src/ZF/zf.ML
changeset 13895 b6105462ccd3
parent 13894 8018173a7979
child 13896 717bd79b976f
--- a/src/ZF/zf.ML	Sat Apr 05 16:18:58 2003 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,441 +0,0 @@
-(*  Title: 	ZF/zf.ML
-    ID:         $Id$
-    Author: 	Lawrence C Paulson and Martin D Coen, CU Computer Laboratory
-    Copyright   1992  University of Cambridge
-
-Basic introduction and elimination rules for Zermelo-Fraenkel Set Theory 
-*)
-
-open ZF;
-
-signature ZF_LEMMAS = 
-  sig
-  val ballE : thm
-  val ballI : thm
-  val ball_cong : thm
-  val ball_simp : thm
-  val ball_tac : int -> tactic
-  val bexCI : thm
-  val bexE : thm
-  val bexI : thm
-  val bex_cong : thm
-  val bspec : thm
-  val CollectD1 : thm
-  val CollectD2 : thm
-  val CollectE : thm
-  val CollectI : thm
-  val Collect_cong : thm
-  val emptyE : thm
-  val empty_subsetI : thm
-  val equalityCE : thm
-  val equalityD1 : thm
-  val equalityD2 : thm
-  val equalityE : thm
-  val equalityI : thm
-  val equality_iffI : thm
-  val equals0D : thm
-  val equals0I : thm
-  val ex1_functional : thm
-  val InterD : thm
-  val InterE : thm
-  val InterI : thm
-  val INT_E : thm
-  val INT_I : thm
-  val lemmas_cs : claset
-  val PowD : thm
-  val PowI : thm
-  val RepFunE : thm
-  val RepFunI : thm
-  val RepFun_eqI : thm
-  val RepFun_cong : thm
-  val ReplaceE : thm
-  val ReplaceI : thm
-  val Replace_iff : thm
-  val Replace_cong : thm
-  val rev_ballE : thm
-  val rev_bspec : thm
-  val rev_subsetD : thm
-  val separation : thm
-  val setup_induction : thm
-  val set_mp_tac : int -> tactic
-  val subsetCE : thm
-  val subsetD : thm
-  val subsetI : thm
-  val subset_refl : thm
-  val subset_trans : thm
-  val UnionE : thm
-  val UnionI : thm
-  val UN_E : thm
-  val UN_I : thm
-  end;
-
-
-structure ZF_Lemmas : ZF_LEMMAS = 
-struct
-
-(*** Bounded universal quantifier ***)
-
-val ballI = prove_goalw ZF.thy [Ball_def]
-    "[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)"
- (fn prems=> [ (REPEAT (ares_tac (prems @ [allI,impI]) 1)) ]);
-
-val bspec = prove_goalw ZF.thy [Ball_def]
-    "[| ALL x:A. P(x);  x: A |] ==> P(x)"
- (fn major::prems=>
-  [ (rtac (major RS spec RS mp) 1),
-    (resolve_tac prems 1) ]);
-
-val ballE = prove_goalw ZF.thy [Ball_def]
-    "[| ALL x:A. P(x);  P(x) ==> Q;  x~:A ==> Q |] ==> Q"
- (fn major::prems=>
-  [ (rtac (major RS allE) 1),
-    (REPEAT (eresolve_tac (prems@[asm_rl,impCE]) 1)) ]);
-
-(*Used in the datatype package*)
-val rev_bspec = prove_goal ZF.thy
-    "!!x A P. [| x: A;  ALL x:A. P(x) |] ==> P(x)"
- (fn _ =>
-  [ REPEAT (ares_tac [bspec] 1) ]);
-
-(*Instantiates x first: better for automatic theorem proving?*)
-val rev_ballE = prove_goal ZF.thy
-    "[| ALL x:A. P(x);  x~:A ==> Q;  P(x) ==> Q |] ==> Q"
- (fn major::prems=>
-  [ (rtac (major RS ballE) 1),
-    (REPEAT (eresolve_tac prems 1)) ]);
-
-(*Takes assumptions ALL x:A.P(x) and a:A; creates assumption P(a)*)
-val ball_tac = dtac bspec THEN' assume_tac;
-
-(*Trival rewrite rule;   (ALL x:A.P)<->P holds only if A is nonempty!*)
-val ball_simp = prove_goal ZF.thy "(ALL x:A. True) <-> True"
- (fn _=> [ (REPEAT (ares_tac [TrueI,ballI,iffI] 1)) ]);
-
-(*Congruence rule for rewriting*)
-val ball_cong = prove_goalw ZF.thy [Ball_def]
-    "[| A=A';  !!x. x:A' ==> P(x) <-> P'(x) |] ==> Ball(A,P) <-> Ball(A',P')"
- (fn prems=> [ (simp_tac (FOL_ss addsimps prems) 1) ]);
-
-(*** Bounded existential quantifier ***)
