src/HOL/NewNumberTheory/Cong.thy
changeset 32805 9b535493ac8d
parent 32804 ca430e6aee1c
parent 32783 e43d761a742d
child 32806 06561afcadaa
child 32845 d2d0b9b1a69d
--- a/src/HOL/NewNumberTheory/Cong.thy	Tue Sep 29 22:15:54 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1091 +0,0 @@
-(*  Title:      HOL/Library/Cong.thy
-    ID:         
-    Authors:    Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb,
-                Thomas M. Rasmussen, Jeremy Avigad
-
-
-Defines congruence (notation: [x = y] (mod z)) for natural numbers and
-integers.
-
-This file combines and revises a number of prior developments.
-
-The original theories "GCD" and "Primes" were by Christophe Tabacznyj
-and Lawrence C. Paulson, based on \cite{davenport92}. They introduced
-gcd, lcm, and prime for the natural numbers.
-
-The original theory "IntPrimes" was by Thomas M. Rasmussen, and
-extended gcd, lcm, primes to the integers. Amine Chaieb provided
-another extension of the notions to the integers, and added a number
-of results to "Primes" and "GCD". 
-
-The original theory, "IntPrimes", by Thomas M. Rasmussen, defined and
-developed the congruence relations on the integers. The notion was
-extended to the natural numbers by Chiaeb. Jeremy Avigad combined
-these, revised and tidied them, made the development uniform for the
-natural numbers and the integers, and added a number of new theorems.
-
-*)
-
-
-header {* Congruence *}
-
-theory Cong
-imports GCD
-begin
-
-subsection {* Turn off One_nat_def *}
-
-lemma induct'_nat [case_names zero plus1, induct type: nat]: 
-    "\<lbrakk> P (0::nat); !!n. P n \<Longrightarrow> P (n + 1)\<rbrakk> \<Longrightarrow> P n"
-by (erule nat_induct) (simp add:One_nat_def)
-
-lemma cases_nat [case_names zero plus1, cases type: nat]: 
-    "P (0::nat) \<Longrightarrow> (!!n. P (n + 1)) \<Longrightarrow> P n"
-by(metis induct'_nat)
-
-lemma power_plus_one [simp]: "(x::'a::power)^(n + 1) = x * x^n"
-by (simp add: One_nat_def)
-
-lemma power_eq_one_eq_nat [simp]: 
-  "((x::nat)^m = 1) = (m = 0 | x = 1)"
-by (induct m, auto)
-
-lemma card_insert_if' [simp]: "finite A \<Longrightarrow>
-  card (insert x A) = (if x \<in> A then (card A) else (card A) + 1)"
-by (auto simp add: insert_absorb)
-
-(* why wasn't card_insert_if a simp rule? *)
-declare card_insert_disjoint [simp del]
-
-lemma nat_1' [simp]: "nat 1 = 1"
-by simp
-
-(* For those annoying moments where Suc reappears, use Suc_eq_plus1 *)
-
-declare nat_1 [simp del]
-declare add_2_eq_Suc [simp del] 
-declare add_2_eq_Suc' [simp del]
-
-
-declare mod_pos_pos_trivial [simp]
-
-
-subsection {* Main definitions *}
-
-class cong =
-
-fixes 
-  cong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" ("(1[_ = _] '(mod _'))")
-
-begin
-
-abbreviation
-  notcong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" ("(1[_ \<noteq> _] '(mod _'))")
-where
-  "notcong x y m == (~cong x y m)" 
-
-end
-
-(* definitions for the natural numbers *)
-
-instantiation nat :: cong
-
-begin 
-
-definition 
-  cong_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
-where 
-  "cong_nat x y m = ((x mod m) = (y mod m))"
-
-instance proof qed
-
-end
-
-
-(* definitions for the integers *)
-
-instantiation int :: cong
-
-begin 
-
-definition 
-  cong_int :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> bool"
-where 
-  "cong_int x y m = ((x mod m) = (y mod m))"
-
-instance proof qed
-
-end
-
-
-subsection {* Set up Transfer *}
-
-
-lemma transfer_nat_int_cong:
-  "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> m >= 0 \<Longrightarrow> 
-    ([(nat x) = (nat y)] (mod (nat m))) = ([x = y] (mod m))"
-  unfolding cong_int_def cong_nat_def 
-  apply (auto simp add: nat_mod_distrib [symmetric])
-  apply (subst (asm) eq_nat_nat_iff)
-  apply (case_tac "m = 0", force, rule pos_mod_sign, force)+
-  apply assumption
-done
-
-declare TransferMorphism_nat_int[transfer add return: 
-    transfer_nat_int_cong]
-
-lemma transfer_int_nat_cong:
-  "[(int x) = (int y)] (mod (int m)) = [x = y] (mod m)"
-  apply (auto simp add: cong_int_def cong_nat_def)
-  apply (auto simp add: zmod_int [symmetric])
-done
-
-declare TransferMorphism_int_nat[transfer add return: 
-    transfer_int_nat_cong]
-
-
-subsection {* Congruence *}
-
-(* was zcong_0, etc. *)
-lemma cong_0_nat [simp, presburger]: "([(a::nat) = b] (mod 0)) = (a = b)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_0_int [simp, presburger]: "([(a::int) = b] (mod 0)) = (a = b)"
-  by (unfold cong_int_def, auto)
-
