src/CCL/Type.ML
changeset 0 a5a9c433f639
child 8 c3d2c6dcf3f0
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/CCL/Type.ML	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,308 @@
+(*  Title: 	CCL/types
+    ID:         $Id$
+    Author: 	Martin Coen, Cambridge University Computer Laboratory
+    Copyright   1992  University of Cambridge
+
+For types.thy.
+*)
+
+open Type;
+
+val simp_type_defs = [Subtype_def,Unit_def,Bool_def,Plus_def,Sigma_def,Pi_def,
+                      Lift_def,Tall_def,Tex_def];
+val ind_type_defs = [Nat_def,List_def];
+
+val simp_data_defs = [one_def,inl_def,inr_def];
+val ind_data_defs = [zero_def,succ_def,nil_def,cons_def];
+
+goal Set.thy "A <= B <-> (ALL x.x:A --> x:B)";
+by (fast_tac set_cs 1);
+val subsetXH = result();
+
+(*** Exhaustion Rules ***)
+
+fun mk_XH_tac thy defs rls s = prove_goalw thy defs s (fn _ => [cfast_tac rls 1]);
+val XH_tac = mk_XH_tac Type.thy simp_type_defs [];
+
+val EmptyXH = XH_tac "a : {} <-> False";
+val SubtypeXH = XH_tac "a : {x:A.P(x)} <-> (a:A & P(a))";
+val UnitXH = XH_tac "a : Unit          <-> a=one";
+val BoolXH = XH_tac "a : Bool          <-> a=true | a=false";
+val PlusXH = XH_tac "a : A+B           <-> (EX x:A.a=inl(x)) | (EX x:B.a=inr(x))";
+val PiXH   = XH_tac "a : PROD x:A.B(x) <-> (EX b.a=lam x.b(x) & (ALL x:A.b(x):B(x)))";
+val SgXH   = XH_tac "a : SUM x:A.B(x)  <-> (EX x:A.EX y:B(x).a=<x,y>)";
+
+val XHs = [EmptyXH,SubtypeXH,UnitXH,BoolXH,PlusXH,PiXH,SgXH];
+
+val LiftXH = XH_tac "a : [A] <-> (a=bot | a:A)";
+val TallXH = XH_tac "a : TALL X.B(X) <-> (ALL X. a:B(X))";
+val TexXH  = XH_tac "a : TEX X.B(X) <-> (EX X. a:B(X))";
+
+val case_rls = XH_to_Es XHs;
+
+(*** Canonical Type Rules ***)
+
+fun mk_canT_tac thy xhs s = prove_goal thy s 
+                 (fn prems => [fast_tac (set_cs addIs (prems @ (xhs RL [iffD2]))) 1]);
+val canT_tac = mk_canT_tac Type.thy XHs;
+
+val oneT   = canT_tac "one : Unit";
+val trueT  = canT_tac "true : Bool";
+val falseT = canT_tac "false : Bool";
+val lamT   = canT_tac "[| !!x.x:A ==> b(x):B(x) |] ==> lam x.b(x) : Pi(A,B)";
+val pairT  = canT_tac "[| a:A; b:B(a) |] ==> <a,b>:Sigma(A,B)";
+val inlT   = canT_tac "a:A ==> inl(a) : A+B";
+val inrT   = canT_tac "b:B ==> inr(b) : A+B";
+
+val canTs = [oneT,trueT,falseT,pairT,lamT,inlT,inrT];
+
+(*** Non-Canonical Type Rules ***)
+
+local
+val lemma = prove_goal Type.thy "[| a:B(u);  u=v |] ==> a : B(v)"
+                   (fn prems => [cfast_tac prems 1]);
+in
+fun mk_ncanT_tac thy defs top_crls crls s = prove_goalw thy defs s 
+  (fn major::prems => [(resolve_tac ([major] RL top_crls) 1),
+                       (REPEAT_SOME (eresolve_tac (crls @ [exE,bexE,conjE,disjE]))),
