src/HOL/Nominal/Nominal.thy
changeset 17870 c35381811d5c
child 17871 67ffbfcd6fef
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Nominal/Nominal.thy	Mon Oct 17 12:30:57 2005 +0200
@@ -0,0 +1,2309 @@
+(* $Id$ *)
+
+theory nominal 
+imports Main
+  uses ("nominal_package.ML") ("nominal_induct.ML") ("nominal_permeq.ML")
+begin 
+
+ML {* reset NameSpace.unique_names; *}
+
+section {* Permutations *}
+(*======================*)
+
+types 
+  'x prm = "('x \<times> 'x) list"
+
+(* polymorphic operations for permutation and swapping*)
+consts 
+  perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a"     ("_ \<bullet> _" [80,80] 80)
+  swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x"
+
+(* permutation on sets *)
+defs (overloaded)
+  perm_set_def:  "pi\<bullet>(X::'a set) \<equiv> {pi\<bullet>a | a. a\<in>X}"
+
+(* permutation on units and products *)
+primrec (perm_unit)
+  "pi\<bullet>()    = ()"
+
+primrec (perm_prod)
+  "pi\<bullet>(a,b) = (pi\<bullet>a,pi\<bullet>b)"
+
+lemma perm_fst:
+  "pi\<bullet>(fst x) = fst (pi\<bullet>x)"
+ by (cases x, simp)
+
+lemma perm_snd:
+  "pi\<bullet>(snd x) = snd (pi\<bullet>x)"
+ by (cases x, simp)
+
+(* permutation on lists *)
+primrec (perm_list)
+  perm_nil_def:  "pi\<bullet>[]     = []"
+  perm_cons_def: "pi\<bullet>(x#xs) = (pi\<bullet>x)#(pi\<bullet>xs)"
+
+lemma perm_append:
+  fixes pi :: "'x prm"
+  and   l1 :: "'a list"
+  and   l2 :: "'a list"
+  shows "pi\<bullet>(l1@l2) = (pi\<bullet>l1)@(pi\<bullet>l2)"
+  by (induct l1, auto)
+
+lemma perm_rev:
+  fixes pi :: "'x prm"
+  and   l  :: "'a list"
+  shows "pi\<bullet>(rev l) = rev (pi\<bullet>l)"
+  by (induct l, simp_all add: perm_append)
+
+(* permutation on functions *)
+defs (overloaded)
+  perm_fun_def: "pi\<bullet>(f::'a\<Rightarrow>'b) \<equiv> (\<lambda>x. pi\<bullet>f((rev pi)\<bullet>x))"
+
+(* permutation on bools *)
+primrec (perm_bool)
+  perm_true_def:  "pi\<bullet>True  = True"
+  perm_false_def: "pi\<bullet>False = False"
+
+(* permutation on options *)
+primrec (perm_option)
+  perm_some_def:  "pi\<bullet>Some(x) = Some(pi\<bullet>x)"
+  perm_none_def:  "pi\<bullet>None    = None"
+
+(* a "private" copy of the option type used in the abstraction function *)
+datatype 'a nOption = nSome 'a | nNone
+
+primrec (perm_noption)
+  perm_Nsome_def:  "pi\<bullet>nSome(x) = nSome(pi\<bullet>x)"
+  perm_Nnone_def:  "pi\<bullet>nNone    = nNone"
+
+(* permutation on characters (used in strings) *)
+defs (overloaded)
+  perm_char_def: "pi\<bullet>(s::char) \<equiv> s"
+
+(* permutation on ints *)
+defs (overloaded)
+  perm_int_def:    "pi\<bullet>(i::int) \<equiv> i"
+
+(* permutation on nats *)
+defs (overloaded)
+  perm_nat_def:    "pi\<bullet>(i::nat) \<equiv> i"
+
+section {* permutation equality *}
+(*==============================*)
+
+constdefs
+  prm_eq :: "'x prm \<Rightarrow> 'x prm \<Rightarrow> bool"  (" _ \<sim> _ " [80,80] 80)
+  "pi1 \<sim> pi2 \<equiv> \<forall>a::'x. pi1\<bullet>a = pi2\<bullet>a"
+
+section {* Support, Freshness and Supports*}
+(*========================================*)
+constdefs
+   supp :: "'a \<Rightarrow> ('x set)"  
+   "supp x \<equiv> {a . (infinite {b . [(a,b)]\<bullet>x \<noteq> x})}"
+
+   fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" (" _ \<sharp> _" [80,80] 80)
+   "a \<sharp> x \<equiv> a \<notin> supp x"
+
+   supports :: "'x set \<Rightarrow> 'a \<Rightarrow> bool" (infixl 80)
+   "S supports x \<equiv> \<forall>a b. (a\<notin>S \<and> b\<notin>S \<longrightarrow> [(a,b)]\<bullet>x=x)"
+
+lemma supp_fresh_iff: 
+  fixes x :: "'a"
+  shows "(supp x) = {a::'x. \<not>a\<sharp>x}"
+apply(simp add: fresh_def)
+done
+
+lemma supp_unit:
+  shows "supp () = {}"
+  by (simp add: supp_def)
+
+lemma supp_prod: 
+  fixes x :: "'a"
+  and   y :: "'b"
+  shows "(supp (x,y)) = (supp x)\<union>(supp y)"
+  by  (force simp add: supp_def Collect_imp_eq Collect_neg_eq)
+
+lemma supp_list_nil:
+  shows "supp [] = {}"
+apply(simp add: supp_def)
+done
+
+lemma supp_list_cons:
+  fixes x  :: "'a"
+  and   xs :: "'a list"
+  shows "supp (x#xs) = (supp x)\<union>(supp xs)"
+apply(auto simp add: supp_def Collect_imp_eq Collect_neg_eq)
+done
+
+lemma supp_list_append:
+  fixes xs :: "'a list"
+  and   ys :: "'a list"
+  shows "supp (xs@ys) = (supp xs)\<union>(supp ys)"
+  by (induct xs, auto simp add: supp_list_nil supp_list_cons)
+
+lemma supp_list_rev:
+  fixes xs :: "'a list"
+  shows "supp (rev xs) = (supp xs)"
+  by (induct xs, auto simp add: supp_list_append supp_list_cons supp_list_nil)
+
+lemma supp_bool:
+  fixes x  :: "bool"
+  shows "supp (x) = {}"
+  apply(case_tac "x")
+  apply(simp_all add: supp_def)
+done
+
+lemma supp_some:
+  fixes x :: "'a"
+  shows "supp (Some x) = (supp x)"
+  apply(simp add: supp_def)
+  done
+
+lemma supp_none:
+  fixes x :: "'a"
+  shows "supp (None) = {}"
+  apply(simp add: supp_def)
+  done
+
+lemma supp_int:
+  fixes i::"int"
+  shows "supp (i) = {}"
+  apply(simp add: supp_def perm_int_def)
+  done
+
+lemma fresh_prod:
+  fixes a :: "'x"
+  and   x :: "'a"
+  and   y :: "'b"
+  shows "a\<sharp>(x,y) = (a\<sharp>x \<and> a\<sharp>y)"
+  by (simp add: fresh_def supp_prod)
+
+lemma fresh_list_nil:
+  fixes a :: "'x"
+  shows "a\<sharp>([]::'a list)"
+  by (simp add: fresh_def supp_list_nil) 
+
+lemma fresh_list_cons:
+  fixes a :: "'x"
+  and   x :: "'a"
+  and   xs :: "'a list"
+  shows "a\<sharp>(x#xs) = (a\<sharp>x \<and> a\<sharp>xs)"
