src/ZF/fixedpt.ML
changeset 0 a5a9c433f639
child 14 1c0926788772
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/fixedpt.ML	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,317 @@
+(*  Title: 	ZF/fixedpt.ML
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1992  University of Cambridge
+
+For fixedpt.thy.  Least and greatest fixed points; the Knaster-Tarski Theorem
+
+Proved in the lattice of subsets of D, namely Pow(D), with Inter as glb
+*)
+
+open Fixedpt;
+
+(*** Monotone operators ***)
+
+val prems = goalw Fixedpt.thy [bnd_mono_def]
+    "[| h(D)<=D;  \
+\       !!W X. [| W<=D;  X<=D;  W<=X |] ==> h(W) <= h(X)  \
+\    |] ==> bnd_mono(D,h)";  
+by (REPEAT (ares_tac (prems@[conjI,allI,impI]) 1
+     ORELSE etac subset_trans 1));
+val bnd_monoI = result();
+
+val [major] = goalw Fixedpt.thy [bnd_mono_def] "bnd_mono(D,h) ==> h(D) <= D";
+by (rtac (major RS conjunct1) 1);
+val bnd_monoD1 = result();
+
+val major::prems = goalw Fixedpt.thy [bnd_mono_def]
+    "[| bnd_mono(D,h);  W<=X;  X<=D |] ==> h(W) <= h(X)";
+by (rtac (major RS conjunct2 RS spec RS spec RS mp RS mp) 1);
+by (REPEAT (resolve_tac prems 1));
+val bnd_monoD2 = result();
+
+val [major,minor] = goal Fixedpt.thy
+    "[| bnd_mono(D,h);  X<=D |] ==> h(X) <= D";
+by (rtac (major RS bnd_monoD2 RS subset_trans) 1);
+by (rtac (major RS bnd_monoD1) 3);
+by (rtac minor 1);
+by (rtac subset_refl 1);
+val bnd_mono_subset = result();
+
+goal Fixedpt.thy "!!A B. [| bnd_mono(D,h);  A <= D;  B <= D |] ==> \
+\                         h(A) Un h(B) <= h(A Un B)";
+by (REPEAT (ares_tac [Un_upper1, Un_upper2, Un_least] 1
+     ORELSE etac bnd_monoD2 1));
+val bnd_mono_Un = result();
+
+(*Useful??*)
+goal Fixedpt.thy "!!A B. [| bnd_mono(D,h);  A <= D;  B <= D |] ==> \
+\                        h(A Int B) <= h(A) Int h(B)";
+by (REPEAT (ares_tac [Int_lower1, Int_lower2, Int_greatest] 1
+     ORELSE etac bnd_monoD2 1));
+val bnd_mono_Int = result();
+
+(**** Proof of Knaster-Tarski Theorem for the lfp ****)
+
+(*lfp is contained in each pre-fixedpoint*)
+val prems = goalw Fixedpt.thy [lfp_def]
+    "[| h(A) <= A;  A<=D |] ==> lfp(D,h) <= A";
+by (rtac (PowI RS CollectI RS Inter_lower) 1);
+by (REPEAT (resolve_tac prems 1));
+val lfp_lowerbound = result();
+
+(*Unfolding the defn of Inter dispenses with the premise bnd_mono(D,h)!*)
+goalw Fixedpt.thy [lfp_def,Inter_def] "lfp(D,h) <= D";
+by (fast_tac ZF_cs 1);
+val lfp_subset = result();
+
+(*Used in datatype package*)
+val [rew] = goal Fixedpt.thy "A==lfp(D,h) ==> A <= D";
+by (rewtac rew);
+by (rtac lfp_subset 1);
+val def_lfp_subset = result();
+
+val subset0_cs = FOL_cs
+  addSIs [ballI, InterI, CollectI, PowI, empty_subsetI]
+  addIs [bexI, UnionI, ReplaceI, RepFunI]
+  addSEs [bexE, make_elim PowD, UnionE, ReplaceE, RepFunE,
+	  CollectE, emptyE]
+  addEs [rev_ballE, InterD, make_elim InterD, subsetD];
+