-
-val bexI = prove_goalw ZF.thy [Bex_def]
-    "[| P(x);  x: A |] ==> EX x:A. P(x)"
- (fn prems=> [ (REPEAT (ares_tac (prems @ [exI,conjI]) 1)) ]);
-
-(*Not of the general form for such rules; ~EX has become ALL~ *)
-val bexCI = prove_goal ZF.thy 
-   "[| ALL x:A. ~P(x) ==> P(a);  a: A |] ==> EX x:A.P(x)"
- (fn prems=>
-  [ (rtac classical 1),
-    (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ]);
-
-val bexE = prove_goalw ZF.thy [Bex_def]
-    "[| EX x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q \
-\    |] ==> Q"
- (fn major::prems=>
-  [ (rtac (major RS exE) 1),
-    (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)) ]);
-
-(*We do not even have (EX x:A. True) <-> True unless A is nonempty!!*)
-
-val bex_cong = prove_goalw ZF.thy [Bex_def]
-    "[| A=A';  !!x. x:A' ==> P(x) <-> P'(x) \
-\    |] ==> Bex(A,P) <-> Bex(A',P')"
- (fn prems=> [ (simp_tac (FOL_ss addsimps prems addcongs [conj_cong]) 1) ]);
-
-(*** Rules for subsets ***)
-
-val subsetI = prove_goalw ZF.thy [subset_def]
-    "(!!x.x:A ==> x:B) ==> A <= B"
- (fn prems=> [ (REPEAT (ares_tac (prems @ [ballI]) 1)) ]);
-
-(*Rule in Modus Ponens style [was called subsetE] *)
-val subsetD = prove_goalw ZF.thy [subset_def] "[| A <= B;  c:A |] ==> c:B"
- (fn major::prems=>
-  [ (rtac (major RS bspec) 1),
-    (resolve_tac prems 1) ]);
-
-(*Classical elimination rule*)
-val subsetCE = prove_goalw ZF.thy [subset_def]
-    "[| A <= B;  c~:A ==> P;  c:B ==> P |] ==> P"
- (fn major::prems=>
-  [ (rtac (major RS ballE) 1),
-    (REPEAT (eresolve_tac prems 1)) ]);
-
-(*Takes assumptions A<=B; c:A and creates the assumption c:B *)
-val set_mp_tac = dtac subsetD THEN' assume_tac;
-
-(*Sometimes useful with premises in this order*)
-val rev_subsetD = prove_goal ZF.thy "!!A B c. [| c:A; A<=B |] ==> c:B"
- (fn _=> [REPEAT (ares_tac [subsetD] 1)]);
-
-val subset_refl = prove_goal ZF.thy "A <= A"
- (fn _=> [ (rtac subsetI 1), atac 1 ]);
-
-val subset_trans = prove_goal ZF.thy "[| A<=B;  B<=C |] ==> A<=C"
- (fn prems=> [ (REPEAT (ares_tac ([subsetI]@(prems RL [subsetD])) 1)) ]);
-
-
-(*** Rules for equality ***)
-
-(*Anti-symmetry of the subset relation*)
-val equalityI = prove_goal ZF.thy "[| A <= B;  B <= A |] ==> A = B"
- (fn prems=> [ (REPEAT (resolve_tac (prems@[conjI, extension RS iffD2]) 1)) ]);
-
-val equality_iffI = prove_goal ZF.thy "(!!x. x:A <-> x:B) ==> A = B"
- (fn [prem] =>
-  [ (rtac equalityI 1),
-    (REPEAT (ares_tac [subsetI, prem RS iffD1, prem RS iffD2] 1)) ]);
-
-val equalityD1 = prove_goal ZF.thy "A = B ==> A<=B"
- (fn prems=>
-  [ (rtac (extension RS iffD1 RS conjunct1) 1),
-    (resolve_tac prems 1) ]);
-
-val equalityD2 = prove_goal ZF.thy "A = B ==> B<=A"
- (fn prems=>
-  [ (rtac (extension RS iffD1 RS conjunct2) 1),
-    (resolve_tac prems 1) ]);
-
-val equalityE = prove_goal ZF.thy
-    "[| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P"
- (fn prems=>
-  [ (DEPTH_SOLVE (resolve_tac (prems@[equalityD1,equalityD2]) 1)) ]);
-
-val equalityCE = prove_goal ZF.thy
-    "[| A = B;  [| c:A; c:B |] ==> P;  [| c~:A; c~:B |] ==> P |]  ==>  P"
- (fn major::prems=>
-  [ (rtac (major RS equalityE) 1),
-    (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1)) ]);
-
-(*Lemma for creating induction formulae -- for "pattern matching" on p
-  To make the induction hypotheses usable, apply "spec" or "bspec" to
-  put universal quantifiers over the free variables in p. 