+  by (simp add: fresh_def supp_list_cons)
+
+lemma fresh_list_append:
+  fixes a :: "'x"
+  and   xs :: "'a list"
+  and   ys :: "'a list"
+  shows "a\<sharp>(xs@ys) = (a\<sharp>xs \<and> a\<sharp>ys)"
+  by (simp add: fresh_def supp_list_append)
+
+lemma fresh_list_rev:
+  fixes a :: "'x"
+  and   xs :: "'a list"
+  shows "a\<sharp>(rev xs) = a\<sharp>xs"
+  by (simp add: fresh_def supp_list_rev)
+
+lemma fresh_none:
+  fixes a :: "'x"
+  shows "a\<sharp>None"
+  apply(simp add: fresh_def supp_none)
+  done
+
+lemma fresh_some:
+  fixes a :: "'x"
+  and   x :: "'a"
+  shows "a\<sharp>(Some x) = a\<sharp>x"
+  apply(simp add: fresh_def supp_some)
+  done
+
+section {* Abstract Properties for Permutations and  Atoms *}
+(*=========================================================*)
+
+(* properties for being a permutation type *)
+constdefs 
+  "pt TYPE('a) TYPE('x) \<equiv> 
+     (\<forall>(x::'a). ([]::'x prm)\<bullet>x = x) \<and> 
+     (\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). (pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)) \<and> 
+     (\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). pi1 \<sim> pi2 \<longrightarrow> pi1\<bullet>x = pi2\<bullet>x)"
+
+(* properties for being an atom type *)
+constdefs 
+  "at TYPE('x) \<equiv> 
+     (\<forall>(x::'x). ([]::'x prm)\<bullet>x = x) \<and>
+     (\<forall>(a::'x) (b::'x) (pi::'x prm) (x::'x). ((a,b)#(pi::'x prm))\<bullet>x = swap (a,b) (pi\<bullet>x)) \<and> 
+     (\<forall>(a::'x) (b::'x) (c::'x). swap (a,b) c = (if a=c then b else (if b=c then a else c))) \<and> 
+     (infinite (UNIV::'x set))"
+
+(* property of two atom-types being disjoint *)
+constdefs
+  "disjoint TYPE('x) TYPE('y) \<equiv> 
+       (\<forall>(pi::'x prm)(x::'y). pi\<bullet>x = x) \<and> 
+       (\<forall>(pi::'y prm)(x::'x). pi\<bullet>x = x)"
+
+(* composition property of two permutation on a type 'a *)
+constdefs
+  "cp TYPE ('a) TYPE('x) TYPE('y) \<equiv> 
+      (\<forall>(pi2::'y prm) (pi1::'x prm) (x::'a) . pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x))" 
+
+(* property of having finite support *)
+constdefs 
+  "fs TYPE('a) TYPE('x) \<equiv> \<forall>(x::'a). finite ((supp x)::'x set)"
+
+section {* Lemmas about the atom-type properties*}
+(*==============================================*)
+
+lemma at1: 
+  fixes x::"'x"
+  assumes a: "at TYPE('x)"
+  shows "([]::'x prm)\<bullet>x = x"
+  using a by (simp add: at_def)
+
+lemma at2: 
+  fixes a ::"'x"
+  and   b ::"'x"
+  and   x ::"'x"
+  and   pi::"'x prm"
+  assumes a: "at TYPE('x)"
+  shows "((a,b)#pi)\<bullet>x = swap (a,b) (pi\<bullet>x)"
+  using a by (simp only: at_def)
+
+lemma at3: 
+  fixes a ::"'x"
+  and   b ::"'x"
+  and   c ::"'x"
+  assumes a: "at TYPE('x)"
+  shows "swap (a,b) c = (if a=c then b else (if b=c then a else c))"
+  using a by (simp only: at_def)
+
+(* rules to calculate simple premutations *)
+lemmas at_calc = at2 at1 at3
+
+lemma at4: 
+  assumes a: "at TYPE('x)"
+  shows "infinite (UNIV::'x set)"
+  using a by (simp add: at_def)
+
+lemma at_append:
+  fixes pi1 :: "'x prm"
+  and   pi2 :: "'x prm"
+  and   c   :: "'x"
+  assumes at: "at TYPE('x)" 
+  shows "(pi1@pi2)\<bullet>c = pi1\<bullet>(pi2\<bullet>c)"
+proof (induct pi1)
+  case Nil show ?case by (simp add: at1[OF at])
+next
+  case (Cons x xs)
+  assume i: "(xs @ pi2)\<bullet>c  =  xs\<bullet>(pi2\<bullet>c)"
+  have "(x#xs)@pi2 = x#(xs@pi2)" by simp
+  thus ?case using i by (cases "x", simp add:  at2[OF at])
+qed
+ 
+lemma at_swap:
+  fixes a :: "'x"
+  and   b :: "'x"
+  and   c :: "'x"
+  assumes at: "at TYPE('x)" 
+  shows "swap (a,b) (swap (a,b) c) = c"
+  by (auto simp add: at3[OF at])
+
+lemma at_rev_pi:
+  fixes pi :: "'x prm"
+  and   c  :: "'x"
+  assumes at: "at TYPE('x)"
+  shows "(rev pi)\<bullet>(pi\<bullet>c) = c"
+proof(induct pi)
+  case Nil show ?case by (simp add: at1[OF at])
+next
+  case (Cons x xs) thus ?case 
+    by (cases "x", simp add: at2[OF at] at_append[OF at] at1[OF at] at_swap[OF at])
+qed
+
+lemma at_pi_rev:
+  fixes pi :: "'x prm"
+  and   x  :: "'x"
+  assumes at: "at TYPE('x)"
+  shows "pi\<bullet>((rev pi)\<bullet>x) = x"
+  by (rule at_rev_pi[OF at, of "rev pi" _,simplified])
+
+lemma at_bij1: 
+  fixes pi :: "'x prm"
+  and   x  :: "'x"
+  and   y  :: "'x"
+  assumes at: "at TYPE('x)"
+  and     a:  "(pi\<bullet>x) = y"
+  shows   "x=(rev pi)\<bullet>y"
+proof -
+  from a have "y=(pi\<bullet>x)" by (rule sym)
+  thus ?thesis by (simp only: at_rev_pi[OF at])
+qed
+
+lemma at_bij2: 
+  fixes pi :: "'x prm"
+  and   x  :: "'x"
+  and   y  :: "'x"
+  assumes at: "at TYPE('x)"
+  and     a:  "((rev pi)\<bullet>x) = y"
+  shows   "x=pi\<bullet>y"
+proof -
+  from a have "y=((rev pi)\<bullet>x)" by (rule sym)
+  thus ?thesis by (simp only: at_pi_rev[OF at])
+qed
+
+lemma at_bij:
+  fixes pi :: "'x prm"
+  and   x  :: "'x"
+  and   y  :: "'x"
+  assumes at: "at TYPE('x)"
+  shows "(pi\<bullet>x = pi\<bullet>y) = (x=y)"
+proof 
+  assume "pi\<bullet>x = pi\<bullet>y" 
+  hence  "x=(rev pi)\<bullet>(pi\<bullet>y)" by (rule at_bij1[OF at]) 
+  thus "x=y" by (simp only: at_rev_pi[OF at])
+next
+  assume "x=y"
+  thus "pi\<bullet>x = pi\<bullet>y" by simp
+qed
+
+lemma at_supp:
+  fixes x :: "'x"
+  assumes at: "at TYPE('x)"
+  shows "supp x = {x}"
+proof (simp add: supp_def Collect_conj_eq Collect_imp_eq at_calc[OF at], auto)
+  assume f: "finite {b::'x. b \<noteq> x}"
+  have a1: "{b::'x. b \<noteq> x} = UNIV-{x}" by force
