src/ZF/ex/ramsey.ML
changeset 0 a5a9c433f639
child 7 268f93ab3bc4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/ex/ramsey.ML	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,236 @@
+(*  Title: 	ZF/ex/ramsey.ML
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1992  University of Cambridge
+
+Ramsey's Theorem (finite exponent 2 version)
+
+Based upon the article
+    D Basin and M Kaufmann,
+    The Boyer-Moore Prover and Nuprl: An Experimental Comparison.
+    In G Huet and G Plotkin, editors, Logical Frameworks.
+    (CUP, 1991), pages 89--119
+
+See also
+    M Kaufmann,
+    An example in NQTHM: Ramsey's Theorem
+    Internal Note, Computational Logic, Inc., Austin, Texas 78703
+    Available from the author: kaufmann@cli.com
+*)
+
+open Ramsey;
+
+val ramsey_congs = mk_congs Ramsey.thy ["Atleast"];
+val ramsey_ss = arith_ss addcongs ramsey_congs;
+
+(*** Cliques and Independent sets ***)
+
+goalw Ramsey.thy [Clique_def] "Clique(0,V,E)";
+by (fast_tac ZF_cs 1);
+val Clique0 = result();
+
+goalw Ramsey.thy [Clique_def]
+    "!!C V E. [| Clique(C,V',E);  V'<=V |] ==> Clique(C,V,E)";
+by (fast_tac ZF_cs 1);
+val Clique_superset = result();
+
+goalw Ramsey.thy [Indept_def] "Indept(0,V,E)";
+by (fast_tac ZF_cs 1);
+val Indept0 = result();
+
+val prems = goalw Ramsey.thy [Indept_def]
+    "!!I V E. [| Indept(I,V',E);  V'<=V |] ==> Indept(I,V,E)";
+by (fast_tac ZF_cs 1);
+val Indept_superset = result();
+
+(*** Atleast ***)
+
+goalw Ramsey.thy [Atleast_def,inj_def] "Atleast(0,A)";
+by (fast_tac (ZF_cs addIs [PiI]) 1);
+val Atleast0 = result();
+
+val [major] = goalw Ramsey.thy [Atleast_def]
+    "Atleast(succ(m),A) ==> EX x:A. Atleast(m, A-{x})";
+by (rtac (major RS exE) 1);
+by (rtac bexI 1);
+by (etac (inj_is_fun RS apply_type) 2);
+by (rtac succI1 2);
+by (rtac exI 1);
+by (etac inj_succ_restrict 1);
+val Atleast_succD = result();
+
+val major::prems = goalw Ramsey.thy [Atleast_def]
+    "[| Atleast(n,A);  A<=B |] ==> Atleast(n,B)";
+by (rtac (major RS exE) 1);
+by (rtac exI 1);
+by (etac inj_weaken_type 1);
+by (resolve_tac prems 1);
+val Atleast_superset = result();
+
+val prems = goalw Ramsey.thy [Atleast_def,succ_def]
+    "[| Atleast(m,B);  ~ b: B |] ==> Atleast(succ(m), cons(b,B))";
+by (cut_facts_tac prems 1);
+by (etac exE 1);
+by (rtac exI 1);
+by (etac inj_extend 1);
+by (rtac mem_not_refl 1);
+by (assume_tac 1);
+val Atleast_succI = result();
+
+val prems = goal Ramsey.thy
+    "[| Atleast(m, B-{x});  x: B |] ==> Atleast(succ(m), B)";
+by (cut_facts_tac prems 1);
+by (etac (Atleast_succI RS Atleast_superset) 1);
+by (fast_tac ZF_cs 1);
+by (fast_tac ZF_cs 1);
+val Atleast_Diff_succI = result();
+
+(*** Main Cardinality Lemma ***)
+
+(*The #-succ(0) strengthens the original theorem statement, but precisely