-lemma cong_1_nat [simp, presburger]: "[(a::nat) = b] (mod 1)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_Suc_0_nat [simp, presburger]: "[(a::nat) = b] (mod Suc 0)"
-  by (unfold cong_nat_def, auto simp add: One_nat_def)
-
-lemma cong_1_int [simp, presburger]: "[(a::int) = b] (mod 1)"
-  by (unfold cong_int_def, auto)
-
-lemma cong_refl_nat [simp]: "[(k::nat) = k] (mod m)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_refl_int [simp]: "[(k::int) = k] (mod m)"
-  by (unfold cong_int_def, auto)
-
-lemma cong_sym_nat: "[(a::nat) = b] (mod m) \<Longrightarrow> [b = a] (mod m)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_sym_int: "[(a::int) = b] (mod m) \<Longrightarrow> [b = a] (mod m)"
-  by (unfold cong_int_def, auto)
-
-lemma cong_sym_eq_nat: "[(a::nat) = b] (mod m) = [b = a] (mod m)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_sym_eq_int: "[(a::int) = b] (mod m) = [b = a] (mod m)"
-  by (unfold cong_int_def, auto)
-
-lemma cong_trans_nat [trans]:
-    "[(a::nat) = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_trans_int [trans]:
-    "[(a::int) = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)"
-  by (unfold cong_int_def, auto)
-
-lemma cong_add_nat:
-    "[(a::nat) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)"
-  apply (unfold cong_nat_def)
-  apply (subst (1 2) mod_add_eq)
-  apply simp
-done
-
-lemma cong_add_int:
-    "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)"
-  apply (unfold cong_int_def)
-  apply (subst (1 2) mod_add_left_eq)
-  apply (subst (1 2) mod_add_right_eq)
-  apply simp
-done
-
-lemma cong_diff_int:
-    "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a - c = b - d] (mod m)"
-  apply (unfold cong_int_def)
-  apply (subst (1 2) mod_diff_eq)
-  apply simp
-done
-
-lemma cong_diff_aux_int:
-  "(a::int) >= c \<Longrightarrow> b >= d \<Longrightarrow> [(a::int) = b] (mod m) \<Longrightarrow> 
-      [c = d] (mod m) \<Longrightarrow> [tsub a c = tsub b d] (mod m)"
-  apply (subst (1 2) tsub_eq)
-  apply (auto intro: cong_diff_int)
-done;
-
-lemma cong_diff_nat:
-  assumes "(a::nat) >= c" and "b >= d" and "[a = b] (mod m)" and
-    "[c = d] (mod m)"
-  shows "[a - c = b - d] (mod m)"
-
-  using prems by (rule cong_diff_aux_int [transferred]);
-
-lemma cong_mult_nat:
-    "[(a::nat) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)"
-  apply (unfold cong_nat_def)
-  apply (subst (1 2) mod_mult_eq)
-  apply simp
-done
-
-lemma cong_mult_int:
-    "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)"
-  apply (unfold cong_int_def)
-  apply (subst (1 2) zmod_zmult1_eq)
-  apply (subst (1 2) mult_commute)
-  apply (subst (1 2) zmod_zmult1_eq)
-  apply simp
-done
-
-lemma cong_exp_nat: "[(x::nat) = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
-  apply (induct k)
-  apply (auto simp add: cong_refl_nat cong_mult_nat)
-done
-
-lemma cong_exp_int: "[(x::int) = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
-  apply (induct k)
-  apply (auto simp add: cong_refl_int cong_mult_int)
-done
-
-lemma cong_setsum_nat [rule_format]: 
-    "(ALL x: A. [((f x)::nat) = g x] (mod m)) \<longrightarrow> 
-      [(SUM x:A. f x) = (SUM x:A. g x)] (mod m)"
-  apply (case_tac "finite A")
-  apply (induct set: finite)
-  apply (auto intro: cong_add_nat)
-done
-
-lemma cong_setsum_int [rule_format]:
-    "(ALL x: A. [((f x)::int) = g x] (mod m)) \<longrightarrow> 
-      [(SUM x:A. f x) = (SUM x:A. g x)] (mod m)"
-  apply (case_tac "finite A")
-  apply (induct set: finite)
-  apply (auto intro: cong_add_int)
-done
-
-lemma cong_setprod_nat [rule_format]: 
-    "(ALL x: A. [((f x)::nat) = g x] (mod m)) \<longrightarrow> 
-      [(PROD x:A. f x) = (PROD x:A. g x)] (mod m)"
-  apply (case_tac "finite A")
-  apply (induct set: finite)
-  apply (auto intro: cong_mult_nat)
-done
-
-lemma cong_setprod_int [rule_format]: 
-    "(ALL x: A. [((f x)::int) = g x] (mod m)) \<longrightarrow> 
-      [(PROD x:A. f x) = (PROD x:A. g x)] (mod m)"
-  apply (case_tac "finite A")
-  apply (induct set: finite)
-  apply (auto intro: cong_mult_int)
-done
-
-lemma cong_scalar_nat: "[(a::nat)= b] (mod m) \<Longrightarrow> [a * k = b * k] (mod m)"
-  by (rule cong_mult_nat, simp_all)
-
-lemma cong_scalar_int: "[(a::int)= b] (mod m) \<Longrightarrow> [a * k = b * k] (mod m)"
-  by (rule cong_mult_int, simp_all)
-
-lemma cong_scalar2_nat: "[(a::nat)= b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)"
-  by (rule cong_mult_nat, simp_all)
-
-lemma cong_scalar2_int: "[(a::int)= b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)"
-  by (rule cong_mult_int, simp_all)
-