+  have a2: "infinite (UNIV::'x set)" by (rule at4[OF at])
+  from f a1 a2 show False by force
+qed
+
+lemma at_fresh:
+  fixes a :: "'x"
+  and   b :: "'x"
+  assumes at: "at TYPE('x)"
+  shows "(a\<sharp>b) = (a\<noteq>b)" 
+  by (simp add: at_supp[OF at] fresh_def)
+
+lemma at_prm_fresh[rule_format]:
+  fixes c :: "'x"
+  and   pi:: "'x prm"
+  assumes at: "at TYPE('x)"
+  shows "c\<sharp>pi \<longrightarrow> pi\<bullet>c = c"
+apply(induct pi)
+apply(simp add: at1[OF at]) 
+apply(force simp add: fresh_list_cons at2[OF at] fresh_prod at_fresh[OF at] at3[OF at])
+done
+
+lemma at_prm_rev_eq:
+  fixes pi1 :: "'x prm"
+  and   pi2 :: "'x prm"
+  assumes at: "at TYPE('x)"
+  shows a: "((rev pi1) \<sim> (rev pi2)) = (pi1 \<sim> pi2)"
+proof (simp add: prm_eq_def, auto)
+  fix x
+  assume "\<forall>x::'x. (rev pi1)\<bullet>x = (rev pi2)\<bullet>x"
+  hence "(rev (pi1::'x prm))\<bullet>(pi2\<bullet>(x::'x)) = (rev (pi2::'x prm))\<bullet>(pi2\<bullet>x)" by simp
+  hence "(rev (pi1::'x prm))\<bullet>((pi2::'x prm)\<bullet>x) = (x::'x)" by (simp add: at_rev_pi[OF at])
+  hence "(pi2::'x prm)\<bullet>x = (pi1::'x prm)\<bullet>x" by (simp add: at_bij2[OF at])
+  thus "pi1 \<bullet> x  =  pi2 \<bullet> x" by simp
+next
+  fix x
+  assume "\<forall>x::'x. pi1\<bullet>x = pi2\<bullet>x"
+  hence "(pi1::'x prm)\<bullet>((rev pi2)\<bullet>x) = (pi2::'x prm)\<bullet>((rev pi2)\<bullet>(x::'x))" by simp
+  hence "(pi1::'x prm)\<bullet>((rev pi2)\<bullet>(x::'x)) = x" by (simp add: at_pi_rev[OF at])
+  hence "(rev pi2)\<bullet>x = (rev pi1)\<bullet>(x::'x)" by (simp add: at_bij1[OF at])
+  thus "(rev pi1)\<bullet>x = (rev pi2)\<bullet>(x::'x)" by simp
+qed
+  
+lemma at_prm_rev_eq1:
+  fixes pi1 :: "'x prm"
+  and   pi2 :: "'x prm"
+  assumes at: "at TYPE('x)"
+  shows "pi1 \<sim> pi2 \<Longrightarrow> (rev pi1) \<sim> (rev pi2)"
+  by (simp add: at_prm_rev_eq[OF at])
+
+lemma at_ds1:
+  fixes a  :: "'x"
+  assumes at: "at TYPE('x)"
+  shows "[(a,a)] \<sim> []"
+  by (force simp add: prm_eq_def at_calc[OF at])
+
+lemma at_ds2: 
+  fixes pi :: "'x prm"
+  and   a  :: "'x"
+  and   b  :: "'x"
+  assumes at: "at TYPE('x)"
+  shows "(pi@[((rev pi)\<bullet>a,(rev pi)\<bullet>b)]) \<sim> ([(a,b)]@pi)"
+  by (force simp add: prm_eq_def at_append[OF at] at_bij[OF at] at_pi_rev[OF at] 
+      at_rev_pi[OF at] at_calc[OF at])
+
+lemma at_ds3: 
+  fixes a  :: "'x"
+  and   b  :: "'x"
+  and   c  :: "'x"
+  assumes at: "at TYPE('x)"
+  and     a:  "distinct [a,b,c]"
+  shows "[(a,c),(b,c),(a,c)] \<sim> [(a,b)]"
+  using a by (force simp add: prm_eq_def at_calc[OF at])
+
+lemma at_ds4: 
+  fixes a  :: "'x"
+  and   b  :: "'x"
+  and   pi  :: "'x prm"
+  assumes at: "at TYPE('x)"
+  shows "(pi@[(a,(rev pi)\<bullet>b)]) \<sim> ([(pi\<bullet>a,b)]@pi)"
+  by (force simp add: prm_eq_def at_append[OF at] at_calc[OF at] at_bij[OF at] 
+      at_pi_rev[OF at] at_rev_pi[OF at])
+
+lemma at_ds5: 
+  fixes a  :: "'x"
+  and   b  :: "'x"
+  assumes at: "at TYPE('x)"
+  shows "[(a,b)] \<sim> [(b,a)]"
+  by (force simp add: prm_eq_def at_calc[OF at])
+
+lemma at_ds6: 
+  fixes a  :: "'x"
+  and   b  :: "'x"
+  and   c  :: "'x"
+  assumes at: "at TYPE('x)"
+  and     a: "distinct [a,b,c]"
+  shows "[(a,c),(a,b)] \<sim> [(b,c),(a,c)]"
+  using a by (force simp add: prm_eq_def at_calc[OF at])
+
+lemma at_ds7:
+  fixes pi :: "'x prm"
+  assumes at: "at TYPE('x)"
+  shows "((rev pi)@pi) \<sim> []"
+  by (simp add: prm_eq_def at1[OF at] at_append[OF at] at_rev_pi[OF at])
+
+lemma at_ds8_aux:
+  fixes pi :: "'x prm"
+  and   a  :: "'x"
+  and   b  :: "'x"
+  and   c  :: "'x"
+  assumes at: "at TYPE('x)"
+  shows "pi\<bullet>(swap (a,b) c) = swap (pi\<bullet>a,pi\<bullet>b) (pi\<bullet>c)"
+  by (force simp add: at_calc[OF at] at_bij[OF at])
+
+lemma at_ds8: 
+  fixes pi1 :: "'x prm"
+  and   pi2 :: "'x prm"
+  and   a  :: "'x"
+  and   b  :: "'x"
+  assumes at: "at TYPE('x)"
+  shows "(pi1@pi2) \<sim> ((pi1\<bullet>pi2)@pi1)"
+apply(induct_tac pi2)
+apply(simp add: prm_eq_def)
+apply(auto simp add: prm_eq_def)
+apply(simp add: at2[OF at])
+apply(drule_tac x="aa" in spec)
+apply(drule sym)
+apply(simp)
+apply(simp add: at_append[OF at])
+apply(simp add: at2[OF at])
+apply(simp add: at_ds8_aux[OF at])
+done
+
+lemma at_ds9: 
+  fixes pi1 :: "'x prm"
+  and   pi2 :: "'x prm"
+  and   a  :: "'x"
+  and   b  :: "'x"
+  assumes at: "at TYPE('x)"
+  shows " ((rev pi2)@(rev pi1)) \<sim> ((rev pi1)@(rev (pi1\<bullet>pi2)))"
+apply(induct_tac pi2)
+apply(simp add: prm_eq_def)
+apply(auto simp add: prm_eq_def)
+apply(simp add: at_append[OF at])
+apply(simp add: at2[OF at] at1[OF at])
+apply(drule_tac x="swap(pi1\<bullet>a,pi1\<bullet>b) aa" in spec)
+apply(drule sym)
+apply(simp)
+apply(simp add: at_ds8_aux[OF at])
+apply(simp add: at_rev_pi[OF at])
+done
+
+--"there always exists an atom not being in a finite set"
+lemma ex_in_inf:
+  fixes   A::"'x set"
+  assumes at: "at TYPE('x)"
+  and     fs: "finite A"
+  shows "\<exists>c::'x. c\<notin>A"
+proof -
+  from  fs at4[OF at] have "infinite ((UNIV::'x set) - A)" 
+    by (simp add: Diff_infinite_finite)
+  hence "((UNIV::'x set) - A) \<noteq> ({}::'x set)" by (force simp only:)
+  hence "\<exists>c::'x. c\<in>((UNIV::'x set) - A)" by force
+  thus "\<exists>c::'x. c\<notin>A" by force
+qed
+
+--"there always exists a fresh name for an object with finite support"
+lemma at_exists_fresh: 
+  fixes  x :: "'a"
+  assumes at: "at TYPE('x)"
