src/CCL/Gfp.thy
changeset 20140 98acc6d0fab6
parent 17456 bcf7544875b2
child 21404 eb85850d3eb7
--- a/src/CCL/Gfp.thy	Mon Jul 17 18:42:38 2006 +0200
+++ b/src/CCL/Gfp.thy	Tue Jul 18 02:22:38 2006 +0200
@@ -10,10 +10,124 @@
 imports Lfp
 begin
 
-constdefs
+definition
   gfp :: "['a set=>'a set] => 'a set"    (*greatest fixed point*)
   "gfp(f) == Union({u. u <= f(u)})"
 
-ML {* use_legacy_bindings (the_context ()) *}
+(* gfp(f) is the least upper bound of {u. u <= f(u)} *)
+
+lemma gfp_upperbound: "[| A <= f(A) |] ==> A <= gfp(f)"
+  unfolding gfp_def by blast
+
+lemma gfp_least: "[| !!u. u <= f(u) ==> u<=A |] ==> gfp(f) <= A"
+  unfolding gfp_def by blast
+
+lemma gfp_lemma2: "mono(f) ==> gfp(f) <= f(gfp(f))"
+  by (rule gfp_least, rule subset_trans, assumption, erule monoD,
+    rule gfp_upperbound, assumption)
+
+lemma gfp_lemma3: "mono(f) ==> f(gfp(f)) <= gfp(f)"
+  by (rule gfp_upperbound, frule monoD, rule gfp_lemma2, assumption+)
+
+lemma gfp_Tarski: "mono(f) ==> gfp(f) = f(gfp(f))"
+  by (rule equalityI gfp_lemma2 gfp_lemma3 | assumption)+
+
+
+(*** Coinduction rules for greatest fixed points ***)
+
+(*weak version*)
+lemma coinduct: "[| a: A;  A <= f(A) |] ==> a : gfp(f)"
+  by (blast dest: gfp_upperbound)
+
+lemma coinduct2_lemma:
+  "[| A <= f(A) Un gfp(f);  mono(f) |] ==>   
+    A Un gfp(f) <= f(A Un gfp(f))"
+  apply (rule subset_trans)
+   prefer 2
+   apply (erule mono_Un)
+  apply (rule subst, erule gfp_Tarski)
+  apply (erule Un_least)
+  apply (rule Un_upper2)
+  done
+
+(*strong version, thanks to Martin Coen*)
+lemma coinduct2:
+  "[| a: A;  A <= f(A) Un gfp(f);  mono(f) |] ==> a : gfp(f)"
+  apply (rule coinduct)
+   prefer 2
+   apply (erule coinduct2_lemma, assumption)
+  apply blast
+  done
+
+(***  Even Stronger version of coinduct  [by Martin Coen]
+         - instead of the condition  A <= f(A)
+                           consider  A <= (f(A) Un f(f(A)) ...) Un gfp(A) ***)
+
+lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un A Un B)"
+  by (rule monoI) (blast dest: monoD)
+
+lemma coinduct3_lemma:
+  assumes prem: "A <= f(lfp(%x. f(x) Un A Un gfp(f)))"
+    and mono: "mono(f)"
+  shows "lfp(%x. f(x) Un A Un gfp(f)) <= f(lfp(%x. f(x) Un A Un gfp(f)))"
+  apply (rule subset_trans)
+   apply (rule mono [THEN coinduct3_mono_lemma, THEN lfp_lemma3])
+  apply (rule Un_least [THEN Un_least])
+    apply (rule subset_refl)
+   apply (rule prem)
+  apply (rule mono [THEN gfp_Tarski, THEN equalityD1, THEN subset_trans])
+  apply (rule mono [THEN monoD])
+  apply (subst mono [THEN coinduct3_mono_lemma, THEN lfp_Tarski])
+  apply (rule Un_upper2)
+  done
+
+lemma coinduct3:
+  assumes 1: "a:A"
+    and 2: "A <= f(lfp(%x. f(x) Un A Un gfp(f)))"
+    and 3: "mono(f)"
+  shows "a : gfp(f)"
+  apply (rule coinduct)
+   prefer 2
+   apply (rule coinduct3_lemma [OF 2 3])
+  apply (subst lfp_Tarski [OF coinduct3_mono_lemma, OF 3])
+  using 1 apply blast
+  done
+
+
+subsection {* Definition forms of @{text "gfp_Tarski"}, to control unfolding *}
+
+lemma def_gfp_Tarski: "[| h==gfp(f);  mono(f) |] ==> h = f(h)"
+  apply unfold
+  apply (erule gfp_Tarski)
+  done
+
+lemma def_coinduct: "[| h==gfp(f);  a:A;  A <= f(A) |] ==> a: h"
+  apply unfold
+  apply (erule coinduct)
+  apply assumption
+  done
+
+lemma def_coinduct2: "[| h==gfp(f);  a:A;  A <= f(A) Un h; mono(f) |] ==> a: h"
+  apply unfold
+  apply (erule coinduct2)
+   apply assumption
+  apply assumption
+  done
+
+lemma def_coinduct3: "[| h==gfp(f);  a:A;  A <= f(lfp(%x. f(x) Un A Un h)); mono(f) |] ==> a: h"
+  apply unfold
+  apply (erule coinduct3)
+   apply assumption
+  apply assumption
+  done
+
+(*Monotonicity of gfp!*)
+lemma gfp_mono: "[| mono(f);  !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)"
+  apply (rule gfp_upperbound)
+  apply (rule subset_trans)
+   apply (rule gfp_lemma2)
+   apply assumption
+  apply (erule meta_spec)
+  done
 
 end