-lemma cong_mult_self_nat: "[(a::nat) * m = 0] (mod m)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_mult_self_int: "[(a::int) * m = 0] (mod m)"
-  by (unfold cong_int_def, auto)
-
-lemma cong_eq_diff_cong_0_int: "[(a::int) = b] (mod m) = [a - b = 0] (mod m)"
-  apply (rule iffI)
-  apply (erule cong_diff_int [of a b m b b, simplified])
-  apply (erule cong_add_int [of "a - b" 0 m b b, simplified])
-done
-
-lemma cong_eq_diff_cong_0_aux_int: "a >= b \<Longrightarrow>
-    [(a::int) = b] (mod m) = [tsub a b = 0] (mod m)"
-  by (subst tsub_eq, assumption, rule cong_eq_diff_cong_0_int)
-
-lemma cong_eq_diff_cong_0_nat:
-  assumes "(a::nat) >= b"
-  shows "[a = b] (mod m) = [a - b = 0] (mod m)"
-
-  using prems by (rule cong_eq_diff_cong_0_aux_int [transferred])
-
-lemma cong_diff_cong_0'_nat: 
-  "[(x::nat) = y] (mod n) \<longleftrightarrow> 
-    (if x <= y then [y - x = 0] (mod n) else [x - y = 0] (mod n))"
-  apply (case_tac "y <= x")
-  apply (frule cong_eq_diff_cong_0_nat [where m = n])
-  apply auto [1]
-  apply (subgoal_tac "x <= y")
-  apply (frule cong_eq_diff_cong_0_nat [where m = n])
-  apply (subst cong_sym_eq_nat)
-  apply auto
-done
-
-lemma cong_altdef_nat: "(a::nat) >= b \<Longrightarrow> [a = b] (mod m) = (m dvd (a - b))"
-  apply (subst cong_eq_diff_cong_0_nat, assumption)
-  apply (unfold cong_nat_def)
-  apply (simp add: dvd_eq_mod_eq_0 [symmetric])
-done
-
-lemma cong_altdef_int: "[(a::int) = b] (mod m) = (m dvd (a - b))"
-  apply (subst cong_eq_diff_cong_0_int)
-  apply (unfold cong_int_def)
-  apply (simp add: dvd_eq_mod_eq_0 [symmetric])
-done
-
-lemma cong_abs_int: "[(x::int) = y] (mod abs m) = [x = y] (mod m)"
-  by (simp add: cong_altdef_int)
-
-lemma cong_square_int:
-   "\<lbrakk> prime (p::int); 0 < a; [a * a = 1] (mod p) \<rbrakk>
-    \<Longrightarrow> [a = 1] (mod p) \<or> [a = - 1] (mod p)"
-  apply (simp only: cong_altdef_int)
-  apply (subst prime_dvd_mult_eq_int [symmetric], assumption)
-  (* any way around this? *)
-  apply (subgoal_tac "a * a - 1 = (a - 1) * (a - -1)")
-  apply (auto simp add: ring_simps)
-done
-
-lemma cong_mult_rcancel_int:
-  "coprime k (m::int) \<Longrightarrow> [a * k = b * k] (mod m) = [a = b] (mod m)"
-  apply (subst (1 2) cong_altdef_int)
-  apply (subst left_diff_distrib [symmetric])
-  apply (rule coprime_dvd_mult_iff_int)
-  apply (subst gcd_commute_int, assumption)
-done
-
-lemma cong_mult_rcancel_nat:
-  assumes  "coprime k (m::nat)"
-  shows "[a * k = b * k] (mod m) = [a = b] (mod m)"
-
-  apply (rule cong_mult_rcancel_int [transferred])
-  using prems apply auto
-done
-
-lemma cong_mult_lcancel_nat:
-  "coprime k (m::nat) \<Longrightarrow> [k * a = k * b ] (mod m) = [a = b] (mod m)"
-  by (simp add: mult_commute cong_mult_rcancel_nat)
-
-lemma cong_mult_lcancel_int:
-  "coprime k (m::int) \<Longrightarrow> [k * a = k * b] (mod m) = [a = b] (mod m)"
-  by (simp add: mult_commute cong_mult_rcancel_int)
-
-(* was zcong_zgcd_zmult_zmod *)
-lemma coprime_cong_mult_int:
-  "[(a::int) = b] (mod m) \<Longrightarrow> [a = b] (mod n) \<Longrightarrow> coprime m n
-    \<Longrightarrow> [a = b] (mod m * n)"
-  apply (simp only: cong_altdef_int)
-  apply (erule (2) divides_mult_int)
-done
-
-lemma coprime_cong_mult_nat:
-  assumes "[(a::nat) = b] (mod m)" and "[a = b] (mod n)" and "coprime m n"
-  shows "[a = b] (mod m * n)"
-
-  apply (rule coprime_cong_mult_int [transferred])
-  using prems apply auto
-done
-
-lemma cong_less_imp_eq_nat: "0 \<le> (a::nat) \<Longrightarrow>
-    a < m \<Longrightarrow> 0 \<le> b \<Longrightarrow> b < m \<Longrightarrow> [a = b] (mod m) \<Longrightarrow> a = b"
-  by (auto simp add: cong_nat_def mod_pos_pos_trivial)
-
-lemma cong_less_imp_eq_int: "0 \<le> (a::int) \<Longrightarrow>
-    a < m \<Longrightarrow> 0 \<le> b \<Longrightarrow> b < m \<Longrightarrow> [a = b] (mod m) \<Longrightarrow> a = b"
-  by (auto simp add: cong_int_def mod_pos_pos_trivial)
-
-lemma cong_less_unique_nat:
-    "0 < (m::nat) \<Longrightarrow> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
-  apply auto
-  apply (rule_tac x = "a mod m" in exI)
-  apply (unfold cong_nat_def, auto)
-done
-
-lemma cong_less_unique_int:
-    "0 < (m::int) \<Longrightarrow> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
-  apply auto
-  apply (rule_tac x = "a mod m" in exI)
-  apply (unfold cong_int_def, auto simp add: mod_pos_pos_trivial)
-done
-
-lemma cong_iff_lin_int: "([(a::int) = b] (mod m)) = (\<exists>k. b = a + m * k)"
-  apply (auto simp add: cong_altdef_int dvd_def ring_simps)
-  apply (rule_tac [!] x = "-k" in exI, auto)