+                       (ALLGOALS (ASM_SIMP_TAC term_ss)),
+                       (ALLGOALS (ares_tac (prems RL [lemma]) ORELSE' 
+                                  eresolve_tac [bspec])),
+                       (safe_tac (ccl_cs addSIs prems))]);
+end;
+
+val ncanT_tac = mk_ncanT_tac Type.thy [] case_rls case_rls;
+
+val ifT = ncanT_tac 
+     "[| b:Bool; b=true ==> t:A(true); b=false ==> u:A(false) |] ==> \
+\     if b then t else u : A(b)";
+
+val applyT = ncanT_tac 
+    "[| f : Pi(A,B);  a:A |] ==> f ` a : B(a)";
+
+val splitT = ncanT_tac 
+    "[| p:Sigma(A,B); !!x y. [| x:A;  y:B(x); p=<x,y>  |] ==> c(x,y):C(<x,y>) |] ==>  \
+\     split(p,c):C(p)";
+
+val whenT = ncanT_tac 
+     "[| p:A+B; !!x.[| x:A;  p=inl(x) |] ==> a(x):C(inl(x)); \
+\               !!y.[| y:B;  p=inr(y) |] ==> b(y):C(inr(y)) |] ==> \
+\     when(p,a,b) : C(p)";
+
+val ncanTs = [ifT,applyT,splitT,whenT];
+
+(*** Subtypes ***)
+
+val SubtypeD1 = standard ((SubtypeXH RS iffD1) RS conjunct1);
+val SubtypeD2 = standard ((SubtypeXH RS iffD1) RS conjunct2);
+
+val prems = goal Type.thy
+     "[| a:A;  P(a) |] ==> a : {x:A. P(x)}";
+by (REPEAT (resolve_tac (prems@[SubtypeXH RS iffD2,conjI]) 1));
+val SubtypeI = result();
+
+val prems = goal Type.thy
+     "[| a : {x:A. P(x)};  [| a:A;  P(a) |] ==> Q |] ==> Q";
+by (REPEAT (resolve_tac (prems@[SubtypeD1,SubtypeD2]) 1));
+val SubtypeE = result();
+
+(*** Monotonicity ***)
+
+goal Type.thy "mono (%X.X)";
+by (REPEAT (ares_tac [monoI] 1));
+val idM = result();
+
+goal Type.thy "mono(%X.A)";
+by (REPEAT (ares_tac [monoI,subset_refl] 1));
+val constM = result();
+
+val major::prems = goal Type.thy
+    "mono(%X.A(X)) ==> mono(%X.[A(X)])";
+br (subsetI RS monoI) 1;
+bd (LiftXH RS iffD1) 1;
+be disjE 1;
+be (disjI1 RS (LiftXH RS iffD2)) 1;
+br (disjI2 RS (LiftXH RS iffD2)) 1;
+be (major RS monoD RS subsetD) 1;
+ba 1;
+val LiftM = result();
+
+val prems = goal Type.thy
+    "[| mono(%X.A(X)); !!x X. x:A(X) ==> mono(%X.B(X,x)) |] ==> \
+\    mono(%X.Sigma(A(X),B(X)))";
+by (REPEAT (ares_tac ([subsetI RS monoI] @ canTs) 1 ORELSE
+            eresolve_tac ([bspec,exE,conjE,disjE,bexE] @ case_rls) 1 ORELSE
+            (resolve_tac (prems RL [monoD RS subsetD]) 1 THEN assume_tac 1) ORELSE
+            hyp_subst_tac 1));
+val SgM = result();
+
+val prems = goal Type.thy
+    "[| !!x. x:A ==> mono(%X.B(X,x)) |] ==> mono(%X.Pi(A,B(X)))";
+by (REPEAT (ares_tac ([subsetI RS monoI] @ canTs) 1 ORELSE
+            eresolve_tac ([bspec,exE,conjE,disjE,bexE] @ case_rls) 1 ORELSE
+            (resolve_tac (prems RL [monoD RS subsetD]) 1 THEN assume_tac 1) ORELSE
+            hyp_subst_tac 1));
+val PiM = result();
+
+val prems = goal Type.thy
+     "[| mono(%X.A(X));  mono(%X.B(X)) |] ==> mono(%X.A(X)+B(X))";