+  the same proof could be used!!*)
+val prems = goal Ramsey.thy
+    "m: nat ==> \
+\    ALL n: nat. ALL A B. Atleast((m#+n) #- succ(0), A Un B) -->   \
+\                         Atleast(m,A) | Atleast(n,B)";
+by (nat_ind_tac "m" prems 1);
+by (fast_tac (ZF_cs addSIs [Atleast0]) 1);
+by (ASM_SIMP_TAC ramsey_ss 1);
+by (rtac ballI 1);
+by (nat_ind_tac "n" [] 1);
+by (fast_tac (ZF_cs addSIs [Atleast0]) 1);
+by (ASM_SIMP_TAC (ramsey_ss addrews [add_succ_right]) 1);
+by (safe_tac ZF_cs);
+by (etac (Atleast_succD RS bexE) 1);
+by (etac UnE 1);
+(**case x:B.  Instantiate the 'ALL A B' induction hypothesis. **)
+by (dres_inst_tac [("x1","A"), ("x","B-{x}")] (spec RS spec) 2);
+by (etac (mp RS disjE) 2);
+(*cases Atleast(succ(m1),A) and Atleast(succ(n1),B)*)
+by (REPEAT (eresolve_tac [asm_rl, notE, Atleast_Diff_succI] 3));
+(*proving the condition*)
+by (etac Atleast_superset 2 THEN fast_tac ZF_cs 2);
+(**case x:A.  Instantiate the 'ALL n:nat. ALL A B' induction hypothesis. **)
+by (dres_inst_tac [("x2","succ(n1)"), ("x1","A-{x}"), ("x","B")] 
+    (bspec RS spec RS spec) 1);
+by (etac nat_succI 1);
+by (etac (mp RS disjE) 1);
+(*cases Atleast(succ(m1),A) and Atleast(succ(n1),B)*)
+by (REPEAT (eresolve_tac [asm_rl, Atleast_Diff_succI, notE] 2));
+(*proving the condition*)
+by (ASM_SIMP_TAC (ramsey_ss addrews [add_succ_right]) 1);
+by (etac Atleast_superset 1 THEN fast_tac ZF_cs 1);
+val pigeon2_lemma = result();
+
+(* [| m:nat;  n:nat;  Atleast(m #+ n #- succ(0), A Un B) |] ==> 
+   Atleast(m,A) | Atleast(n,B) *)
+val pigeon2 = standard (pigeon2_lemma RS bspec RS spec RS spec RS mp);
+
+
+(**** Ramsey's Theorem ****)
+
+(** Base cases of induction; they now admit ANY Ramsey number **)
+
+goalw Ramsey.thy [Ramsey_def] "Ramsey(n,0,j)";
+by (fast_tac (ZF_cs addIs [Clique0,Atleast0]) 1);
+val Ramsey0j = result();
+
+goalw Ramsey.thy [Ramsey_def] "Ramsey(n,i,0)";
+by (fast_tac (ZF_cs addIs [Indept0,Atleast0]) 1);
+val Ramseyi0 = result();
+
+(** Lemmas for induction step **)
+
+(*The use of succ(m) here, rather than #-succ(0), simplifies the proof of 
+  Ramsey_step_lemma.*)
+val prems = goal Ramsey.thy
+    "[| Atleast(m #+ n, A);  m: nat;  n: nat |] ==> \
+\    Atleast(succ(m), {x:A. ~P(x)}) | Atleast(n, {x:A. P(x)})";
+by (rtac (nat_succI RS pigeon2) 1);
+by (SIMP_TAC (ramsey_ss addrews prems) 3);
+by (rtac Atleast_superset 3);
+by (REPEAT (resolve_tac prems 1));
+by (fast_tac ZF_cs 1);
+val Atleast_partition = result();
+
+(*For the Atleast part, proves ~(a:I) from the second premise!*)
+val prems = goalw Ramsey.thy [Symmetric_def,Indept_def]
+    "[| Symmetric(E);  Indept(I, {z: V-{a}. ~ <a,z>:E}, E);  a: V;  \
+\       Atleast(j,I) |] ==>   \
+\    Indept(cons(a,I), V, E) & Atleast(succ(j), cons(a,I))";
+by (cut_facts_tac prems 1);