-  Would it be better to do subgoal_tac "ALL z. p = f(z) --> R(z)" ??*)
-val setup_induction = prove_goal ZF.thy
-    "[| p: A;  !!z. z: A ==> p=z --> R |] ==> R"
- (fn prems=>
-  [ (rtac mp 1),
-    (REPEAT (resolve_tac (refl::prems) 1)) ]);
-
-
-(*** Rules for Replace -- the derived form of replacement ***)
-
-val ex1_functional = prove_goal ZF.thy
-    "[| EX! z. P(a,z);  P(a,b);  P(a,c) |] ==> b = c"
- (fn prems=>
-  [ (cut_facts_tac prems 1),
-    (best_tac FOL_dup_cs 1) ]);
-
-val Replace_iff = prove_goalw ZF.thy [Replace_def]
-    "b : {y. x:A, P(x,y)}  <->  (EX x:A. P(x,b) & (ALL y. P(x,y) --> y=b))"
- (fn _=>
-  [ (rtac (replacement RS iff_trans) 1),
-    (REPEAT (ares_tac [refl,bex_cong,iffI,ballI,allI,conjI,impI,ex1I] 1
-        ORELSE eresolve_tac [conjE, spec RS mp, ex1_functional] 1)) ]);
-
-(*Introduction; there must be a unique y such that P(x,y), namely y=b. *)
-val ReplaceI = prove_goal ZF.thy
-    "[| x: A;  P(x,b);  !!y. P(x,y) ==> y=b |] ==> \
-\    b : {y. x:A, P(x,y)}"
- (fn prems=>
-  [ (rtac (Replace_iff RS iffD2) 1),
-    (REPEAT (ares_tac (prems@[bexI,conjI,allI,impI]) 1)) ]);
-
-(*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *)
-val ReplaceE = prove_goal ZF.thy 
-    "[| b : {y. x:A, P(x,y)};  \
-\       !!x. [| x: A;  P(x,b);  ALL y. P(x,y)-->y=b |] ==> R \
-\    |] ==> R"
- (fn prems=>
-  [ (rtac (Replace_iff RS iffD1 RS bexE) 1),
-    (etac conjE 2),
-    (REPEAT (ares_tac prems 1)) ]);
-
-val Replace_cong = prove_goal ZF.thy
-    "[| A=B;  !!x y. x:B ==> P(x,y) <-> Q(x,y) |] ==> \
-\    Replace(A,P) = Replace(B,Q)"
- (fn prems=>
-   let val substprems = prems RL [subst, ssubst]
-       and iffprems = prems RL [iffD1,iffD2]
-   in [ (rtac equalityI 1),
-	(REPEAT (eresolve_tac (substprems@[asm_rl, ReplaceE, spec RS mp]) 1
-	 ORELSE resolve_tac [subsetI, ReplaceI] 1
-	 ORELSE (resolve_tac iffprems 1 THEN assume_tac 2))) ]
-   end);
-
-(*** Rules for RepFun ***)
-
-val RepFunI = prove_goalw ZF.thy [RepFun_def]
-    "!!a A. a : A ==> f(a) : {f(x). x:A}"
- (fn _ => [ (REPEAT (ares_tac [ReplaceI,refl] 1)) ]);
-
-(*Useful for coinduction proofs*)
-val RepFun_eqI = prove_goal ZF.thy
-    "!!b a f. [| b=f(a);  a : A |] ==> b : {f(x). x:A}"
- (fn _ => [ etac ssubst 1, etac RepFunI 1 ]);
-
-val RepFunE = prove_goalw ZF.thy [RepFun_def]
-    "[| b : {f(x). x:A};  \
-\       !!x.[| x:A;  b=f(x) |] ==> P |] ==> \
-\    P"
- (fn major::prems=>
-  [ (rtac (major RS ReplaceE) 1),
-    (REPEAT (ares_tac prems 1)) ]);
-
-val RepFun_cong = prove_goalw ZF.thy [RepFun_def]
-    "[| A=B;  !!x. x:B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)"
- (fn prems=> [ (simp_tac (FOL_ss addcongs [Replace_cong] addsimps prems) 1) ]);
