src/HOL/Algebra/More_Group.thy
changeset 68445 c183a6a69f2d
parent 68444 ff61cbfb3f2d
child 68446 92ddca1edc43
--- a/src/HOL/Algebra/More_Group.thy	Tue Jun 12 16:09:12 2018 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,115 +0,0 @@
-(*  Title:      HOL/Algebra/More_Group.thy
-    Author:     Jeremy Avigad
-*)
-
-section \<open>More on groups\<close>
-
-theory More_Group
-  imports Ring
-begin
-
-text \<open>
-  Show that the units in any monoid give rise to a group.
-
-  The file Residues.thy provides some infrastructure to use
-  facts about the unit group within the ring locale.
-\<close>
-
-definition units_of :: "('a, 'b) monoid_scheme \<Rightarrow> 'a monoid"
-  where "units_of G =
-    \<lparr>carrier = Units G, Group.monoid.mult = Group.monoid.mult G, one  = one G\<rparr>"
-
-lemma (in monoid) units_group: "group (units_of G)"
-  apply (unfold units_of_def)
-  apply (rule groupI)
-      apply auto
-   apply (subst m_assoc)
-      apply auto
-  apply (rule_tac x = "inv x" in bexI)
-   apply auto
-  done
-
-lemma (in comm_monoid) units_comm_group: "comm_group (units_of G)"
-  apply (rule group.group_comm_groupI)
-   apply (rule units_group)
-  apply (insert comm_monoid_axioms)
-  apply (unfold units_of_def Units_def comm_monoid_def comm_monoid_axioms_def)
-  apply auto
-  done
-
-lemma units_of_carrier: "carrier (units_of G) = Units G"
-  by (auto simp: units_of_def)
-
-lemma units_of_mult: "mult (units_of G) = mult G"
-  by (auto simp: units_of_def)
-
-lemma units_of_one: "one (units_of G) = one G"
-  by (auto simp: units_of_def)
-
-lemma (in monoid) units_of_inv: "x \<in> Units G \<Longrightarrow> m_inv (units_of G) x = m_inv G x"
-  apply (rule sym)
-  apply (subst m_inv_def)
-  apply (rule the1_equality)
-   apply (rule ex_ex1I)
-    apply (subst (asm) Units_def)
-    apply auto
-     apply (erule inv_unique)
-        apply auto
-    apply (rule Units_closed)
-    apply (simp_all only: units_of_carrier [symmetric])
-    apply (insert units_group)
-    apply auto
-   apply (subst units_of_mult [symmetric])
-   apply (subst units_of_one [symmetric])
-   apply (erule group.r_inv, assumption)
-  apply (subst units_of_mult [symmetric])
-  apply (subst units_of_one [symmetric])
-  apply (erule group.l_inv, assumption)
-  done
-
-lemma (in group) inj_on_const_mult: "a \<in> carrier G \<Longrightarrow> inj_on (\<lambda>x. a \<otimes> x) (carrier G)"
-  unfolding inj_on_def by auto
-
-lemma (in group) surj_const_mult: "a \<in> carrier G \<Longrightarrow> (\<lambda>x. a \<otimes> x) ` carrier G = carrier G"
-  apply (auto simp add: image_def)
-  apply (rule_tac x = "(m_inv G a) \<otimes> x" in bexI)
-  apply auto
-(* auto should get this. I suppose we need "comm_monoid_simprules"
-   for ac_simps rewriting. *)
-  apply (subst m_assoc [symmetric])
-  apply auto
-  done
-
-lemma (in group) l_cancel_one [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> x \<otimes> a = x \<longleftrightarrow> a = one G"
-  by (metis Units_eq Units_l_cancel monoid.r_one monoid_axioms one_closed)
-
-lemma (in group) r_cancel_one [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> a \<otimes> x = x \<longleftrightarrow> a = one G"
-  by (metis monoid.l_one monoid_axioms one_closed right_cancel)
-
-lemma (in group) l_cancel_one' [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> x = x \<otimes> a \<longleftrightarrow> a = one G"
-  using l_cancel_one by fastforce
-
-lemma (in group) r_cancel_one' [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> x = a \<otimes> x \<longleftrightarrow> a = one G"
-  using r_cancel_one by fastforce
-
-(* This should be generalized to arbitrary groups, not just commutative
-   ones, using Lagrange's theorem. *)
-
-lemma (in comm_group) power_order_eq_one:
-  assumes fin [simp]: "finite (carrier G)"
-    and a [simp]: "a \<in> carrier G"
-  shows "a [^] card(carrier G) = one G"
-proof -
-  have "(\<Otimes>x\<in>carrier G. x) = (\<Otimes>x\<in>carrier G. a \<otimes> x)"
-    by (subst (2) finprod_reindex [symmetric],
-      auto simp add: Pi_def inj_on_const_mult surj_const_mult)
-  also have "\<dots> = (\<Otimes>x\<in>carrier G. a) \<otimes> (\<Otimes>x\<in>carrier G. x)"
-    by (auto simp add: finprod_multf Pi_def)
-  also have "(\<Otimes>x\<in>carrier G. a) = a [^] card(carrier G)"
-    by (auto simp add: finprod_const)
-  finally show ?thesis
-(* uses the preceeding lemma *)
-    by auto
-qed
-
-end