src/FOL/ex/Nat_Class.thy
changeset 29752 ad4e3a577fd3
parent 29751 e2756594c414
child 29753 a9fc00f1b8f0
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/FOL/ex/Nat_Class.thy	Mon Feb 16 20:15:40 2009 +0100
@@ -0,0 +1,88 @@
+(*  Title:      FOL/ex/Nat_Class.thy
+    Author:     Markus Wenzel, TU Muenchen
+*)
+
+theory Nat_Class
+imports FOL
+begin
+
+text {*
+  This is an abstract version of theory @{text "Nat"}. Instead of
+  axiomatizing a single type @{text nat} we define the class of all
+  these types (up to isomorphism).
+
+  Note: The @{text rec} operator had to be made \emph{monomorphic},
+  because class axioms may not contain more than one type variable.
+*}
+
+class nat =
+  fixes Zero :: 'a  ("0")
+    and Suc :: "'a => 'a"
+    and rec :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a"
+  assumes induct: "P(0) \<Longrightarrow> (\<And>x. P(x) \<Longrightarrow> P(Suc(x))) \<Longrightarrow> P(n)"
+    and Suc_inject: "Suc(m) = Suc(n) \<Longrightarrow> m = n"
+    and Suc_neq_Zero: "Suc(m) = 0 \<Longrightarrow> R"
+    and rec_Zero: "rec(0, a, f) = a"
+    and rec_Suc: "rec(Suc(m), a, f) = f(m, rec(m, a, f))"
+begin
+
+definition
+  add :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "+" 60) where
+  "m + n = rec(m, n, \<lambda>x y. Suc(y))"
+
+lemma Suc_n_not_n: "Suc(k) ~= (k::'a)"
+  apply (rule_tac n = k in induct)
+   apply (rule notI)
+   apply (erule Suc_neq_Zero)
+  apply (rule notI)
+  apply (erule notE)
+  apply (erule Suc_inject)
+  done
+
+lemma "(k + m) + n = k + (m + n)"
+  apply (rule induct)
+  back
+  back
+  back
+  back
+  back
+  oops
+
+lemma add_Zero [simp]: "0 + n = n"
+  apply (unfold add_def)
+  apply (rule rec_Zero)
+  done
+
+lemma add_Suc [simp]: "Suc(m) + n = Suc(m + n)"
+  apply (unfold add_def)
+  apply (rule rec_Suc)
+  done
+
+lemma add_assoc: "(k + m) + n = k + (m + n)"
+  apply (rule_tac n = k in induct)
+   apply simp
+  apply simp
+  done
+
+lemma add_Zero_right: "m + 0 = m"
+  apply (rule_tac n = m in induct)
+   apply simp
+  apply simp
+  done
+
+lemma add_Suc_right: "m + Suc(n) = Suc(m + n)"
+  apply (rule_tac n = m in induct)
+   apply simp_all
+  done
+
+lemma
+  assumes prem: "\<And>n. f(Suc(n)) = Suc(f(n))"
+  shows "f(i + j) = i + f(j)"
+  apply (rule_tac n = i in induct)
+   apply simp
+  apply (simp add: prem)
+  done
+
+end
+
+end