src/HOL/Limits.thy
changeset 66447 a1f5c5c26fa6
parent 65680 378a2f11bec9
child 66456 621897f47fab
--- a/src/HOL/Limits.thy	Thu Aug 17 14:40:42 2017 +0200
+++ b/src/HOL/Limits.thy	Thu Aug 17 14:52:56 2017 +0200
@@ -325,7 +325,7 @@
   using Bseq_offset[of f 1] by (auto intro: Bseq_subseq)
 
 lemma increasing_Bseq_subseq_iff:
-  assumes "\<And>x y. x \<le> y \<Longrightarrow> norm (f x :: 'a::real_normed_vector) \<le> norm (f y)" "subseq g"
+  assumes "\<And>x y. x \<le> y \<Longrightarrow> norm (f x :: 'a::real_normed_vector) \<le> norm (f y)" "strict_mono g"
   shows "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f"
 proof
   assume "Bseq (\<lambda>x. f (g x))"
@@ -346,7 +346,7 @@
 lemma nonneg_incseq_Bseq_subseq_iff:
   fixes f :: "nat \<Rightarrow> real"
     and g :: "nat \<Rightarrow> nat"
-  assumes "\<And>x. f x \<ge> 0" "incseq f" "subseq g"
+  assumes "\<And>x. f x \<ge> 0" "incseq f" "strict_mono g"
   shows "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f"
   using assms by (intro increasing_Bseq_subseq_iff) (auto simp: incseq_def)
 
@@ -1398,11 +1398,11 @@
 
 lemma mult_nat_left_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. c * x) at_top sequentially"
   for c :: nat
-  by (rule filterlim_subseq) (auto simp: subseq_def)
+  by (rule filterlim_subseq) (auto simp: strict_mono_def)
 
 lemma mult_nat_right_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. x * c) at_top sequentially"
   for c :: nat
-  by (rule filterlim_subseq) (auto simp: subseq_def)
+  by (rule filterlim_subseq) (auto simp: strict_mono_def)
 
 lemma at_to_infinity: "(at (0::'a::{real_normed_field,field})) = filtermap inverse at_infinity"
 proof (rule antisym)