+val subset_cs = subset0_cs 
+  addSIs [subset_refl,cons_subsetI,subset_consI,Union_least,UN_least,Un_least,
+	  Inter_greatest,Int_greatest,RepFun_subset]
+  addSIs [Un_upper1,Un_upper2,Int_lower1,Int_lower2]
+  addIs  [Union_upper,Inter_lower]
+  addSEs [cons_subsetE];
+
+val prems = goalw Fixedpt.thy [lfp_def]
+    "[| h(D) <= D;  !!X. [| h(X) <= X;  X<=D |] ==> A<=X |] ==> \
+\    A <= lfp(D,h)";
+br (Pow_top RS CollectI RS Inter_greatest) 1;
+by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [CollectE,PowD] 1));
+val lfp_greatest = result();
+
+val hmono::prems = goal Fixedpt.thy
+    "[| bnd_mono(D,h);  h(A)<=A;  A<=D |] ==> h(lfp(D,h)) <= A";
+by (rtac (hmono RS bnd_monoD2 RS subset_trans) 1);
+by (rtac lfp_lowerbound 1);
+by (REPEAT (resolve_tac prems 1));
+val lfp_lemma1 = result();
+
+val [hmono] = goal Fixedpt.thy
+    "bnd_mono(D,h) ==> h(lfp(D,h)) <= lfp(D,h)";
+by (rtac (bnd_monoD1 RS lfp_greatest) 1);
+by (rtac lfp_lemma1 2);
+by (REPEAT (ares_tac [hmono] 1));
+val lfp_lemma2 = result();
+
+val [hmono] = goal Fixedpt.thy
+    "bnd_mono(D,h) ==> lfp(D,h) <= h(lfp(D,h))";
+by (rtac lfp_lowerbound 1);
+by (rtac (hmono RS bnd_monoD2) 1);
+by (rtac (hmono RS lfp_lemma2) 1);
+by (rtac (hmono RS bnd_mono_subset) 2);
+by (REPEAT (rtac lfp_subset 1));
+val lfp_lemma3 = result();
+
+val prems = goal Fixedpt.thy
+    "bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))";
+by (REPEAT (resolve_tac (prems@[equalityI,lfp_lemma2,lfp_lemma3]) 1));
+val lfp_Tarski = result();
+
+(*Definition form, to control unfolding*)
+val [rew,mono] = goal Fixedpt.thy
+    "[| A==lfp(D,h);  bnd_mono(D,h) |] ==> A = h(A)";
+by (rewtac rew);
+by (rtac (mono RS lfp_Tarski) 1);
+val def_lfp_Tarski = result();
+
+(*** General induction rule for least fixedpoints ***)
+
+val [hmono,indstep] = goal Fixedpt.thy
+    "[| bnd_mono(D,h);  !!x. x : h(Collect(lfp(D,h),P)) ==> P(x) \
+\    |] ==> h(Collect(lfp(D,h),P)) <= Collect(lfp(D,h),P)";
+by (rtac subsetI 1);
+by (rtac CollectI 1);
+by (etac indstep 2);
+by (rtac (hmono RS lfp_lemma2 RS subsetD) 1);
+by (rtac (hmono RS bnd_monoD2 RS subsetD) 1);
+by (REPEAT (ares_tac [Collect_subset, lfp_subset] 1));
+val Collect_is_pre_fixedpt = result();
+
+(*This rule yields an induction hypothesis in which the components of a
+  data structure may be assumed to be elements of lfp(D,h)*)
+val prems = goal Fixedpt.thy
+    "[| bnd_mono(D,h);  a : lfp(D,h);   		\
+\       !!x. x : h(Collect(lfp(D,h),P)) ==> P(x) 	\
+\    |] ==> P(a)";
+by (rtac (Collect_is_pre_fixedpt RS lfp_lowerbound RS subsetD RS CollectD2) 1);
+by (rtac (lfp_subset RS (Collect_subset RS subset_trans)) 3);
+by (REPEAT (ares_tac prems 1));
+val induct = result();
+
+(*Definition form, to control unfolding*)
+val rew::prems = goal Fixedpt.thy
+    "[| A == lfp(D,h);  bnd_mono(D,h);  a:A;   \
+\       !!x. x : h(Collect(A,P)) ==> P(x) \
+\    |] ==> P(a)";