-
-
-(*** Rules for Collect -- forming a subset by separation ***)
-
-(*Separation is derivable from Replacement*)
-val separation = prove_goalw ZF.thy [Collect_def]
-    "a : {x:A. P(x)} <-> a:A & P(a)"
- (fn _=> [ (fast_tac (FOL_cs addIs  [bexI,ReplaceI] 
-		             addSEs [bexE,ReplaceE]) 1) ]);
-
-val CollectI = prove_goal ZF.thy
-    "[| a:A;  P(a) |] ==> a : {x:A. P(x)}"
- (fn prems=>
-  [ (rtac (separation RS iffD2) 1),
-    (REPEAT (resolve_tac (prems@[conjI]) 1)) ]);
-
-val CollectE = prove_goal ZF.thy
-    "[| a : {x:A. P(x)};  [| a:A; P(a) |] ==> R |] ==> R"
- (fn prems=>
-  [ (rtac (separation RS iffD1 RS conjE) 1),
-    (REPEAT (ares_tac prems 1)) ]);
-
-val CollectD1 = prove_goal ZF.thy "a : {x:A. P(x)} ==> a:A"
- (fn [major]=>
-  [ (rtac (major RS CollectE) 1),
-    (assume_tac 1) ]);
-
-val CollectD2 = prove_goal ZF.thy "a : {x:A. P(x)} ==> P(a)"
- (fn [major]=>
-  [ (rtac (major RS CollectE) 1),
-    (assume_tac 1) ]);
-
-val Collect_cong = prove_goalw ZF.thy [Collect_def] 
-    "[| A=B;  !!x. x:B ==> P(x) <-> Q(x) |] ==> Collect(A,P) = Collect(B,Q)"
- (fn prems=> [ (simp_tac (FOL_ss addcongs [Replace_cong] addsimps prems) 1) ]);
-
-(*** Rules for Unions ***)
-
-(*The order of the premises presupposes that C is rigid; A may be flexible*)
-val UnionI = prove_goal ZF.thy "[| B: C;  A: B |] ==> A: Union(C)"
- (fn prems=>
-  [ (resolve_tac [union_iff RS iffD2] 1),
-    (REPEAT (resolve_tac (prems @ [bexI]) 1)) ]);
-
-val UnionE = prove_goal ZF.thy
-    "[| A : Union(C);  !!B.[| A: B;  B: C |] ==> R |] ==> R"
- (fn prems=>
-  [ (resolve_tac [union_iff RS iffD1 RS bexE] 1),
-    (REPEAT (ares_tac prems 1)) ]);
-
-(*** Rules for Inter ***)
-
-(*Not obviously useful towards proving InterI, InterD, InterE*)
-val Inter_iff = prove_goalw ZF.thy [Inter_def,Ball_def]
-    "A : Inter(C) <-> (ALL x:C. A: x) & (EX x. x:C)"
- (fn _=> [ (rtac (separation RS iff_trans) 1),
-	   (fast_tac (FOL_cs addIs [UnionI] addSEs [UnionE]) 1) ]);
-
-(* Intersection is well-behaved only if the family is non-empty! *)
-val InterI = prove_goalw ZF.thy [Inter_def]
-    "[| !!x. x: C ==> A: x;  c:C |] ==> A : Inter(C)"
- (fn prems=>
-  [ (DEPTH_SOLVE (ares_tac ([CollectI,UnionI,ballI] @ prems) 1)) ]);
-
-(*A "destruct" rule -- every B in C contains A as an element, but
-  A:B can hold when B:C does not!  This rule is analogous to "spec". *)
-val InterD = prove_goalw ZF.thy [Inter_def]
-    "[| A : Inter(C);  B : C |] ==> A : B"
- (fn [major,minor]=>
-  [ (rtac (major RS CollectD2 RS bspec) 1),
-    (rtac minor 1) ]);
-
-(*"Classical" elimination rule -- does not require exhibiting B:C *)