+  and     fs: "finite ((supp x)::'x set)"
+  shows "\<exists>c::'x. c\<sharp>x"
+  by (simp add: fresh_def, rule ex_in_inf[OF at, OF fs])
+
+--"the at-props imply the pt-props"
+lemma at_pt_inst:
+  assumes at: "at TYPE('x)"
+  shows "pt TYPE('x) TYPE('x)"
+apply(auto simp only: pt_def)
+apply(simp only: at1[OF at])
+apply(simp only: at_append[OF at]) 
+apply(simp add: prm_eq_def)
+done
+
+section {* finite support properties *}
+(*===================================*)
+
+lemma fs1:
+  fixes x :: "'a"
+  assumes a: "fs TYPE('a) TYPE('x)"
+  shows "finite ((supp x)::'x set)"
+  using a by (simp add: fs_def)
+
+lemma fs_at_inst:
+  fixes a :: "'x"
+  assumes at: "at TYPE('x)"
+  shows "fs TYPE('x) TYPE('x)"
+apply(simp add: fs_def) 
+apply(simp add: at_supp[OF at])
+done
+
+lemma fs_unit_inst:
+  shows "fs TYPE(unit) TYPE('x)"
+apply(simp add: fs_def)
+apply(simp add: supp_unit)
+done
+
+lemma fs_prod_inst:
+  assumes fsa: "fs TYPE('a) TYPE('x)"
+  and     fsb: "fs TYPE('b) TYPE('x)"
+  shows "fs TYPE('a\<times>'b) TYPE('x)"
+apply(unfold fs_def)
+apply(auto simp add: supp_prod)
+apply(rule fs1[OF fsa])
+apply(rule fs1[OF fsb])
+done
+
+lemma fs_list_inst:
+  assumes fs: "fs TYPE('a) TYPE('x)"
+  shows "fs TYPE('a list) TYPE('x)"
+apply(simp add: fs_def, rule allI)
+apply(induct_tac x)
+apply(simp add: supp_list_nil)
+apply(simp add: supp_list_cons)
+apply(rule fs1[OF fs])
+done
+
+lemma fs_bool_inst:
+  shows "fs TYPE(bool) TYPE('x)"
+apply(simp add: fs_def, rule allI)
+apply(simp add: supp_bool)
+done
+
+lemma fs_int_inst:
+  shows "fs TYPE(int) TYPE('x)"
+apply(simp add: fs_def, rule allI)
+apply(simp add: supp_int)
+done
+
+section {* Lemmas about the permutation properties *}
+(*=================================================*)
+
+lemma pt1:
+  fixes x::"'a"
+  assumes a: "pt TYPE('a) TYPE('x)"
+  shows "([]::'x prm)\<bullet>x = x"
+  using a by (simp add: pt_def)
+
+lemma pt2: 
+  fixes pi1::"'x prm"
+  and   pi2::"'x prm"
+  and   x  ::"'a"
+  assumes a: "pt TYPE('a) TYPE('x)"
+  shows "(pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)"
+  using a by (simp add: pt_def)
+
+lemma pt3:
+  fixes pi1::"'x prm"
+  and   pi2::"'x prm"
+  and   x  ::"'a"
+  assumes a: "pt TYPE('a) TYPE('x)"
+  shows "pi1 \<sim> pi2 \<Longrightarrow> pi1\<bullet>x = pi2\<bullet>x"
+  using a by (simp add: pt_def)
+
+lemma pt3_rev:
+  fixes pi1::"'x prm"
+  and   pi2::"'x prm"
+  and   x  ::"'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "pi1 \<sim> pi2 \<Longrightarrow> (rev pi1)\<bullet>x = (rev pi2)\<bullet>x"
+  by (rule pt3[OF pt], simp add: at_prm_rev_eq[OF at])
+
+section {* composition properties *}
+(* ============================== *)
+lemma cp1:
+  fixes pi1::"'x prm"
+  and   pi2::"'y prm"
+  and   x  ::"'a"
+  assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)"
+  shows "pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x)"
+  using cp by (simp add: cp_def)
+
+lemma cp_pt_inst:
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "cp TYPE('a) TYPE('x) TYPE('x)"
+apply(auto simp add: cp_def pt2[OF pt,symmetric])
+apply(rule pt3[OF pt])
+apply(rule at_ds8[OF at])
+done
+
+section {* permutation type instances *}
+(* ===================================*)
+
+lemma pt_set_inst:
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  shows  "pt TYPE('a set) TYPE('x)"
+apply(simp add: pt_def)
+apply(simp_all add: perm_set_def)
+apply(simp add: pt1[OF pt])
+apply(force simp add: pt2[OF pt] pt3[OF pt])
+done
+
+lemma pt_list_nil: 
+  fixes xs :: "'a list"
+  assumes pt: "pt TYPE('a) TYPE ('x)"
+  shows "([]::'x prm)\<bullet>xs = xs" 
+apply(induct_tac xs)
+apply(simp_all add: pt1[OF pt])
+done
+
+lemma pt_list_append: 
+  fixes pi1 :: "'x prm"
+  and   pi2 :: "'x prm"
+  and   xs  :: "'a list"
+  assumes pt: "pt TYPE('a) TYPE ('x)"
+  shows "(pi1@pi2)\<bullet>xs = pi1\<bullet>(pi2\<bullet>xs)"
+apply(induct_tac xs)
+apply(simp_all add: pt2[OF pt])
+done
+
+lemma pt_list_prm_eq: 
+  fixes pi1 :: "'x prm"
+  and   pi2 :: "'x prm"
+  and   xs  :: "'a list"
+  assumes pt: "pt TYPE('a) TYPE ('x)"
+  shows "pi1 \<sim> pi2  \<Longrightarrow> pi1\<bullet>xs = pi2\<bullet>xs"
+apply(induct_tac xs)
+apply(simp_all add: prm_eq_def pt3[OF pt])
+done
+
+lemma pt_list_inst:
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  shows  "pt TYPE('a list) TYPE('x)"
+apply(auto simp only: pt_def)
+apply(rule pt_list_nil[OF pt])
+apply(rule pt_list_append[OF pt])
+apply(rule pt_list_prm_eq[OF pt],assumption)
+done
+
+lemma pt_unit_inst:
+  shows  "pt TYPE(unit) TYPE('x)"
+  by (simp add: pt_def)
+
+lemma pt_prod_inst:
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('b) TYPE('x)"
+  shows  "pt TYPE('a \<times> 'b) TYPE('x)"
+  apply(auto simp add: pt_def)
+  apply(rule pt1[OF pta])
+  apply(rule pt1[OF ptb])
+  apply(rule pt2[OF pta])
+  apply(rule pt2[OF ptb])
+  apply(rule pt3[OF pta],assumption)
+  apply(rule pt3[OF ptb],assumption)
+  done
+
+lemma pt_fun_inst:
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('b) TYPE('x)"
+  and     at:  "at TYPE('x)"
+  shows  "pt TYPE('a\<Rightarrow>'b) TYPE('x)"
+apply(auto simp only: pt_def)
+apply(simp_all add: perm_fun_def)
+apply(simp add: pt1[OF pta] pt1[OF ptb])
+apply(simp add: pt2[OF pta] pt2[OF ptb])
+apply(subgoal_tac "(rev pi1) \<sim> (rev pi2)")(*A*)
+apply(simp add: pt3[OF pta] pt3[OF ptb])
+(*A*)
+apply(simp add: at_prm_rev_eq[OF at])
+done
+
+lemma pt_option_inst:
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  shows  "pt TYPE('a option) TYPE('x)"
+apply(auto simp only: pt_def)
+apply(case_tac "x")
+apply(simp_all add: pt1[OF pta])
+apply(case_tac "x")
+apply(simp_all add: pt2[OF pta])
+apply(case_tac "x")
+apply(simp_all add: pt3[OF pta])
+done
+
+lemma pt_noption_inst:
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  shows  "pt TYPE('a nOption) TYPE('x)"
+apply(auto simp only: pt_def)
+apply(case_tac "x")
+apply(simp_all add: pt1[OF pta])
+apply(case_tac "x")
+apply(simp_all add: pt2[OF pta])
+apply(case_tac "x")
+apply(simp_all add: pt3[OF pta])
+done
+
+lemma pt_bool_inst:
+  shows  "pt TYPE(bool) TYPE('x)"
+  apply(auto simp add: pt_def)
+  apply(case_tac "x=True", simp add: perm_bool_def, simp add: perm_bool_def)+
+  done
+
+lemma pt_prm_inst:
+  assumes at: "at TYPE('x)"
+  shows  "pt TYPE('x prm) TYPE('x)"
+apply(rule pt_list_inst)
+apply(rule pt_prod_inst)
+apply(rule at_pt_inst[OF at])+
+done
+
+section {* further lemmas for permutation types *}
+(*==============================================*)
+
+lemma pt_rev_pi:
+  fixes pi :: "'x prm"
+  and   x  :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "(rev pi)\<bullet>(pi\<bullet>x) = x"
+proof -
+  have "((rev pi)@pi) \<sim> ([]::'x prm)" by (simp add: at_ds7[OF at])
+  hence "((rev pi)@pi)\<bullet>(x::'a) = ([]::'x prm)\<bullet>x" by (simp add: pt3[OF pt]) 
+  thus ?thesis by (simp add: pt1[OF pt] pt2[OF pt])
+qed
+
+lemma pt_pi_rev:
+  fixes pi :: "'x prm"
+  and   x  :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "pi\<bullet>((rev pi)\<bullet>x) = x"
+  by (simp add: pt_rev_pi[OF pt, OF at,of "rev pi" "x",simplified])
+
+lemma pt_bij1: 
+  fixes pi :: "'x prm"
+  and   x  :: "'a"
+  and   y  :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  and     a:  "(pi\<bullet>x) = y"
+  shows   "x=(rev pi)\<bullet>y"
+proof -
+  from a have "y=(pi\<bullet>x)" by (rule sym)
+  thus ?thesis by (simp only: pt_rev_pi[OF pt, OF at])
+qed
+
+lemma pt_bij2: 
+  fixes pi :: "'x prm"
+  and   x  :: "'a"
+  and   y  :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  and     a:  "x = (rev pi)\<bullet>y"
+  shows   "(pi\<bullet>x)=y"
+  using a by (simp add: pt_pi_rev[OF pt, OF at])
+
+lemma pt_bij:
+  fixes pi :: "'x prm"
+  and   x  :: "'a"
+  and   y  :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "(pi\<bullet>x = pi\<bullet>y) = (x=y)"
+proof 
+  assume "pi\<bullet>x = pi\<bullet>y" 
+  hence  "x=(rev pi)\<bullet>(pi\<bullet>y)" by (rule pt_bij1[OF pt, OF at]) 
+  thus "x=y" by (simp only: pt_rev_pi[OF pt, OF at])
+next
+  assume "x=y"
+  thus "pi\<bullet>x = pi\<bullet>y" by simp
+qed
+
+lemma pt_bij3:
+  fixes pi :: "'x prm"
+  and   x  :: "'a"
+  and   y  :: "'a"
+  assumes a:  "x=y"
+  shows "(pi\<bullet>x = pi\<bullet>y)"
+using a by simp 
+
+lemma pt_bij4:
+  fixes pi :: "'x prm"
+  and   x  :: "'a"
+  and   y  :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  and     a:  "pi\<bullet>x = pi\<bullet>y"
+  shows "x = y"
+using a by (simp add: pt_bij[OF pt, OF at])
+
+lemma pt_swap_bij:
+  fixes a  :: "'x"
+  and   b  :: "'x"
+  and   x  :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "[(a,b)]\<bullet>([(a,b)]\<bullet>x) = x"
+  by (rule pt_bij2[OF pt, OF at], simp)
+
+lemma pt_set_bij1:
+  fixes pi :: "'x prm"
+  and   x  :: "'a"
+  and   X  :: "'a set"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "((pi\<bullet>x)\<in>X) = (x\<in>((rev pi)\<bullet>X))"
+  by (force simp add: perm_set_def pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at])
+
+lemma pt_set_bij1a:
+  fixes pi :: "'x prm"
+  and   x  :: "'a"
+  and   X  :: "'a set"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "(x\<in>(pi\<bullet>X)) = (((rev pi)\<bullet>x)\<in>X)"
+  by (force simp add: perm_set_def pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at])
+
+lemma pt_set_bij:
+  fixes pi :: "'x prm"
+  and   x  :: "'a"
+  and   X  :: "'a set"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "((pi\<bullet>x)\<in>(pi\<bullet>X)) = (x\<in>X)"
+  by (simp add: perm_set_def pt_set_bij1[OF pt, OF at] pt_bij[OF pt, OF at])
+
+lemma pt_set_bij2:
+  fixes pi :: "'x prm"
+  and   x  :: "'a"
+  and   X  :: "'a set"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  and     a:  "x\<in>X"
+  shows "(pi\<bullet>x)\<in>(pi\<bullet>X)"
+  using a by (simp add: pt_set_bij[OF pt, OF at])
+
+lemma pt_set_bij3:
+  fixes pi :: "'x prm"
+  and   x  :: "'a"
+  and   X  :: "'a set"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "pi\<bullet>(x\<in>X) = (x\<in>X)"
+apply(case_tac "x\<in>X = True")
+apply(auto)
+done
+
+lemma pt_list_set_pi:
+  fixes pi :: "'x prm"
+  and   xs :: "'a list"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  shows "pi\<bullet>(set xs) = set (pi\<bullet>xs)"
+by (induct xs, auto simp add: perm_set_def pt1[OF pt])
+
+-- "some helper lemmas for the pt_perm_supp_ineq lemma"
+lemma Collect_permI: 
+  fixes pi :: "'x prm"
+  and   x  :: "'a"
+  assumes a: "\<forall>x. (P1 x = P2 x)" 
+  shows "{pi\<bullet>x| x. P1 x} = {pi\<bullet>x| x. P2 x}"
+  using a by force
+
+lemma Infinite_cong:
+  assumes a: "X = Y"
+  shows "infinite X = infinite Y"
+  using a by (simp)
+
+lemma pt_set_eq_ineq:
+  fixes pi :: "'y prm"
+  assumes pt: "pt TYPE('x) TYPE('y)"
+  and     at: "at TYPE('y)"
+  shows "{pi\<bullet>x| x::'x. P x} = {x::'x. P ((rev pi)\<bullet>x)}"
+  by (force simp only: pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at])
+
+lemma pt_inject_on_ineq:
+  fixes X  :: "'y set"
+  and   pi :: "'x prm"
+  assumes pt: "pt TYPE('y) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "inj_on (perm pi) X"
+proof (unfold inj_on_def, intro strip)
+  fix x::"'y" and y::"'y"
+  assume "pi\<bullet>x = pi\<bullet>y"
+  thus "x=y" by (simp add: pt_bij[OF pt, OF at])
+qed
+
+lemma pt_set_finite_ineq: 
+  fixes X  :: "'x set"
+  and   pi :: "'y prm"
+  assumes pt: "pt TYPE('x) TYPE('y)"
+  and     at: "at TYPE('y)"
+  shows "finite (pi\<bullet>X) = finite X"
+proof -
+  have image: "(pi\<bullet>X) = (perm pi ` X)" by (force simp only: perm_set_def)
+  show ?thesis
+  proof (rule iffI)
+    assume "finite (pi\<bullet>X)"
+    hence "finite (perm pi ` X)" using image by (simp)
+    thus "finite X" using pt_inject_on_ineq[OF pt, OF at] by (rule finite_imageD)
+  next
+    assume "finite X"
+    hence "finite (perm pi ` X)" by (rule finite_imageI)
+    thus "finite (pi\<bullet>X)" using image by (simp)
+  qed
+qed
+
+lemma pt_set_infinite_ineq: 
+  fixes X  :: "'x set"
+  and   pi :: "'y prm"
+  assumes pt: "pt TYPE('x) TYPE('y)"
+  and     at: "at TYPE('y)"
+  shows "infinite (pi\<bullet>X) = infinite X"
+using pt at by (simp add: pt_set_finite_ineq)
+
+lemma pt_perm_supp_ineq:
+  fixes  pi  :: "'x prm"
+  and    x   :: "'a"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('y) TYPE('x)"
+  and     at:  "at TYPE('x)"
+  and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
+  shows "(pi\<bullet>((supp x)::'y set)) = supp (pi\<bullet>x)" (is "?LHS = ?RHS")
+proof -
+  have "?LHS = {pi\<bullet>a | a. infinite {b. [(a,b)]\<bullet>x \<noteq> x}}" by (simp add: supp_def perm_set_def)
+  also have "\<dots> = {pi\<bullet>a | a. infinite {pi\<bullet>b | b. [(a,b)]\<bullet>x \<noteq> x}}" 
+  proof (rule Collect_permI, rule allI, rule iffI)
+    fix a
+    assume "infinite {b::'y. [(a,b)]\<bullet>x  \<noteq> x}"
+    hence "infinite (pi\<bullet>{b::'y. [(a,b)]\<bullet>x \<noteq> x})" by (simp add: pt_set_infinite_ineq[OF ptb, OF at])
+    thus "infinite {pi\<bullet>b |b::'y. [(a,b)]\<bullet>x  \<noteq> x}" by (simp add: perm_set_def)
+  next
+    fix a
+    assume "infinite {pi\<bullet>b |b::'y. [(a,b)]\<bullet>x \<noteq> x}"
+    hence "infinite (pi\<bullet>{b::'y. [(a,b)]\<bullet>x \<noteq> x})" by (simp add: perm_set_def)
+    thus "infinite {b::'y. [(a,b)]\<bullet>x  \<noteq> x}" 
+      by (simp add: pt_set_infinite_ineq[OF ptb, OF at])
+  qed
+  also have "\<dots> = {a. infinite {b::'y. [((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x \<noteq> x}}" 
+    by (simp add: pt_set_eq_ineq[OF ptb, OF at])
+  also have "\<dots> = {a. infinite {b. pi\<bullet>([((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x) \<noteq> (pi\<bullet>x)}}"
+    by (simp add: pt_bij[OF pta, OF at])
+  also have "\<dots> = {a. infinite {b. [(a,b)]\<bullet>(pi\<bullet>x) \<noteq> (pi\<bullet>x)}}"
+  proof (rule Collect_cong, rule Infinite_cong, rule Collect_cong)
+    fix a::"'y" and b::"'y"
+    have "pi\<bullet>(([((rev pi)\<bullet>a,(rev pi)\<bullet>b)])\<bullet>x) = [(a,b)]\<bullet>(pi\<bullet>x)"
+      by (simp add: cp1[OF cp] pt_pi_rev[OF ptb, OF at])
+    thus "(pi\<bullet>([((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x) \<noteq>  pi\<bullet>x) = ([(a,b)]\<bullet>(pi\<bullet>x) \<noteq> pi\<bullet>x)" by simp
+  qed
+  finally show "?LHS = ?RHS" by (simp add: supp_def) 
+qed
+
+lemma pt_perm_supp:
+  fixes  pi  :: "'x prm"
+  and    x   :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "(pi\<bullet>((supp x)::'x set)) = supp (pi\<bullet>x)"
+apply(rule pt_perm_supp_ineq)
+apply(rule pt)
+apply(rule at_pt_inst)
+apply(rule at)+
+apply(rule cp_pt_inst)
+apply(rule pt)
+apply(rule at)
+done
+
+lemma pt_supp_finite_pi:
+  fixes  pi  :: "'x prm"
+  and    x   :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  and     f: "finite ((supp x)::'x set)"
+  shows "finite ((supp (pi\<bullet>x))::'x set)"
+apply(simp add: pt_perm_supp[OF pt, OF at, symmetric])
+apply(simp add: pt_set_finite_ineq[OF at_pt_inst[OF at], OF at])
+apply(rule f)
+done
+
+lemma pt_fresh_left_ineq:  
+  fixes  pi :: "'x prm"
+  and     x :: "'a"
+  and     a :: "'y"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('y) TYPE('x)"
+  and     at:  "at TYPE('x)"
+  and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
+  shows "a\<sharp>(pi\<bullet>x) = ((rev pi)\<bullet>a)\<sharp>x"
+apply(simp add: fresh_def)
+apply(simp add: pt_set_bij1[OF ptb, OF at])
+apply(simp add: pt_perm_supp_ineq[OF pta, OF ptb, OF at, OF cp])
+done
+
+lemma pt_fresh_right_ineq:  
+  fixes  pi :: "'x prm"
+  and     x :: "'a"
+  and     a :: "'y"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('y) TYPE('x)"
+  and     at:  "at TYPE('x)"
+  and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
+  shows "(pi\<bullet>a)\<sharp>x = a\<sharp>((rev pi)\<bullet>x)"
+apply(simp add: fresh_def)
+apply(simp add: pt_set_bij1[OF ptb, OF at])
+apply(simp add: pt_perm_supp_ineq[OF pta, OF ptb, OF at, OF cp])
+done
+
+lemma pt_fresh_bij_ineq:
+  fixes  pi :: "'x prm"
+  and     x :: "'a"
+  and     a :: "'y"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('y) TYPE('x)"
+  and     at:  "at TYPE('x)"
+  and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
+  shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x) = a\<sharp>x"
+apply(simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp])
+apply(simp add: pt_rev_pi[OF ptb, OF at])
