src/HOL/NumberTheory/Fib.thy
changeset 32805 9b535493ac8d
parent 32804 ca430e6aee1c
parent 32783 e43d761a742d
child 32806 06561afcadaa
child 32845 d2d0b9b1a69d
--- a/src/HOL/NumberTheory/Fib.thy	Tue Sep 29 22:15:54 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,150 +0,0 @@
-(*  ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1997  University of Cambridge
-*)
-
-header {* The Fibonacci function *}
-
-theory Fib
-imports Primes
-begin
-
-text {*
-  Fibonacci numbers: proofs of laws taken from:
-  R. L. Graham, D. E. Knuth, O. Patashnik.  Concrete Mathematics.
-  (Addison-Wesley, 1989)
-
-  \bigskip
-*}
-
-fun fib :: "nat \<Rightarrow> nat"
-where
-         "fib 0 = 0"
-|        "fib (Suc 0) = 1"
-| fib_2: "fib (Suc (Suc n)) = fib n + fib (Suc n)"
-
-text {*
-  \medskip The difficulty in these proofs is to ensure that the
-  induction hypotheses are applied before the definition of @{term
-  fib}.  Towards this end, the @{term fib} equations are not declared
-  to the Simplifier and are applied very selectively at first.
-*}
-
-text{*We disable @{text fib.fib_2fib_2} for simplification ...*}
-declare fib_2 [simp del]
-
-text{*...then prove a version that has a more restrictive pattern.*}
-lemma fib_Suc3: "fib (Suc (Suc (Suc n))) = fib (Suc n) + fib (Suc (Suc n))"
-  by (rule fib_2)
-
-text {* \medskip Concrete Mathematics, page 280 *}
-
-lemma fib_add: "fib (Suc (n + k)) = fib (Suc k) * fib (Suc n) + fib k * fib n"
-proof (induct n rule: fib.induct)
-  case 1 show ?case by simp
-next
-  case 2 show ?case  by (simp add: fib_2)
-next
-  case 3 thus ?case by (simp add: fib_2 add_mult_distrib2)
-qed
-
-lemma fib_Suc_neq_0: "fib (Suc n) \<noteq> 0"
-  apply (induct n rule: fib.induct)
-    apply (simp_all add: fib_2)
-  done
-
-lemma fib_Suc_gr_0: "0 < fib (Suc n)"
-  by (insert fib_Suc_neq_0 [of n], simp)  
-
-lemma fib_gr_0: "0 < n ==> 0 < fib n"
-  by (case_tac n, auto simp add: fib_Suc_gr_0) 
-
-
-text {*
-  \medskip Concrete Mathematics, page 278: Cassini's identity.  The proof is
-  much easier using integers, not natural numbers!
-*}
-
-lemma fib_Cassini_int:
- "int (fib (Suc (Suc n)) * fib n) =
-  (if n mod 2 = 0 then int (fib (Suc n) * fib (Suc n)) - 1
-   else int (fib (Suc n) * fib (Suc n)) + 1)"
-proof(induct n rule: fib.induct)
-  case 1 thus ?case by (simp add: fib_2)
-next
-  case 2 thus ?case by (simp add: fib_2 mod_Suc)
-next 
-  case (3 x) 
-  have "Suc 0 \<noteq> x mod 2 \<longrightarrow> x mod 2 = 0" by presburger
-  with "3.hyps" show ?case by (simp add: fib.simps add_mult_distrib add_mult_distrib2)
-qed
-
-text{*We now obtain a version for the natural numbers via the coercion 
-   function @{term int}.*}
-theorem fib_Cassini:
- "fib (Suc (Suc n)) * fib n =
-  (if n mod 2 = 0 then fib (Suc n) * fib (Suc n) - 1
-   else fib (Suc n) * fib (Suc n) + 1)"
-  apply (rule int_int_eq [THEN iffD1]) 
-  apply (simp add: fib_Cassini_int)
-  apply (subst zdiff_int [symmetric]) 
-   apply (insert fib_Suc_gr_0 [of n], simp_all)
-  done
-
-
-text {* \medskip Toward Law 6.111 of Concrete Mathematics *}
-
-lemma gcd_fib_Suc_eq_1: "gcd (fib n) (fib (Suc n)) = Suc 0"
-  apply (induct n rule: fib.induct)
-    prefer 3
-    apply (simp add: gcd_commute fib_Suc3)
-   apply (simp_all add: fib_2)
-  done
-
-lemma gcd_fib_add: "gcd (fib m) (fib (n + m)) = gcd (fib m) (fib n)"
-  apply (simp add: gcd_commute [of "fib m"])
-  apply (case_tac m)
-   apply simp 
-  apply (simp add: fib_add)
-  apply (simp add: add_commute gcd_non_0 [OF fib_Suc_gr_0])
-  apply (simp add: gcd_non_0 [OF fib_Suc_gr_0, symmetric])
-  apply (simp add: gcd_fib_Suc_eq_1 gcd_mult_cancel)
-  done
-
-lemma gcd_fib_diff: "m \<le> n ==> gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)"
-  by (simp add: gcd_fib_add [symmetric, of _ "n-m"]) 
-
-lemma gcd_fib_mod: "0 < m ==> gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
-proof (induct n rule: less_induct)
-  case (less n)
-  from less.prems have pos_m: "0 < m" .
-  show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
-  proof (cases "m < n")
-    case True note m_n = True
-    then have m_n': "m \<le> n" by auto
-    with pos_m have pos_n: "0 < n" by auto
-    with pos_m m_n have diff: "n - m < n" by auto
-    have "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib ((n - m) mod m))"
-    by (simp add: mod_if [of n]) (insert m_n, auto)
-    also have "\<dots> = gcd (fib m) (fib (n - m))" by (simp add: less.hyps diff pos_m)
-    also have "\<dots> = gcd (fib m) (fib n)" by (simp add: gcd_fib_diff m_n')
-    finally show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" .
-  next
-    case False then show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
-    by (cases "m = n") auto
-  qed
-qed
-
-lemma fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)"  -- {* Law 6.111 *}
-  apply (induct m n rule: gcd_induct)
-  apply (simp_all add: gcd_non_0 gcd_commute gcd_fib_mod)
-  done
-
-theorem fib_mult_eq_setsum:
-    "fib (Suc n) * fib n = (\<Sum>k \<in> {..n}. fib k * fib k)"
-  apply (induct n rule: fib.induct)
-    apply (auto simp add: atMost_Suc fib_2)
-  apply (simp add: add_mult_distrib add_mult_distrib2)
-  done
-
-end