+by (rtac induct 1);
+by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems) 1));
+val def_induct = result();
+
+(*This version is useful when "A" is not a subset of D;
+  second premise could simply be h(D Int A) <= D or !!X. X<=D ==> h(X)<=D *)
+val [hsub,hmono] = goal Fixedpt.thy
+    "[| h(D Int A) <= A;  bnd_mono(D,h) |] ==> lfp(D,h) <= A";
+by (rtac (lfp_lowerbound RS subset_trans) 1);
+by (rtac (hmono RS bnd_mono_subset RS Int_greatest) 1);
+by (REPEAT (resolve_tac [hsub,Int_lower1,Int_lower2] 1));
+val lfp_Int_lowerbound = result();
+
+(*Monotonicity of lfp, where h precedes i under a domain-like partial order
+  monotonicity of h is not strictly necessary; h must be bounded by D*)
+val [hmono,imono,subhi] = goal Fixedpt.thy
+    "[| bnd_mono(D,h);  bnd_mono(E,i); 		\
+\       !!X. X<=D ==> h(X) <= i(X)  |] ==> lfp(D,h) <= lfp(E,i)";
+br (bnd_monoD1 RS lfp_greatest) 1;
+br imono 1;
+by (rtac (hmono RSN (2, lfp_Int_lowerbound)) 1);
+by (rtac (Int_lower1 RS subhi RS subset_trans) 1);
+by (rtac (imono RS bnd_monoD2 RS subset_trans) 1);
+by (REPEAT (ares_tac [Int_lower2] 1));
+val lfp_mono = result();
+
+(*This (unused) version illustrates that monotonicity is not really needed,
+  but both lfp's must be over the SAME set D;  Inter is anti-monotonic!*)
+val [isubD,subhi] = goal Fixedpt.thy
+    "[| i(D) <= D;  !!X. X<=D ==> h(X) <= i(X)  |] ==> lfp(D,h) <= lfp(D,i)";
+br lfp_greatest 1;
+br isubD 1;
+by (rtac lfp_lowerbound 1);
+be (subhi RS subset_trans) 1;
+by (REPEAT (assume_tac 1));
+val lfp_mono2 = result();
+
+
+(**** Proof of Knaster-Tarski Theorem for the gfp ****)
+
+(*gfp contains each post-fixedpoint that is contained in D*)
+val prems = goalw Fixedpt.thy [gfp_def]
+    "[| A <= h(A);  A<=D |] ==> A <= gfp(D,h)";
+by (rtac (PowI RS CollectI RS Union_upper) 1);
+by (REPEAT (resolve_tac prems 1));
+val gfp_upperbound = result();
+
+goalw Fixedpt.thy [gfp_def] "gfp(D,h) <= D";
+by (fast_tac ZF_cs 1);
+val gfp_subset = result();
+
+(*Used in datatype package*)
+val [rew] = goal Fixedpt.thy "A==gfp(D,h) ==> A <= D";
+by (rewtac rew);
+by (rtac gfp_subset 1);
+val def_gfp_subset = result();
+
+val hmono::prems = goalw Fixedpt.thy [gfp_def]
+    "[| bnd_mono(D,h);  !!X. [| X <= h(X);  X<=D |] ==> X<=A |] ==> \
+\    gfp(D,h) <= A";
+by (fast_tac (subset_cs addIs ((hmono RS bnd_monoD1)::prems)) 1);
+val gfp_least = result();
+
+val hmono::prems = goal Fixedpt.thy
+    "[| bnd_mono(D,h);  A<=h(A);  A<=D |] ==> A <= h(gfp(D,h))";
+by (rtac (hmono RS bnd_monoD2 RSN (2,subset_trans)) 1);
+by (rtac gfp_subset 3);
+by (rtac gfp_upperbound 2);
+by (REPEAT (resolve_tac prems 1));
+val gfp_lemma1 = result();
+
+val [hmono] = goal Fixedpt.thy
+    "bnd_mono(D,h) ==> gfp(D,h) <= h(gfp(D,h))";
+by (rtac gfp_least 1);
+by (rtac gfp_lemma1 2);
+by (REPEAT (ares_tac [hmono] 1));
+val gfp_lemma2 = result();
+
+val [hmono] = goal Fixedpt.thy