+by (REPEAT (ares_tac ([subsetI RS monoI] @ canTs) 1 ORELSE
+            eresolve_tac ([bspec,exE,conjE,disjE,bexE] @ case_rls) 1 ORELSE
+            (resolve_tac (prems RL [monoD RS subsetD]) 1 THEN assume_tac 1) ORELSE
+            hyp_subst_tac 1));
+val PlusM = result();
+
+(**************** RECURSIVE TYPES ******************)
+
+(*** Conversion Rules for Fixed Points via monotonicity and Tarski ***)
+
+goal Type.thy "mono(%X.Unit+X)";
+by (REPEAT (ares_tac [PlusM,constM,idM] 1));
+val NatM = result();
+val def_NatB = result() RS (Nat_def RS def_lfp_Tarski);
+
+goal Type.thy "mono(%X.(Unit+Sigma(A,%y.X)))";
+by (REPEAT (ares_tac [PlusM,SgM,constM,idM] 1));
+val ListM = result();
+val def_ListB = result() RS (List_def RS def_lfp_Tarski);
+val def_ListsB = result() RS (Lists_def RS def_gfp_Tarski);
+
+goal Type.thy "mono(%X.({} + Sigma(A,%y.X)))";
+by (REPEAT (ares_tac [PlusM,SgM,constM,idM] 1));
+val IListsM = result();
+val def_IListsB = result() RS (ILists_def RS def_gfp_Tarski);
+
+val ind_type_eqs = [def_NatB,def_ListB,def_ListsB,def_IListsB];
+
+(*** Exhaustion Rules ***)
+
+fun mk_iXH_tac teqs ddefs rls s = prove_goalw Type.thy ddefs s 
+           (fn _ => [resolve_tac (teqs RL [XHlemma1]) 1,
+                     fast_tac (set_cs addSIs canTs addSEs case_rls) 1]);
+
+val iXH_tac = mk_iXH_tac ind_type_eqs ind_data_defs [];
+
+val NatXH  = iXH_tac "a : Nat <-> (a=zero | (EX x:Nat.a=succ(x)))";
+val ListXH = iXH_tac "a : List(A) <-> (a=[] | (EX x:A.EX xs:List(A).a=x.xs))";
+val ListsXH = iXH_tac "a : Lists(A) <-> (a=[] | (EX x:A.EX xs:Lists(A).a=x.xs))";
+val IListsXH = iXH_tac "a : ILists(A) <-> (EX x:A.EX xs:ILists(A).a=x.xs)";
+
+val iXHs = [NatXH,ListXH];
+val icase_rls = XH_to_Es iXHs;
+
+(*** Type Rules ***)
+
+val icanT_tac = mk_canT_tac Type.thy iXHs;
+val incanT_tac = mk_ncanT_tac Type.thy [] icase_rls case_rls;
+
+val zeroT = icanT_tac "zero : Nat";
+val succT = icanT_tac "n:Nat ==> succ(n) : Nat";
+val nilT  = icanT_tac "[] : List(A)";
+val consT = icanT_tac "[| h:A;  t:List(A) |] ==> h.t : List(A)";
+
+val icanTs = [zeroT,succT,nilT,consT];
+
+val ncaseT = incanT_tac 
+     "[| n:Nat; n=zero ==> b:C(zero); \
+\        !!x.[| x:Nat;  n=succ(x) |] ==> c(x):C(succ(x)) |] ==>  \
+\     ncase(n,b,c) : C(n)";
+
+val lcaseT = incanT_tac
+     "[| l:List(A); l=[] ==> b:C([]); \
+\        !!h t.[| h:A;  t:List(A); l=h.t |] ==> c(h,t):C(h.t) |] ==> \
+\     lcase(l,b,c) : C(l)";
+
+val incanTs = [ncaseT,lcaseT];
+
+(*** Induction Rules ***)
+
+val ind_Ms = [NatM,ListM];
+
+fun mk_ind_tac ddefs tdefs Ms canTs case_rls s = prove_goalw Type.thy ddefs s 
+     (fn major::prems => [resolve_tac (Ms RL ([major] RL (tdefs RL [def_induct]))) 1,
