src/HOL/Library/RBT_Set.thy
changeset 64267 b9a1486e79be
parent 63649 e690d6f2185b
child 64272 f76b6dda2e56
--- a/src/HOL/Library/RBT_Set.thy	Sun Oct 16 22:43:51 2016 +0200
+++ b/src/HOL/Library/RBT_Set.thy	Mon Oct 17 11:46:22 2016 +0200
@@ -85,7 +85,7 @@
   "Pow = Pow" ..
 
 lemma [code, code del]:
-  "setsum = setsum" ..
+  "sum = sum" ..
 
 lemma [code, code del]:
   "setprod = setprod" ..
@@ -673,13 +673,13 @@
   "card (Set t) = fold_keys (\<lambda>_ n. n + 1) t 0"
   by (auto simp add: card.eq_fold intro: finite_fold_fold_keys comp_fun_commute_const)
 
-lemma setsum_Set [code]:
-  "setsum f (Set xs) = fold_keys (plus o f) xs 0"
+lemma sum_Set [code]:
+  "sum f (Set xs) = fold_keys (plus o f) xs 0"
 proof -
   have "comp_fun_commute (\<lambda>x. op + (f x))"
     by standard (auto simp: ac_simps)
   then show ?thesis 
-    by (auto simp add: setsum.eq_fold finite_fold_fold_keys o_def)
+    by (auto simp add: sum.eq_fold finite_fold_fold_keys o_def)
 qed
 
 lemma the_elem_set [code]: