tac 1 
-  THEN etac exE 1
-  THEN rotate_tac ~1 1 
-  THEN Asm_full_simp_tac 1);
-
-
-goals_limit := 1;
-
-(*---------------------------------------------------------------------------
- * The nested TC. Proved by recursion induction.
- *---------------------------------------------------------------------------*)
-goalw_cterm [] 
-     (hd(tl(tl(map (cterm_of (sign_of theory) o USyntax.mk_prop) tcs))));
-(*---------------------------------------------------------------------------
- * The extracted TC needs the scope of its quantifiers adjusted, so our 
- * first step is to restrict the scopes of N1 and N2.
- *---------------------------------------------------------------------------*)
-by (subgoal_tac "!M1 M2 theta.  \
- \     Unify (M1, M2) = Subst theta --> \
- \    (!N1 N2. ((N1 <| theta, N2 <| theta), Comb M1 N1, Comb M2 N2) : R)" 1);
-by (fast_tac HOL_cs 1);
-by (rtac allI 1); 
-by (rtac allI 1);
-(* Apply induction *)
-by (res_inst_tac [("xa","M1"),("x","M2")] 
-                 (standard (induction4 RS mp RS spec RS spec)) 1);
-by (simp_tac (!simpset addsimps (rules4::(subst_rews@al_rews))
-                       setloop (split_tac [expand_if])) 1);
-(* 1 *)
-by (rtac conjI 1);
-by (my_strip_tac 1);
-by (R1_tac[subst_Nil] 1);
-by (REPEAT (rtac exI 1) THEN REPEAT ((rtac conjI THEN' rtac refl) 1));
-by (simp_tac (!simpset addsimps [measure_def,inv_image_def,less_eq]) 1);
-
-(* 3 *)
-by (rtac conjI 1);
-by (my_strip_tac 1);
-by (rtac (Prim.Rules.CONJUNCT1 var_elimR) 1);
-by (Simp_tac 1);
-by (rtac refl 1);
-
-(* 4 *)
-by (rtac conjI 1);
-by (strip_tac 1);
-by (rtac (Prim.Rules.CONJUNCT2 var_elimR) 1);
-by (assume_tac 1);
-by (assume_tac 1);
-
-(* 6 *)
-by (rtac conjI 1);
-by (rewrite_tac [symmetric (occs_Comb RS eq_reflection)]);
-by (my_strip_tac 1);
-by (rtac (Prim.Rules.CONJUNCT1 var_elimR) 1);
-by (assume_tac 1);
-by (rtac refl 1);
-
-(* 7 *)
-by (REPEAT (rtac allI 1));
-by (rtac impI 1);
-by (etac conjE 1);
-by (Subst_case_tac [("v","Unify(M1a, M2a)")]);
-by (REPEAT (eres_inst_tac [("x","list")] allE 1));
-by (asm_full_simp_tac  HOL_ss 1);
-by (subgoal_tac "((N1 <| list, N2 <| list), Comb M1a N1, Comb M2a N2) : R" 1);
-by (asm_simp_tac HOL_ss 2);
-by (dtac mp 1);
-by (assume_tac 1);
-
-by (Subst_case_tac [("v","Unify(N1 <| list, N2 <| list)")]);
-by (eres_inst_tac [("x","lista")] allE 1);
-by (asm_full_simp_tac  HOL_ss 1);
-
-by (rtac allI 1);
-by (rtac impI 1);
-
-by (hyp_subst_tac 1);
-by (REPEAT (rtac allI 1));
-by (rename_tac "foo bar M1 N1 M2 N2 theta sigma gamma P1 P2" 1);
-by (simp_tac (HOL_ss addsimps [subst_comp]) 1);
-by(rtac(rewrite_rule[trans_def] transR RS spec RS spec RS spec RS mp RS mp) 1);
-by (fast_tac HOL_cs 1);
-by (simp_tac (HOL_ss addsimps [symmetric (subst_Comb RS eq_reflection)]) 1);
-by (subgoal_tac "((Comb N1 P1 <| theta, Comb N2 P2 <| theta), \
-                \ (Comb M1 (Comb N1 P1), Comb M2 (Comb N2 P2))) :R" 1);
-by (asm_simp_tac HOL_ss 2);
-by (rtac Rassoc 1);
-by (assume_tac 1);
-val Unify_TC2 = result();
-
-
-(*---------------------------------------------------------------------------
- * Now for elimination of nested TC from rules and induction. This step 
- * would be easier if "rewrite_rule" used context.
- *---------------------------------------------------------------------------*)
-goal theory 
- "(Unify (Comb M1 N1, Comb M2 N2) =  \
-\   (case Unify (M1, M2) of Fail => Fail \
-\    | Subst theta => \
-\        (case if ((N1 <| theta, N2 <| theta), Comb M1 N1, Comb M2 N2) : R \
-\              then Unify (N1 <| theta, N2 <| theta) else @ z. True of \
-\        Fail => Fail | Subst sigma => Subst (theta <> sigma)))) \
-\  = \
-\ (Unify (Comb M1 N1, Comb M2 N2) = \
-\   (case Unify (M1, M2)  \
-\      of Fail => Fail \
-\      | Subst theta => (case Unify (N1 <| theta, N2 <| theta) \
-\                          of Fail => Fail  \
-\                           | Subst sigma => Subst (theta <> sigma))))";
-by (cut_inst_tac [("v","Unify(M1, M2)")]
-                 (standard (Prim.Rules.SPEC_ALL subst_nchotomy)) 1);
-by (etac disjE 1);
-by (Asm_simp_tac 1);
-by (etac exE 1);
-by (Asm_simp_tac 1);
-by (cut_inst_tac 
-     [("x","list"), ("xb","N1"), ("xa","N2"),("xc","M2"), ("xd","M1")]
-     (standard(Unify_TC2 RS spec RS spec RS spec RS spec RS spec)) 1);
-by (Asm_full_simp_tac 1);
-val Unify_rec_simpl = result() RS eq_reflection;
-
-val Unify_rules = rewrite_rule[Unify_rec_simpl] rules4;
-
-
-goal theory 
- "(! M1 N1 M2 N2.  \
-\       (! theta.  \
-\           Unify (M1, M2) = Subst theta -->  \
-\           ((N1 <| theta, N2 <| theta), Comb M1 N1, Comb M2 N2) : R -->  \
-\           ?Phi (N1 <| theta) (N2 <| theta)) & ?Phi M1 M2 -->  \
-\       ?Phi (Comb M1 N1) (Comb M2 N2))  \
-\    =  \
-\ (! M1 N1 M2 N2.  \
-\       (! theta.  \
-\           Unify (M1, M2) = Subst theta -->  \
-\           ?Phi (N1 <| theta) (N2 <| theta)) & ?Phi M1 M2 -->  \
-\       ?Phi (Comb M1 N1) (Comb M2 N2))";
-by (simp_tac (HOL_ss addsimps [Unify_TC2]) 1);
-val Unify_induction = rewrite_rule[result() RS eq_reflection] induction4;
-
-
-
-(*---------------------------------------------------------------------------
- * Correctness. Notice that idempotence is not needed to prove that the 
- * algorithm terminates and is not needed to prove the algorithm correct, 
- * if you are only interested in an MGU. This is in contrast to the
- * approach of M&W, who used idempotence and MGU-ness in the termination proof.
- *---------------------------------------------------------------------------*)
-
-goal theory "!theta. Unify (P,Q) = Subst theta --> MGUnifier theta P Q";
-by (res_inst_tac [("xa","P"),("x","Q")] 
-                 (standard (Unify_induction RS mp RS spec RS spec)) 1);
-by (simp_tac (!simpset addsimps [Unify_rules] 
-                       setloop (split_tac [expand_if])) 1);
-(*1*)
-by (rtac conjI 1);
-by (REPEAT (rtac allI 1));
-by (simp_tac (!simpset addsimps [MGUnifier_def,Unifier_def]) 1);
-by (my_strip_tac 1);
-by (rtac MoreGen_Nil 1);
-
-(*3*)
-by (rtac conjI 1);
-by (my_strip_tac 1);
-by (rtac (mgu_sym RS iffD1) 1);
-by (rtac MGUnifier_Var 1);
-by (Simp_tac 1);
-
-(*4*)
-by (rtac conjI 1);
-by (my_strip_tac 1);
-by (rtac MGUnifier_Var 1);
-by (assume_tac 1);
-
-(*6*)
-by (rtac conjI 1);
-by (rewrite_tac NNF_rews);
-by (my_strip_tac 1);
-by (rtac (mgu_sym RS iffD1) 1);
-by (rtac MGUnifier_Var 1);
-by (Asm_simp_tac 1);
-
-(*7*)
-by (safe_tac HOL_cs);
-by (Subst_case_tac [("v","Unify(M1, M2)")]);
-by (REPEAT (eres_inst_tac[("x","list")] allE 1));
-by (Subst_case_tac [("v","Unify(N1 <| list, N2 <| list)")]);
-by (eres_inst_tac[("x","lista")] allE 1);
-by (Asm_full_simp_tac 1);
-by (hyp_subst_tac 1);
-by prune_params_tac;
-by (rename_tac "M1 N1 M2 N2 theta sigma" 1);
-
-by (asm_full_simp_tac(HOL_ss addsimps [MGUnifier_def,Unifier_def])1);
-by (rtac conjI 1);
-by (asm_simp_tac (!simpset addsimps [subst_comp]) 1); (* It's a unifier.*)
-by (Simp_tac 1);
-by (safe_tac HOL_cs);
-by (rename_tac "M1 N1 M2 N2 theta sigma gamma" 1);
-
-by (rewrite_tac [MoreGeneral_def]);
-by (eres_inst_tac [("x","gamma")] allE 1);
-by (Asm_full_simp_tac 1);
-by (etac exE 1);
-by (rename_tac "M1 N1 M2 N2 theta sigma gamma theta1" 1);
-by (eres_inst_tac [("x","theta1")] allE 1);
-by (subgoal_tac "N1 <| theta <| theta1 = N2 <| theta <| theta1" 1);
-
-by (simp_tac (HOL_ss addsimps [subst_comp RS sym]) 2);
-by (rtac subst_subst2 2);
-by (assume_tac 3);
-by (assume_tac 2);
-
-by (dtac mp 1);
-by (assume_tac 1);
-by (etac exE 1);
-
-by (rename_tac "M1 N1 M2 N2 theta sigma gamma theta1 sigma1" 1);
-by (res_inst_tac [("x","sigma1")] exI 1);
-by (rtac subst_trans 1);
-by (assume_tac 1);
-by (rtac subst_trans 1);
-by (rtac subst_sym 2);
-by (rtac comp_assoc 2);
-by (rtac subst_cong 1);
-by (assume_tac 2);
-by (simp_tac (HOL_ss addsimps [subst_eq_def]) 1);
-val Unify_gives_MGU = standard(result() RS spec RS mp);
-
-
-(*---------------------------------------------------------------------------
- * Unify returns idempotent substitutions, when it succeeds.