-done
-
-lemma cong_iff_lin_nat: "([(a::nat) = b] (mod m)) = 
-    (\<exists>k1 k2. b + k1 * m = a + k2 * m)"
-  apply (rule iffI)
-  apply (case_tac "b <= a")
-  apply (subst (asm) cong_altdef_nat, assumption)
-  apply (unfold dvd_def, auto)
-  apply (rule_tac x = k in exI)
-  apply (rule_tac x = 0 in exI)
-  apply (auto simp add: ring_simps)
-  apply (subst (asm) cong_sym_eq_nat)
-  apply (subst (asm) cong_altdef_nat)
-  apply force
-  apply (unfold dvd_def, auto)
-  apply (rule_tac x = 0 in exI)
-  apply (rule_tac x = k in exI)
-  apply (auto simp add: ring_simps)
-  apply (unfold cong_nat_def)
-  apply (subgoal_tac "a mod m = (a + k2 * m) mod m")
-  apply (erule ssubst)back
-  apply (erule subst)
-  apply auto
-done
-
-lemma cong_gcd_eq_int: "[(a::int) = b] (mod m) \<Longrightarrow> gcd a m = gcd b m"
-  apply (subst (asm) cong_iff_lin_int, auto)
-  apply (subst add_commute) 
-  apply (subst (2) gcd_commute_int)
-  apply (subst mult_commute)
-  apply (subst gcd_add_mult_int)
-  apply (rule gcd_commute_int)
-done
-
-lemma cong_gcd_eq_nat: 
-  assumes "[(a::nat) = b] (mod m)"
-  shows "gcd a m = gcd b m"
-
-  apply (rule cong_gcd_eq_int [transferred])
-  using prems apply auto
-done
-
-lemma cong_imp_coprime_nat: "[(a::nat) = b] (mod m) \<Longrightarrow> coprime a m \<Longrightarrow> 
-    coprime b m"
-  by (auto simp add: cong_gcd_eq_nat)
-
-lemma cong_imp_coprime_int: "[(a::int) = b] (mod m) \<Longrightarrow> coprime a m \<Longrightarrow> 
-    coprime b m"
-  by (auto simp add: cong_gcd_eq_int)
-
-lemma cong_cong_mod_nat: "[(a::nat) = b] (mod m) = 
-    [a mod m = b mod m] (mod m)"
-  by (auto simp add: cong_nat_def)
-
-lemma cong_cong_mod_int: "[(a::int) = b] (mod m) = 
-    [a mod m = b mod m] (mod m)"
-  by (auto simp add: cong_int_def)
-
-lemma cong_minus_int [iff]: "[(a::int) = b] (mod -m) = [a = b] (mod m)"
-  by (subst (1 2) cong_altdef_int, auto)
-
-lemma cong_zero_nat [iff]: "[(a::nat) = b] (mod 0) = (a = b)"
-  by (auto simp add: cong_nat_def)
-
-lemma cong_zero_int [iff]: "[(a::int) = b] (mod 0) = (a = b)"
-  by (auto simp add: cong_int_def)
-
-(*
-lemma mod_dvd_mod_int:
-    "0 < (m::int) \<Longrightarrow> m dvd b \<Longrightarrow> (a mod b mod m) = (a mod m)"
-  apply (unfold dvd_def, auto)
-  apply (rule mod_mod_cancel)
-  apply auto
-done
-
-lemma mod_dvd_mod:
-  assumes "0 < (m::nat)" and "m dvd b"
-  shows "(a mod b mod m) = (a mod m)"
-
-  apply (rule mod_dvd_mod_int [transferred])
-  using prems apply auto
-done
-*)
-
-lemma cong_add_lcancel_nat: 
-    "[(a::nat) + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)" 
-  by (simp add: cong_iff_lin_nat)
-
-lemma cong_add_lcancel_int: 
-    "[(a::int) + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)" 
-  by (simp add: cong_iff_lin_int)
-
-lemma cong_add_rcancel_nat: "[(x::nat) + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
-  by (simp add: cong_iff_lin_nat)
-
-lemma cong_add_rcancel_int: "[(x::int) + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
-  by (simp add: cong_iff_lin_int)
-
-lemma cong_add_lcancel_0_nat: "[(a::nat) + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" 
-  by (simp add: cong_iff_lin_nat)
-
-lemma cong_add_lcancel_0_int: "[(a::int) + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" 
-  by (simp add: cong_iff_lin_int)
-
-lemma cong_add_rcancel_0_nat: "[x + (a::nat) = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" 
-  by (simp add: cong_iff_lin_nat)
-
-lemma cong_add_rcancel_0_int: "[x + (a::int) = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" 
-  by (simp add: cong_iff_lin_int)
-
-lemma cong_dvd_modulus_nat: "[(x::nat) = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow> 
-    [x = y] (mod n)"
-  apply (auto simp add: cong_iff_lin_nat dvd_def)
-  apply (rule_tac x="k1 * k" in exI)
-  apply (rule_tac x="k2 * k" in exI)
-  apply (simp add: ring_simps)
-done
-
-lemma cong_dvd_modulus_int: "[(x::int) = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow> 
-    [x = y] (mod n)"
-  by (auto simp add: cong_altdef_int dvd_def)
-
-lemma cong_dvd_eq_nat: "[(x::nat) = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
-  by (unfold cong_nat_def, auto simp add: dvd_eq_mod_eq_0)
-
-lemma cong_dvd_eq_int: "[(x::int) = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
-  by (unfold cong_int_def, auto simp add: dvd_eq_mod_eq_0)
-
-lemma cong_mod_nat: "(n::nat) ~= 0 \<Longrightarrow> [a mod n = a] (mod n)" 
-  by (simp add: cong_nat_def)
-
-lemma cong_mod_int: "(n::int) ~= 0 \<Longrightarrow> [a mod n = a] (mod n)" 
-  by (simp add: cong_int_def)
-
-lemma mod_mult_cong_nat: "(a::nat) ~= 0 \<Longrightarrow> b ~= 0 
-    \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
-  by (simp add: cong_nat_def mod_mult2_eq  mod_add_left_eq)
-
-lemma neg_cong_int: "([(a::int) = b] (mod m)) = ([-a = -b] (mod m))"
-  apply (simp add: cong_altdef_int)
-  apply (subst dvd_minus_iff [symmetric])
-  apply (simp add: ring_simps)
-done
-
-lemma cong_modulus_neg_int: "([(a::int) = b] (mod m)) = ([a = b] (mod -m))"
-  by (auto simp add: cong_altdef_int)
-
-lemma mod_mult_cong_int: "(a::int) ~= 0 \<Longrightarrow> b ~= 0 
-    \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
-  apply (case_tac "b > 0")
-  apply (simp add: cong_int_def mod_mod_cancel mod_add_left_eq)
-  apply (subst (1 2) cong_modulus_neg_int)
-  apply (unfold cong_int_def)
-  apply (subgoal_tac "a * b = (-a * -b)")
-  apply (erule ssubst)
-  apply (subst zmod_zmult2_eq)
-  apply (auto simp add: mod_add_left_eq) 
-done
-
-lemma cong_to_1_nat: "([(a::nat) = 1] (mod n)) \<Longrightarrow> (n dvd (a - 1))"
-  apply (case_tac "a = 0")
-  apply force
-  apply (subst (asm) cong_altdef_nat)
-  apply auto
-done
-
-lemma cong_0_1_nat: "[(0::nat) = 1] (mod n) = (n = 1)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_0_1_int: "[(0::int) = 1] (mod n) = ((n = 1) | (n = -1))"
-  by (unfold cong_int_def, auto simp add: zmult_eq_1_iff)
-
-lemma cong_to_1'_nat: "[(a::nat) = 1] (mod n) \<longleftrightarrow> 
-    a = 0 \<and> n = 1 \<or> (\<exists>m. a = 1 + m * n)"
-  apply (case_tac "n = 1")
-  apply auto [1]
-  apply (drule_tac x = "a - 1" in spec)
-  apply force
-  apply (case_tac "a = 0")
-  apply (auto simp add: cong_0_1_nat) [1]
-  apply (rule iffI)
-  apply (drule cong_to_1_nat)
-  apply (unfold dvd_def)
-  apply auto [1]
-  apply (rule_tac x = k in exI)
-  apply (auto simp add: ring_simps) [1]
-  apply (subst cong_altdef_nat)
-  apply (auto simp add: dvd_def)
-done
-
-lemma cong_le_nat: "(y::nat) <= x \<Longrightarrow> [x = y] (mod n) \<longleftrightarrow> (\<exists>q. x = q * n + y)"
-  apply (subst cong_altdef_nat)
-  apply assumption
-  apply (unfold dvd_def, auto simp add: ring_simps)
-  apply (rule_tac x = k in exI)
-  apply auto
-done
-
-lemma cong_solve_nat: "(a::nat) \<noteq> 0 \<Longrightarrow> EX x. [a * x = gcd a n] (mod n)"
-  apply (case_tac "n = 0")
-  apply force
-  apply (frule bezout_nat [of a n], auto)
-  apply (rule exI, erule ssubst)
-  apply (rule cong_trans_nat)
-  apply (rule cong_add_nat)
-  apply (subst mult_commute)
-  apply (rule cong_mult_self_nat)
-  prefer 2
-  apply simp
-  apply (rule cong_refl_nat)
-  apply (rule cong_refl_nat)
-done
-
-lemma cong_solve_int: "(a::int) \<noteq> 0 \<Longrightarrow> EX x. [a * x = gcd a n] (mod n)"
-  apply (case_tac "n = 0")
-  apply (case_tac "a \<ge> 0")
-  apply auto
-  apply (rule_tac x = "-1" in exI)
-  apply auto
-  apply (insert bezout_int [of a n], auto)
-  apply (rule exI)
-  apply (erule subst)
-  apply (rule cong_trans_int)
-  prefer 2
-  apply (rule cong_add_int)
-  apply (rule cong_refl_int)
-  apply (rule cong_sym_int)
-  apply (rule cong_mult_self_int)
-  apply simp
-  apply (subst mult_commute)
-  apply (rule cong_refl_int)
-done
-  
-lemma cong_solve_dvd_nat: 
-  assumes a: "(a::nat) \<noteq> 0" and b: "gcd a n dvd d"
-  shows "EX x. [a * x = d] (mod n)"
-proof -
-  from cong_solve_nat [OF a] obtain x where 
-      "[a * x = gcd a n](mod n)"
-    by auto
-  hence "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)" 
-    by (elim cong_scalar2_nat)
-  also from b have "(d div gcd a n) * gcd a n = d"
-    by (rule dvd_div_mult_self)
-  also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)"
-    by auto
-  finally show ?thesis
-    by auto
-qed
-
-lemma cong_solve_dvd_int: 
-  assumes a: "(a::int) \<noteq> 0" and b: "gcd a n dvd d"
-  shows "EX x. [a * x = d] (mod n)"
-proof -
-  from cong_solve_int [OF a] obtain x where 
-      "[a * x = gcd a n](mod n)"
-    by auto
-  hence "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)" 
-    by (elim cong_scalar2_int)
-  also from b have "(d div gcd a n) * gcd a n = d"
-    by (rule dvd_div_mult_self)
-  also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)"
-    by auto
-  finally show ?thesis
-    by auto
-qed
-
-lemma cong_solve_coprime_nat: "coprime (a::nat) n \<Longrightarrow> 
-    EX x. [a * x = 1] (mod n)"
-  apply (case_tac "a = 0")
-  apply force
-  apply (frule cong_solve_nat [of a n])
-  apply auto
-done
-
-lemma cong_solve_coprime_int: "coprime (a::int) n \<Longrightarrow> 
-    EX x. [a * x = 1] (mod n)"