-val InterE = prove_goalw ZF.thy [Inter_def]
-    "[| A : Inter(C);  A:B ==> R;  B~:C ==> R |] ==> R"
- (fn major::prems=>
-  [ (rtac (major RS CollectD2 RS ballE) 1),
-    (REPEAT (eresolve_tac prems 1)) ]);
-
-(*** Rules for Unions of families ***)
-(* UN x:A. B(x) abbreviates Union({B(x). x:A}) *)
-
-(*The order of the premises presupposes that A is rigid; b may be flexible*)
-val UN_I = prove_goal ZF.thy "[| a: A;  b: B(a) |] ==> b: (UN x:A. B(x))"
- (fn prems=>
-  [ (REPEAT (resolve_tac (prems@[UnionI,RepFunI]) 1)) ]);
-
-val UN_E = prove_goal ZF.thy
-    "[| b : (UN x:A. B(x));  !!x.[| x: A;  b: B(x) |] ==> R |] ==> R"
- (fn major::prems=>
-  [ (rtac (major RS UnionE) 1),
-    (REPEAT (eresolve_tac (prems@[asm_rl, RepFunE, subst]) 1)) ]);
-
-
-(*** Rules for Intersections of families ***)
-(* INT x:A. B(x) abbreviates Inter({B(x). x:A}) *)
-
-val INT_I = prove_goal ZF.thy
-    "[| !!x. x: A ==> b: B(x);  a: A |] ==> b: (INT x:A. B(x))"
- (fn prems=>
-  [ (REPEAT (ares_tac (prems@[InterI,RepFunI]) 1
-     ORELSE eresolve_tac [RepFunE,ssubst] 1)) ]);
-
-val INT_E = prove_goal ZF.thy
-    "[| b : (INT x:A. B(x));  a: A |] ==> b : B(a)"
- (fn [major,minor]=>
-  [ (rtac (major RS InterD) 1),
-    (rtac (minor RS RepFunI) 1) ]);
-
-
-(*** Rules for Powersets ***)
-
-val PowI = prove_goal ZF.thy "A <= B ==> A : Pow(B)"
- (fn [prem]=> [ (rtac (prem RS (power_set RS iffD2)) 1) ]);
-
-val PowD = prove_goal ZF.thy "A : Pow(B)  ==>  A<=B"
- (fn [major]=> [ (rtac (major RS (power_set RS iffD1)) 1) ]);
-
-
-(*** Rules for the empty set ***)
-
-(*The set {x:0.False} is empty; by foundation it equals 0 
-  See Suppes, page 21.*)
-val emptyE = prove_goal ZF.thy "a:0 ==> P"
- (fn [major]=>
-  [ (rtac (foundation RS disjE) 1),
-    (etac (equalityD2 RS subsetD RS CollectD2 RS FalseE) 1),
-    (rtac major 1),
-    (etac bexE 1),
-    (etac (CollectD2 RS FalseE) 1) ]);
-
-val empty_subsetI = prove_goal ZF.thy "0 <= A"
- (fn _ => [ (REPEAT (ares_tac [equalityI,subsetI,emptyE] 1)) ]);
-
-val equals0I = prove_goal ZF.thy "[| !!y. y:A ==> False |] ==> A=0"
- (fn prems=>
-  [ (REPEAT (ares_tac (prems@[empty_subsetI,subsetI,equalityI]) 1 
-      ORELSE eresolve_tac (prems RL [FalseE]) 1)) ]);
-
-val equals0D = prove_goal ZF.thy "[| A=0;  a:A |] ==> P"
- (fn [major,minor]=>
-  [ (rtac (minor RS (major RS equalityD1 RS subsetD RS emptyE)) 1) ]);
-
-val lemmas_cs = FOL_cs
-  addSIs [ballI, InterI, CollectI, PowI, subsetI]
-  addIs [bexI, UnionI, ReplaceI, RepFunI]
-  addSEs [bexE, make_elim PowD, UnionE, ReplaceE, RepFunE,
-	  CollectE, emptyE]
-  addEs [rev_ballE, InterD, make_elim InterD, subsetD, subsetCE];
-
-end;
-
-open ZF_Lemmas;