+done
+
+lemma pt_fresh_left:  
+  fixes  pi :: "'x prm"
+  and     x :: "'a"
+  and     a :: "'x"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "a\<sharp>(pi\<bullet>x) = ((rev pi)\<bullet>a)\<sharp>x"
+apply(rule pt_fresh_left_ineq)
+apply(rule pt)
+apply(rule at_pt_inst)
+apply(rule at)+
+apply(rule cp_pt_inst)
+apply(rule pt)
+apply(rule at)
+done
+
+lemma pt_fresh_right:  
+  fixes  pi :: "'x prm"
+  and     x :: "'a"
+  and     a :: "'x"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "(pi\<bullet>a)\<sharp>x = a\<sharp>((rev pi)\<bullet>x)"
+apply(rule pt_fresh_right_ineq)
+apply(rule pt)
+apply(rule at_pt_inst)
+apply(rule at)+
+apply(rule cp_pt_inst)
+apply(rule pt)
+apply(rule at)
+done
+
+lemma pt_fresh_bij:
+  fixes  pi :: "'x prm"
+  and     x :: "'a"
+  and     a :: "'x"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x) = a\<sharp>x"
+apply(rule pt_fresh_bij_ineq)
+apply(rule pt)
+apply(rule at_pt_inst)
+apply(rule at)+
+apply(rule cp_pt_inst)
+apply(rule pt)
+apply(rule at)
+done
+
+lemma pt_fresh_bij1:
+  fixes  pi :: "'x prm"
+  and     x :: "'a"
+  and     a :: "'x"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  and     a:  "a\<sharp>x"
+  shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x)"
+using a by (simp add: pt_fresh_bij[OF pt, OF at])
+
+lemma pt_perm_fresh1:
+  fixes a :: "'x"
+  and   b :: "'x"
+  and   x :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE ('x)"
+  and     a1: "\<not>(a\<sharp>x)"
+  and     a2: "b\<sharp>x"
+  shows "[(a,b)]\<bullet>x \<noteq> x"
+proof
+  assume neg: "[(a,b)]\<bullet>x = x"
+  from a1 have a1':"a\<in>(supp x)" by (simp add: fresh_def) 
+  from a2 have a2':"b\<notin>(supp x)" by (simp add: fresh_def) 
+  from a1' a2' have a3: "a\<noteq>b" by force
+  from a1' have "([(a,b)]\<bullet>a)\<in>([(a,b)]\<bullet>(supp x))" 
+    by (simp only: pt_set_bij[OF at_pt_inst[OF at], OF at])
+  hence "b\<in>([(a,b)]\<bullet>(supp x))" by (simp add: at_append[OF at] at_calc[OF at])
+  hence "b\<in>(supp ([(a,b)]\<bullet>x))" by (simp add: pt_perm_supp[OF pt,OF at])
+  with a2' neg show False by simp
+qed
+
+-- "three helper lemmas for the perm_fresh_fresh-lemma"
+lemma comprehension_neg_UNIV: "{b. \<not> P b} = UNIV - {b. P b}"
+  by (auto)
+
+lemma infinite_or_neg_infinite:
+  assumes h:"infinite (UNIV::'a set)"
+  shows "infinite {b::'a. P b} \<or> infinite {b::'a. \<not> P b}"
+proof (subst comprehension_neg_UNIV, case_tac "finite {b. P b}")
+  assume j:"finite {b::'a. P b}"
+  have "infinite ((UNIV::'a set) - {b::'a. P b})"
+    using Diff_infinite_finite[OF j h] by auto
+  thus "infinite {b::'a. P b} \<or> infinite (UNIV - {b::'a. P b})" ..
+next
+  assume j:"infinite {b::'a. P b}"
+  thus "infinite {b::'a. P b} \<or> infinite (UNIV - {b::'a. P b})" by simp
+qed
+
+--"the co-set of a finite set is infinte"
+lemma finite_infinite:
+  assumes a: "finite {b::'x. P b}"
+  and     b: "infinite (UNIV::'x set)"        
+  shows "infinite {b. \<not>P b}"
+  using a and infinite_or_neg_infinite[OF b] by simp
+
+lemma pt_fresh_fresh:
+  fixes   x :: "'a"
+  and     a :: "'x"
+  and     b :: "'x"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE ('x)"
+  and     a1: "a\<sharp>x" and a2: "b\<sharp>x" 
+  shows "[(a,b)]\<bullet>x=x"
+proof (cases "a=b")
+  assume c1: "a=b"
+  have "[(a,a)] \<sim> []" by (rule at_ds1[OF at])
+  hence "[(a,b)] \<sim> []" using c1 by simp
+  hence "[(a,b)]\<bullet>x=([]::'x prm)\<bullet>x" by (rule pt3[OF pt])
+  thus ?thesis by (simp only: pt1[OF pt])
+next
+  assume c2: "a\<noteq>b"
+  from a1 have f1: "finite {c. [(a,c)]\<bullet>x \<noteq> x}" by (simp add: fresh_def supp_def)
+  from a2 have f2: "finite {c. [(b,c)]\<bullet>x \<noteq> x}" by (simp add: fresh_def supp_def)
+  from f1 and f2 have f3: "finite {c. perm [(a,c)] x \<noteq> x \<or> perm [(b,c)] x \<noteq> x}" 
+    by (force simp only: Collect_disj_eq)
+  have "infinite {c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}" 
+    by (simp add: finite_infinite[OF f3,OF at4[OF at], simplified])
+  hence "infinite ({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b})" 
+    by (force dest: Diff_infinite_finite)
+  hence "({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b}) \<noteq> {}" 
+    by (auto iff del: finite_Diff_insert Diff_eq_empty_iff)
+  hence "\<exists>c. c\<in>({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b})" by (force)
+  then obtain c 
+    where eq1: "[(a,c)]\<bullet>x = x" 
+      and eq2: "[(b,c)]\<bullet>x = x" 
+      and ineq: "a\<noteq>c \<and> b\<noteq>c"
+    by (force)
+  hence "[(a,c)]\<bullet>([(b,c)]\<bullet>([(a,c)]\<bullet>x)) = x" by simp 
+  hence eq3: "[(a,c),(b,c),(a,c)]\<bullet>x = x" by (simp add: pt2[OF pt,symmetric])
+  from c2 ineq have "[(a,c),(b,c),(a,c)] \<sim> [(a,b)]" by (simp add: at_ds3[OF at])
+  hence "[(a,c),(b,c),(a,c)]\<bullet>x = [(a,b)]\<bullet>x" by (rule pt3[OF pt])
+  thus ?thesis using eq3 by simp
+qed
+
+lemma pt_perm_compose:
+  fixes pi1 :: "'x prm"
+  and   pi2 :: "'x prm"
+  and   x  :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "pi2\<bullet>(pi1\<bullet>x) = (pi2\<bullet>pi1)\<bullet>(pi2\<bullet>x)" 
+proof -
+  have "(pi2@pi1) \<sim> ((pi2\<bullet>pi1)@pi2)" by (rule at_ds8)
+  hence "(pi2@pi1)\<bullet>x = ((pi2\<bullet>pi1)@pi2)\<bullet>x" by (rule pt3[OF pt])
+  thus ?thesis by (simp add: pt2[OF pt])
+qed
+
+lemma pt_perm_compose_rev:
+  fixes pi1 :: "'x prm"