-  apply (case_tac "a = 0")
-  apply auto
-  apply (case_tac "n \<ge> 0")
-  apply auto
-  apply (subst cong_int_def, auto)
-  apply (frule cong_solve_int [of a n])
-  apply auto
-done
-
-lemma coprime_iff_invertible_nat: "m > (1::nat) \<Longrightarrow> coprime a m = 
-    (EX x. [a * x = 1] (mod m))"
-  apply (auto intro: cong_solve_coprime_nat)
-  apply (unfold cong_nat_def, auto intro: invertible_coprime_nat)
-done
-
-lemma coprime_iff_invertible_int: "m > (1::int) \<Longrightarrow> coprime a m = 
-    (EX x. [a * x = 1] (mod m))"
-  apply (auto intro: cong_solve_coprime_int)
-  apply (unfold cong_int_def)
-  apply (auto intro: invertible_coprime_int)
-done
-
-lemma coprime_iff_invertible'_int: "m > (1::int) \<Longrightarrow> coprime a m = 
-    (EX x. 0 <= x & x < m & [a * x = 1] (mod m))"
-  apply (subst coprime_iff_invertible_int)
-  apply auto
-  apply (auto simp add: cong_int_def)
-  apply (rule_tac x = "x mod m" in exI)
-  apply (auto simp add: mod_mult_right_eq [symmetric])
-done
-
-
-lemma cong_cong_lcm_nat: "[(x::nat) = y] (mod a) \<Longrightarrow>
-    [x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)"
-  apply (case_tac "y \<le> x")
-  apply (auto simp add: cong_altdef_nat lcm_least_nat) [1]
-  apply (rule cong_sym_nat)
-  apply (subst (asm) (1 2) cong_sym_eq_nat)
-  apply (auto simp add: cong_altdef_nat lcm_least_nat)
-done
-
-lemma cong_cong_lcm_int: "[(x::int) = y] (mod a) \<Longrightarrow>
-    [x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)"
-  by (auto simp add: cong_altdef_int lcm_least_int) [1]
-
-lemma cong_cong_coprime_nat: "coprime a b \<Longrightarrow> [(x::nat) = y] (mod a) \<Longrightarrow>
-    [x = y] (mod b) \<Longrightarrow> [x = y] (mod a * b)"
-  apply (frule (1) cong_cong_lcm_nat)back
-  apply (simp add: lcm_nat_def)
-done
-
-lemma cong_cong_coprime_int: "coprime a b \<Longrightarrow> [(x::int) = y] (mod a) \<Longrightarrow>
-    [x = y] (mod b) \<Longrightarrow> [x = y] (mod a * b)"
-  apply (frule (1) cong_cong_lcm_int)back
-  apply (simp add: lcm_altdef_int cong_abs_int abs_mult [symmetric])
-done
-
-lemma cong_cong_setprod_coprime_nat [rule_format]: "finite A \<Longrightarrow>
-    (ALL i:A. (ALL j:A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
-    (ALL i:A. [(x::nat) = y] (mod m i)) \<longrightarrow>
-      [x = y] (mod (PROD i:A. m i))"
-  apply (induct set: finite)
-  apply auto
-  apply (rule cong_cong_coprime_nat)
-  apply (subst gcd_commute_nat)
-  apply (rule setprod_coprime_nat)
-  apply auto
-done
-
-lemma cong_cong_setprod_coprime_int [rule_format]: "finite A \<Longrightarrow>
-    (ALL i:A. (ALL j:A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
-    (ALL i:A. [(x::int) = y] (mod m i)) \<longrightarrow>
-      [x = y] (mod (PROD i:A. m i))"
-  apply (induct set: finite)
-  apply auto
-  apply (rule cong_cong_coprime_int)
-  apply (subst gcd_commute_int)
-  apply (rule setprod_coprime_int)
-  apply auto
-done
-
-lemma binary_chinese_remainder_aux_nat: 
-  assumes a: "coprime (m1::nat) m2"
-  shows "EX b1 b2. [b1 = 1] (mod m1) \<and> [b1 = 0] (mod m2) \<and>
-    [b2 = 0] (mod m1) \<and> [b2 = 1] (mod m2)"
-proof -
-  from cong_solve_coprime_nat [OF a]
-      obtain x1 where one: "[m1 * x1 = 1] (mod m2)"
-    by auto
-  from a have b: "coprime m2 m1" 
-    by (subst gcd_commute_nat)
-  from cong_solve_coprime_nat [OF b]
-      obtain x2 where two: "[m2 * x2 = 1] (mod m1)"
-    by auto
-  have "[m1 * x1 = 0] (mod m1)"
-    by (subst mult_commute, rule cong_mult_self_nat)
-  moreover have "[m2 * x2 = 0] (mod m2)"
-    by (subst mult_commute, rule cong_mult_self_nat)
-  moreover note one two
-  ultimately show ?thesis by blast
-qed
-
-lemma binary_chinese_remainder_aux_int: 
-  assumes a: "coprime (m1::int) m2"
-  shows "EX b1 b2. [b1 = 1] (mod m1) \<and> [b1 = 0] (mod m2) \<and>
-    [b2 = 0] (mod m1) \<and> [b2 = 1] (mod m2)"
-proof -
-  from cong_solve_coprime_int [OF a]
-      obtain x1 where one: "[m1 * x1 = 1] (mod m2)"
-    by auto
-  from a have b: "coprime m2 m1" 
-    by (subst gcd_commute_int)
-  from cong_solve_coprime_int [OF b]
-      obtain x2 where two: "[m2 * x2 = 1] (mod m1)"
-    by auto
-  have "[m1 * x1 = 0] (mod m1)"
-    by (subst mult_commute, rule cong_mult_self_int)
-  moreover have "[m2 * x2 = 0] (mod m2)"
-    by (subst mult_commute, rule cong_mult_self_int)
-  moreover note one two
-  ultimately show ?thesis by blast
-qed
-
-lemma binary_chinese_remainder_nat:
-  assumes a: "coprime (m1::nat) m2"
-  shows "EX x. [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
-proof -