+                          fast_tac (set_cs addSIs (prems @ canTs) addSEs case_rls) 1]);
+
+val ind_tac = mk_ind_tac ind_data_defs ind_type_defs ind_Ms canTs case_rls;
+
+val Nat_ind = ind_tac
+     "[| n:Nat; P(zero); !!x.[| x:Nat; P(x) |] ==> P(succ(x)) |] ==>  \
+\     P(n)";
+
+val List_ind = ind_tac
+     "[| l:List(A); P([]); \
+\        !!x xs.[| x:A;  xs:List(A); P(xs) |] ==> P(x.xs) |] ==> \
+\     P(l)";
+
+val inds = [Nat_ind,List_ind];
+
+(*** Primitive Recursive Rules ***)
+
+fun mk_prec_tac inds s = prove_goal Type.thy s
+     (fn major::prems => [resolve_tac ([major] RL inds) 1,
+                          ALLGOALS (SIMP_TAC term_ss THEN'
+                                    fast_tac (set_cs addSIs prems))]);
+val prec_tac = mk_prec_tac inds;
+
+val nrecT = prec_tac
+     "[| n:Nat; b:C(zero); \
+\        !!x g.[| x:Nat; g:C(x) |] ==> c(x,g):C(succ(x)) |] ==>  \
+\     nrec(n,b,c) : C(n)";
+
+val lrecT = prec_tac
+     "[| l:List(A); b:C([]); \
+\        !!x xs g.[| x:A;  xs:List(A); g:C(xs) |] ==> c(x,xs,g):C(x.xs) |] ==>  \
+\     lrec(l,b,c) : C(l)";
+
+val precTs = [nrecT,lrecT];
+
+
+(*** Theorem proving ***)
+
+val [major,minor] = goal Type.thy
+    "[| <a,b> : Sigma(A,B);  [| a:A;  b:B(a) |] ==> P   \
+\    |] ==> P";
+br (major RS (XH_to_E SgXH)) 1;
+br minor 1;
+by (ALLGOALS (fast_tac term_cs));
+val SgE2 = result();
+
+(* General theorem proving ignores non-canonical term-formers,             *)
+(*         - intro rules are type rules for canonical terms                *)
+(*         - elim rules are case rules (no non-canonical terms appear)     *)
+
+val type_cs = term_cs addSIs (SubtypeI::(canTs @ icanTs))
+                      addSEs (SubtypeE::(XH_to_Es XHs));
+
+
+(*** Infinite Data Types ***)
+
+val [mono] = goal Type.thy "mono(f) ==> lfp(f) <= gfp(f)";
+br (lfp_lowerbound RS subset_trans) 1;
+br (mono RS gfp_lemma3) 1;
+br subset_refl 1;
+val lfp_subset_gfp = result();
+
+val prems = goal Type.thy
+    "[| a:A;  !!x X.[| x:A;  ALL y:A.t(y):X |] ==> t(x) : B(X) |] ==> \
+\    t(a) : gfp(B)";
+br coinduct 1;
+by (res_inst_tac [("P","%x.EX y:A.x=t(y)")] CollectI 1);
+by (ALLGOALS (fast_tac (ccl_cs addSIs prems)));
+val gfpI = result();
+
+val rew::prem::prems = goal Type.thy
+    "[| C==gfp(B);  a:A;  !!x X.[| x:A;  ALL y:A.t(y):X |] ==> t(x) : B(X) |] ==> \
+\    t(a) : C";
+by (rewtac rew);
+by (REPEAT (ares_tac ((prem RS gfpI)::prems) 1));
+val def_gfpI = result();
+
+(* EG *)
+
+val prems = goal Type.thy 
+    "letrec g x be zero.g(x) in g(bot) : Lists(Nat)";
+by (rtac (refl RS (XH_to_I UnitXH) RS (Lists_def RS def_gfpI)) 1);
+br (letrecB RS ssubst) 1;
+bw cons_def;
+by (fast_tac type_cs 1);
+result();