- *---------------------------------------------------------------------------*)
-goal theory "!theta. Unify (P,Q) = Subst theta --> Idem theta";
-by (res_inst_tac [("xa","P"),("x","Q")] 
-                 (standard (Unify_induction RS mp RS spec RS spec)) 1);
-by (simp_tac (!simpset addsimps [Unify_rules] 
-                       setloop (split_tac [expand_if])) 1);
-(*1*)
-by (rtac conjI 1);
-by (my_strip_tac 1);
-by (rtac Idem_Nil 1);
-
-(*3*)
-by (rtac conjI 1);
-by (my_strip_tac 1);
-by (rtac Var_Idem 1);
-by (Simp_tac 1);
-
-(*4*)
-by (rtac conjI 1);
-by (my_strip_tac 1);
-by (rtac Var_Idem 1);
-by (atac 1);
-
-(*6*)
-by (rtac conjI 1);
-by (rewrite_tac [symmetric (occs_Comb RS eq_reflection)]);
-by (my_strip_tac 1);
-by (rtac Var_Idem 1);
-by (atac 1);
-
-(*7*)
-by (safe_tac HOL_cs);
-by (Subst_case_tac [("v","Unify(M1, M2)")]);
-by (REPEAT (eres_inst_tac[("x","list")] allE 1));
-by (Subst_case_tac [("v","Unify(N1 <| list, N2 <| list)")]);
-by (eres_inst_tac[("x","lista")] allE 1);
-by (Asm_full_simp_tac 1);
-by (hyp_subst_tac 1);
-by prune_params_tac;
-by (rename_tac "M1 N1 M2 N2 theta sigma" 1);
-
-by (dtac Unify_gives_MGU 1);
-by (dtac Unify_gives_MGU 1);
-by (rewrite_tac [MGUnifier_def]);
-by (my_strip_tac 1);
-by (rtac Idem_comp 1);
-by (atac 1);
-by (atac 1);
-
-by (rewrite_tac [MGUnifier_def]);
-by (my_strip_tac 1);
-by (eres_inst_tac [("x","q")] allE 1);
-by (Asm_full_simp_tac 1);
-by (rewrite_tac [MoreGeneral_def]);
-by (my_strip_tac 1);
-by (asm_full_simp_tac(termin_ss addsimps [subst_eq_iff,subst_comp,Idem_def])1);
-val Unify_gives_Idem = result();
-
-
-
-(*---------------------------------------------------------------------------
- * Exercise. The given algorithm is a bit inelegant. What about the
- * following "improvement", which adds a few recursive calls in former
- * base cases? It seems that the termination relation needs another
- * case in the lexico. product.
-
-val {theory,induction,rules,tcs,typechecks} =
-Rfunc Unify.thy ??
-  `(Unify(Const m, Const n)  = (if (m=n) then Subst[] else Fail))    &
-   (Unify(Const m, Comb M N) = Fail)                                 &
-   (Unify(Const m, Var v)    = Unify(Var v, Const m))                &
-   (Unify(Var v, M) = (if (Var v <: M) then Fail else Subst[(v,M)])) &
-   (Unify(Comb M N, Const x) = Fail)                                 &
-   (Unify(Comb M N, Var v) = Unify(Var v, Comb M N))                 &
-   (Unify(Comb M1 N1, Comb M2 N2) = 
-      (case Unify(M1,M2)
-        of Fail => Fail
-         | Subst theta => (case Unify(N1 <| theta, N2 <| theta)
-                            of Fail => Fail
-                             | Subst sigma => Subst (theta <> sigma))))`;
-
- *---------------------------------------------------------------------------*)