-  from binary_chinese_remainder_aux_nat [OF a] obtain b1 b2
-    where "[b1 = 1] (mod m1)" and "[b1 = 0] (mod m2)" and
-          "[b2 = 0] (mod m1)" and "[b2 = 1] (mod m2)"
-    by blast
-  let ?x = "u1 * b1 + u2 * b2"
-  have "[?x = u1 * 1 + u2 * 0] (mod m1)"
-    apply (rule cong_add_nat)
-    apply (rule cong_scalar2_nat)
-    apply (rule `[b1 = 1] (mod m1)`)
-    apply (rule cong_scalar2_nat)
-    apply (rule `[b2 = 0] (mod m1)`)
-    done
-  hence "[?x = u1] (mod m1)" by simp
-  have "[?x = u1 * 0 + u2 * 1] (mod m2)"
-    apply (rule cong_add_nat)
-    apply (rule cong_scalar2_nat)
-    apply (rule `[b1 = 0] (mod m2)`)
-    apply (rule cong_scalar2_nat)
-    apply (rule `[b2 = 1] (mod m2)`)
-    done
-  hence "[?x = u2] (mod m2)" by simp
-  with `[?x = u1] (mod m1)` show ?thesis by blast
-qed
-
-lemma binary_chinese_remainder_int:
-  assumes a: "coprime (m1::int) m2"
-  shows "EX x. [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
-proof -
-  from binary_chinese_remainder_aux_int [OF a] obtain b1 b2
-    where "[b1 = 1] (mod m1)" and "[b1 = 0] (mod m2)" and
-          "[b2 = 0] (mod m1)" and "[b2 = 1] (mod m2)"
-    by blast
-  let ?x = "u1 * b1 + u2 * b2"
-  have "[?x = u1 * 1 + u2 * 0] (mod m1)"
-    apply (rule cong_add_int)
-    apply (rule cong_scalar2_int)
-    apply (rule `[b1 = 1] (mod m1)`)
-    apply (rule cong_scalar2_int)
-    apply (rule `[b2 = 0] (mod m1)`)
-    done
-  hence "[?x = u1] (mod m1)" by simp
-  have "[?x = u1 * 0 + u2 * 1] (mod m2)"
-    apply (rule cong_add_int)
-    apply (rule cong_scalar2_int)
-    apply (rule `[b1 = 0] (mod m2)`)
-    apply (rule cong_scalar2_int)
-    apply (rule `[b2 = 1] (mod m2)`)
-    done
-  hence "[?x = u2] (mod m2)" by simp
-  with `[?x = u1] (mod m1)` show ?thesis by blast
-qed
-
-lemma cong_modulus_mult_nat: "[(x::nat) = y] (mod m * n) \<Longrightarrow> 
-    [x = y] (mod m)"
-  apply (case_tac "y \<le> x")
-  apply (simp add: cong_altdef_nat)
-  apply (erule dvd_mult_left)
-  apply (rule cong_sym_nat)
-  apply (subst (asm) cong_sym_eq_nat)
-  apply (simp add: cong_altdef_nat) 
-  apply (erule dvd_mult_left)
-done
-
-lemma cong_modulus_mult_int: "[(x::int) = y] (mod m * n) \<Longrightarrow> 
-    [x = y] (mod m)"
-  apply (simp add: cong_altdef_int) 
-  apply (erule dvd_mult_left)
-done
-
-lemma cong_less_modulus_unique_nat: 
-    "[(x::nat) = y] (mod m) \<Longrightarrow> x < m \<Longrightarrow> y < m \<Longrightarrow> x = y"
-  by (simp add: cong_nat_def)
-
-lemma binary_chinese_remainder_unique_nat:
-  assumes a: "coprime (m1::nat) m2" and
-         nz: "m1 \<noteq> 0" "m2 \<noteq> 0"
-  shows "EX! x. x < m1 * m2 \<and> [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
-proof -
-  from binary_chinese_remainder_nat [OF a] obtain y where 
-      "[y = u1] (mod m1)" and "[y = u2] (mod m2)"
-    by blast
-  let ?x = "y mod (m1 * m2)"
-  from nz have less: "?x < m1 * m2"
-    by auto   
-  have one: "[?x = u1] (mod m1)"
-    apply (rule cong_trans_nat)
-    prefer 2
-    apply (rule `[y = u1] (mod m1)`)
-    apply (rule cong_modulus_mult_nat)
-    apply (rule cong_mod_nat)
-    using nz apply auto
-    done
-  have two: "[?x = u2] (mod m2)"
-    apply (rule cong_trans_nat)
-    prefer 2
-    apply (rule `[y = u2] (mod m2)`)
-    apply (subst mult_commute)
-    apply (rule cong_modulus_mult_nat)
-    apply (rule cong_mod_nat)
-    using nz apply auto
-    done
-  have "ALL z. z < m1 * m2 \<and> [z = u1] (mod m1) \<and> [z = u2] (mod m2) \<longrightarrow>
-      z = ?x"
-  proof (clarify)
-    fix z
-    assume "z < m1 * m2"
-    assume "[z = u1] (mod m1)" and  "[z = u2] (mod m2)"
-    have "[?x = z] (mod m1)"
-      apply (rule cong_trans_nat)
-      apply (rule `[?x = u1] (mod m1)`)
-      apply (rule cong_sym_nat)
-      apply (rule `[z = u1] (mod m1)`)
-      done
-    moreover have "[?x = z] (mod m2)"
-      apply (rule cong_trans_nat)
-      apply (rule `[?x = u2] (mod m2)`)
-      apply (rule cong_sym_nat)
-      apply (rule `[z = u2] (mod m2)`)
-      done
-    ultimately have "[?x = z] (mod m1 * m2)"
-      by (auto intro: coprime_cong_mult_nat a)
-    with `z < m1 * m2` `?x < m1 * m2` show "z = ?x"
-      apply (intro cong_less_modulus_unique_nat)
-      apply (auto, erule cong_sym_nat)
-      done
-  qed  
-  with less one two show ?thesis
-    by auto
- qed
-
-lemma chinese_remainder_aux_nat:
-  fixes A :: "'a set" and
-        m :: "'a \<Rightarrow> nat"
-  assumes fin: "finite A" and
-          cop: "ALL i : A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
-  shows "EX b. (ALL i : A. 