+by (fast_tac (ZF_cs addSEs [Atleast_succI]) 1);	 (*34 secs*)
+val Indept_succ = result();
+
+val prems = goalw Ramsey.thy [Symmetric_def,Clique_def]
+    "[| Symmetric(E);  Clique(C, {z: V-{a}. <a,z>:E}, E);  a: V;  \
+\       Atleast(j,C) |] ==>   \
+\    Clique(cons(a,C), V, E) & Atleast(succ(j), cons(a,C))";
+by (cut_facts_tac prems 1);
+by (fast_tac (ZF_cs addSEs [Atleast_succI]) 1);  (*41 secs*)
+val Clique_succ = result();
+
+(** Induction step **)
+
+(*Published proofs gloss over the need for Ramsey numbers to be POSITIVE.*)
+val ram1::ram2::prems = goalw Ramsey.thy [Ramsey_def] 
+   "[| Ramsey(succ(m), succ(i), j);  Ramsey(n, i, succ(j));  \
+\      m: nat;  n: nat |] ==> \
+\   Ramsey(succ(m#+n), succ(i), succ(j))";
+by (safe_tac ZF_cs);
+by (etac (Atleast_succD RS bexE) 1);
+by (eres_inst_tac [("P1","%z.<x,z>:E")] (Atleast_partition RS disjE) 1);
+by (REPEAT (resolve_tac prems 1));
+(*case m*)
+by (rtac (ram1 RS spec RS spec RS mp RS disjE) 1);
+by (fast_tac ZF_cs 1);
+by (fast_tac (ZF_cs addEs [Clique_superset]) 1); (*easy -- given a Clique*)
+by (safe_tac ZF_cs);
+by (eresolve_tac (swapify [exI]) 1);		 (*ignore main EX quantifier*)
+by (REPEAT (ares_tac [Indept_succ] 1));  	 (*make a bigger Indept*)
+(*case n*)
+by (rtac (ram2 RS spec RS spec RS mp RS disjE) 1);
+by (fast_tac ZF_cs 1);
+by (safe_tac ZF_cs);
+by (rtac exI 1);
+by (REPEAT (ares_tac [Clique_succ] 1));  	 (*make a bigger Clique*)
+by (fast_tac (ZF_cs addEs [Indept_superset]) 1); (*easy -- given an Indept*)
+val Ramsey_step_lemma = result();
+
+
+(** The actual proof **)
+
+(*Again, the induction requires Ramsey numbers to be positive.*)
+val prems = goal Ramsey.thy
+    "i: nat ==> ALL j: nat. EX n:nat. Ramsey(succ(n), i, j)";
+by (nat_ind_tac "i" prems 1);
+by (fast_tac (ZF_cs addSIs [nat_0I,Ramsey0j]) 1);
+by (rtac ballI 1);
+by (nat_ind_tac "j" [] 1);
+by (fast_tac (ZF_cs addSIs [nat_0I,Ramseyi0]) 1);
+by (dres_inst_tac [("x","succ(j1)")] bspec 1);
+by (REPEAT (eresolve_tac [nat_succI,bexE] 1));
+by (rtac bexI 1);
+by (rtac Ramsey_step_lemma 1);
+by (REPEAT (ares_tac [nat_succI,add_type] 1));
+val ramsey_lemma = result();
+
+(*Final statement in a tidy form, without succ(...) *)
+val prems = goal Ramsey.thy
+    "[| i: nat;  j: nat |] ==> EX n:nat. Ramsey(n,i,j)";
+by (rtac (ramsey_lemma RS bspec RS bexE) 1);
+by (etac bexI 3);
+by (REPEAT (ares_tac (prems@[nat_succI]) 1));
+val ramsey = result();
+
+(*Computer Ramsey numbers according to proof above -- which, actually,
+  does not constrain the base case values at all!*)
+fun ram 0 j = 1
+  | ram i 0 = 1
+  | ram i j = ram (i-1) j + ram i (j-1);
+
+(*Previous proof gave the following Ramsey numbers, which are smaller than
+  those above by one!*)
+fun ram' 0 j = 0
+  | ram' i 0 = 0
+  | ram' i j = ram' (i-1) j + ram' i (j-1) + 1;