+    "bnd_mono(D,h) ==> h(gfp(D,h)) <= gfp(D,h)";
+by (rtac gfp_upperbound 1);
+by (rtac (hmono RS bnd_monoD2) 1);
+by (rtac (hmono RS gfp_lemma2) 1);
+by (REPEAT (rtac ([hmono, gfp_subset] MRS bnd_mono_subset) 1));
+val gfp_lemma3 = result();
+
+val prems = goal Fixedpt.thy
+    "bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))";
+by (REPEAT (resolve_tac (prems@[equalityI,gfp_lemma2,gfp_lemma3]) 1));
+val gfp_Tarski = result();
+
+(*Definition form, to control unfolding*)
+val [rew,mono] = goal Fixedpt.thy
+    "[| A==gfp(D,h);  bnd_mono(D,h) |] ==> A = h(A)";
+by (rewtac rew);
+by (rtac (mono RS gfp_Tarski) 1);
+val def_gfp_Tarski = result();
+
+
+(*** Coinduction rules for greatest fixed points ***)
+
+(*weak version*)
+goal Fixedpt.thy "!!X h. [| a: X;  X <= h(X);  X <= D |] ==> a : gfp(D,h)";
+by (REPEAT (ares_tac [gfp_upperbound RS subsetD] 1));
+val weak_coinduct = result();
+
+val [subs_h,subs_D,mono] = goal Fixedpt.thy
+    "[| X <= h(X Un gfp(D,h));  X <= D;  bnd_mono(D,h) |] ==>  \
+\    X Un gfp(D,h) <= h(X Un gfp(D,h))";
+by (rtac (subs_h RS Un_least) 1);
+by (rtac (mono RS gfp_lemma2 RS subset_trans) 1);
+by (rtac (Un_upper2 RS subset_trans) 1);
+by (rtac ([mono, subs_D, gfp_subset] MRS bnd_mono_Un) 1);
+val coinduct_lemma = result();
+
+(*strong version*)
+goal Fixedpt.thy
+    "!!X D. [| bnd_mono(D,h);  a: X;  X <= h(X Un gfp(D,h));  X <= D |] ==> \
+\           a : gfp(D,h)";
+by (rtac (coinduct_lemma RSN (2, weak_coinduct)) 1);
+by (REPEAT (ares_tac [gfp_subset, UnI1, Un_least] 1));
+val coinduct = result();
+
+(*Definition form, to control unfolding*)
+val rew::prems = goal Fixedpt.thy
+    "[| A == gfp(D,h);  bnd_mono(D,h);  a: X;  X <= h(X Un A);  X <= D |] ==> \
+\    a : A";
+by (rewtac rew);
+by (rtac coinduct 1);
+by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems) 1));
+val def_coinduct = result();
+
+(*Lemma used immediately below!*)
+val [subsA,XimpP] = goal ZF.thy
+    "[| X <= A;  !!z. z:X ==> P(z) |] ==> X <= Collect(A,P)";
+by (rtac (subsA RS subsetD RS CollectI RS subsetI) 1);
+by (assume_tac 1);
+by (etac XimpP 1);
+val subset_Collect = result();
+
+(*The version used in the induction/coinduction package*)
+val prems = goal Fixedpt.thy
+    "[| A == gfp(D, %w. Collect(D,P(w)));  bnd_mono(D, %w. Collect(D,P(w)));  \
+\       a: X;  X <= D;  !!z. z: X ==> P(X Un A, z) |] ==> \
+\    a : A";
+by (rtac def_coinduct 1);
+by (REPEAT (ares_tac (subset_Collect::prems) 1));
+val def_Collect_coinduct = result();
+
+(*Monotonicity of gfp!*)
+val [hmono,subde,subhi] = goal Fixedpt.thy
+    "[| bnd_mono(D,h);  D <= E; 		\
+\       !!X. X<=D ==> h(X) <= i(X)  |] ==> gfp(D,h) <= gfp(E,i)";
+by (rtac gfp_upperbound 1);
+by (rtac (hmono RS gfp_lemma2 RS subset_trans) 1);
+by (rtac (gfp_subset RS subhi) 1);
+by (rtac ([gfp_subset, subde] MRS subset_trans) 1);
+val gfp_mono = result();
+