-      [b i = 1] (mod m i) \<and> [b i = 0] (mod (PROD j : A - {i}. m j)))"
-proof (rule finite_set_choice, rule fin, rule ballI)
-  fix i
-  assume "i : A"
-  with cop have "coprime (PROD j : A - {i}. m j) (m i)"
-    by (intro setprod_coprime_nat, auto)
-  hence "EX x. [(PROD j : A - {i}. m j) * x = 1] (mod m i)"
-    by (elim cong_solve_coprime_nat)
-  then obtain x where "[(PROD j : A - {i}. m j) * x = 1] (mod m i)"
-    by auto
-  moreover have "[(PROD j : A - {i}. m j) * x = 0] 
-    (mod (PROD j : A - {i}. m j))"
-    by (subst mult_commute, rule cong_mult_self_nat)
-  ultimately show "\<exists>a. [a = 1] (mod m i) \<and> [a = 0] 
-      (mod setprod m (A - {i}))"
-    by blast
-qed
-
-lemma chinese_remainder_nat:
-  fixes A :: "'a set" and
-        m :: "'a \<Rightarrow> nat" and
-        u :: "'a \<Rightarrow> nat"
-  assumes 
-        fin: "finite A" and
-        cop: "ALL i:A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
-  shows "EX x. (ALL i:A. [x = u i] (mod m i))"
-proof -
-  from chinese_remainder_aux_nat [OF fin cop] obtain b where
-    bprop: "ALL i:A. [b i = 1] (mod m i) \<and> 
-      [b i = 0] (mod (PROD j : A - {i}. m j))"
-    by blast
-  let ?x = "SUM i:A. (u i) * (b i)"
-  show "?thesis"
-  proof (rule exI, clarify)
-    fix i
-    assume a: "i : A"
-    show "[?x = u i] (mod m i)" 
-    proof -
-      from fin a have "?x = (SUM j:{i}. u j * b j) + 
-          (SUM j:A-{i}. u j * b j)"
-        by (subst setsum_Un_disjoint [symmetric], auto intro: setsum_cong)
-      hence "[?x = u i * b i + (SUM j:A-{i}. u j * b j)] (mod m i)"
-        by auto
-      also have "[u i * b i + (SUM j:A-{i}. u j * b j) =
-                  u i * 1 + (SUM j:A-{i}. u j * 0)] (mod m i)"
-        apply (rule cong_add_nat)
-        apply (rule cong_scalar2_nat)
-        using bprop a apply blast
-        apply (rule cong_setsum_nat)
-        apply (rule cong_scalar2_nat)
-        using bprop apply auto
-        apply (rule cong_dvd_modulus_nat)
-        apply (drule (1) bspec)
-        apply (erule conjE)
-        apply assumption
-        apply (rule dvd_setprod)
-        using fin a apply auto
-        done
-      finally show ?thesis
-        by simp
-    qed
-  qed
-qed
-
-lemma coprime_cong_prod_nat [rule_format]: "finite A \<Longrightarrow> 
-    (ALL i: A. (ALL j: A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
-      (ALL i: A. [(x::nat) = y] (mod m i)) \<longrightarrow>
-         [x = y] (mod (PROD i:A. m i))" 
-  apply (induct set: finite)
-  apply auto
-  apply (erule (1) coprime_cong_mult_nat)
-  apply (subst gcd_commute_nat)
-  apply (rule setprod_coprime_nat)
-  apply auto
-done
-
-lemma chinese_remainder_unique_nat:
-  fixes A :: "'a set" and
-        m :: "'a \<Rightarrow> nat" and
-        u :: "'a \<Rightarrow> nat"
-  assumes 
-        fin: "finite A" and
-         nz: "ALL i:A. m i \<noteq> 0" and
-        cop: "ALL i:A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
-  shows "EX! x. x < (PROD i:A. m i) \<and> (ALL i:A. [x = u i] (mod m i))"
-proof -
-  from chinese_remainder_nat [OF fin cop] obtain y where
-      one: "(ALL i:A. [y = u i] (mod m i))" 
-    by blast
-  let ?x = "y mod (PROD i:A. m i)"
-  from fin nz have prodnz: "(PROD i:A. m i) \<noteq> 0"
-    by auto
-  hence less: "?x < (PROD i:A. m i)"
-    by auto
-  have cong: "ALL i:A. [?x = u i] (mod m i)"
-    apply auto
-    apply (rule cong_trans_nat)
-    prefer 2
-    using one apply auto
-    apply (rule cong_dvd_modulus_nat)
-    apply (rule cong_mod_nat)
-    using prodnz apply auto
-    apply (rule dvd_setprod)
-    apply (rule fin)
-    apply assumption
-    done
-  have unique: "ALL z. z < (PROD i:A. m i) \<and> 
-      (ALL i:A. [z = u i] (mod m i)) \<longrightarrow> z = ?x"
-  proof (clarify)
-    fix z
-    assume zless: "z < (PROD i:A. m i)"
-    assume zcong: "(ALL i:A. [z = u i] (mod m i))"
-    have "ALL i:A. [?x = z] (mod m i)"
-      apply clarify     
-      apply (rule cong_trans_nat)
-      using cong apply (erule bspec)
-      apply (rule cong_sym_nat)
-      using zcong apply auto
-      done
-    with fin cop have "[?x = z] (mod (PROD i:A. m i))"
-      by (intro coprime_cong_prod_nat, auto)
-    with zless less show "z = ?x"
-      apply (intro cong_less_modulus_unique_nat)
-      apply (auto, erule cong_sym_nat)
-      done
-  qed 
-  from less cong unique show ?thesis
-    by blast  
-qed
-
-end