+  and   pi2 :: "'x prm"
+  and   x  :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "(rev pi2)\<bullet>((rev pi1)\<bullet>x) = (rev pi1)\<bullet>(rev (pi1\<bullet>pi2)\<bullet>x)" 
+proof -
+  have "((rev pi2)@(rev pi1)) \<sim> ((rev pi1)@(rev (pi1\<bullet>pi2)))" by (rule at_ds9[OF at])
+  hence "((rev pi2)@(rev pi1))\<bullet>x = ((rev pi1)@(rev (pi1\<bullet>pi2)))\<bullet>x" by (rule pt3[OF pt])
+  thus ?thesis by (simp add: pt2[OF pt])
+qed
+
+section {* facts about supports *}
+(*==============================*)
+
+lemma supports_subset:
+  fixes x  :: "'a"
+  and   S1 :: "'x set"
+  and   S2 :: "'x set"
+  assumes  a: "S1 supports x"
+  and      b: "S1\<subseteq>S2"
+  shows "S2 supports x"
+  using a b
+  by (force simp add: "op supports_def")
+
+lemma supp_supports:
+  fixes x :: "'a"
+  assumes  pt: "pt TYPE('a) TYPE('x)"
+  and      at: "at TYPE ('x)"
+  shows "((supp x)::'x set) supports x"
+proof (unfold "op supports_def", intro strip)
+  fix a b
+  assume "(a::'x)\<notin>(supp x) \<and> (b::'x)\<notin>(supp x)"
+  hence "a\<sharp>x" and "b\<sharp>x" by (auto simp add: fresh_def)
+  thus "[(a,b)]\<bullet>x = x" by (rule pt_fresh_fresh[OF pt, OF at])
+qed
+
+lemma supp_is_subset:
+  fixes S :: "'x set"
+  and   x :: "'a"
+  assumes a1: "S supports x"
+  and     a2: "finite S"
+  shows "(supp x)\<subseteq>S"
+proof (rule ccontr)
+  assume "\<not>(supp x \<subseteq> S)"
+  hence "\<exists>a. a\<in>(supp x) \<and> a\<notin>S" by force
+  then obtain a where b1: "a\<in>supp x" and b2: "a\<notin>S" by force
+  from a1 b2 have "\<forall>b. (b\<notin>S \<longrightarrow> ([(a,b)]\<bullet>x = x))" by (unfold "op supports_def", force)
+  with a1 have "{b. [(a,b)]\<bullet>x \<noteq> x}\<subseteq>S" by (unfold "op supports_def", force)
+  with a2 have "finite {b. [(a,b)]\<bullet>x \<noteq> x}" by (simp add: finite_subset)
+  hence "a\<notin>(supp x)" by (unfold supp_def, auto)
+  with b1 show False by simp
+qed
+
+lemma supports_finite:
+  fixes S :: "'x set"
+  and   x :: "'a"
+  assumes a1: "S supports x"
+  and     a2: "finite S"
+  shows "finite ((supp x)::'x set)"
+proof -
+  have "(supp x)\<subseteq>S" using a1 a2 by (rule supp_is_subset)
+  thus ?thesis using a2 by (simp add: finite_subset)
+qed
+  
+lemma supp_is_inter:
+  fixes  x :: "'a"
+  assumes  pt: "pt TYPE('a) TYPE('x)"
+  and      at: "at TYPE ('x)"
+  and      fs: "fs TYPE('a) TYPE('x)"
+  shows "((supp x)::'x set) = (\<Inter> {S. finite S \<and> S supports x})"
+proof (rule equalityI)
+  show "((supp x)::'x set) \<subseteq> (\<Inter> {S. finite S \<and> S supports x})"
+  proof (clarify)
+    fix S c
+    assume b: "c\<in>((supp x)::'x set)" and "finite (S::'x set)" and "S supports x"
+    hence  "((supp x)::'x set)\<subseteq>S" by (simp add: supp_is_subset) 
+    with b show "c\<in>S" by force
+  qed
+next
+  show "(\<Inter> {S. finite S \<and> S supports x}) \<subseteq> ((supp x)::'x set)"
+  proof (clarify, simp)
+    fix c
+    assume d: "\<forall>(S::'x set). finite S \<and> S supports x \<longrightarrow> c\<in>S"
+    have "((supp x)::'x set) supports x" by (rule supp_supports[OF pt, OF at])
+    with d fs1[OF fs] show "c\<in>supp x" by force
+  qed
+qed
+    
+lemma supp_is_least_supports:
+  fixes S :: "'x set"
+  and   x :: "'a"
+  assumes  pt: "pt TYPE('a) TYPE('x)"
+  and      at: "at TYPE ('x)"
+  and      a1: "S supports x"
+  and      a2: "finite S"
+  and      a3: "\<forall>S'. (finite S' \<and> S' supports x) \<longrightarrow> S\<subseteq>S'"
+  shows "S = (supp x)"
+proof (rule equalityI)
+  show "((supp x)::'x set)\<subseteq>S" using a1 a2 by (rule supp_is_subset)
+next
+  have s1: "((supp x)::'x set) supports x" by (rule supp_supports[OF pt, OF at])
+  have "((supp x)::'x set)\<subseteq>S" using a1 a2 by (rule supp_is_subset)
+  hence "finite ((supp x)::'x set)" using a2 by (simp add: finite_subset)
+  with s1 a3 show "S\<subseteq>supp x" by force
+qed
+
+lemma supports_set:
+  fixes S :: "'x set"
+  and   X :: "'a set"
+  assumes  pt: "pt TYPE('a) TYPE('x)"
+  and      at: "at TYPE ('x)"
+  and      a: "\<forall>x\<in>X. (\<forall>(a::'x) (b::'x). a\<notin>S\<and>b\<notin>S \<longrightarrow> ([(a,b)]\<bullet>x)\<in>X)"
+  shows  "S supports X"
+using a
+apply(auto simp add: "op supports_def")
+apply(simp add: pt_set_bij1a[OF pt, OF at])
+apply(force simp add: pt_swap_bij[OF pt, OF at])
+apply(simp add: pt_set_bij1a[OF pt, OF at])
+done
+
+lemma supports_fresh:
+  fixes S :: "'x set"
+  and   a :: "'x"
+  and   x :: "'a"
+  assumes a1: "S supports x"
+  and     a2: "finite S"
+  and     a3: "a\<notin>S"
+  shows "a\<sharp>x"
+proof (simp add: fresh_def)
+  have "(supp x)\<subseteq>S" using a1 a2 by (rule supp_is_subset)
+  thus "a\<notin>(supp x)" using a3 by force
+qed
+
+lemma at_fin_set_supports:
+  fixes X::"'x set"
+  assumes at: "at TYPE('x)"
+  shows "X supports X"
+proof (simp add: "op supports_def", intro strip)
+  fix a b
+  assume "a\<notin>X \<and> b\<notin>X"
+  thus "[(a,b)]\<bullet>X = X" by (force simp add: perm_set_def at_calc[OF at])
+qed
+
+lemma at_fin_set_supp:
+  fixes X::"'x set"
+  assumes at: "at TYPE('x)"
+  and     fs: "finite X"
+  shows "(supp X) = X"
+proof -
+  have pt_set: "pt TYPE('x set) TYPE('x)" 
+    by (rule pt_set_inst[OF at_pt_inst[OF at]])
+  have X_supports_X: "X supports X" by (rule at_fin_set_supports[OF at])
+  show ?thesis using  pt_set at X_supports_X fs
+  proof (rule supp_is_least_supports[symmetric])
+    show "\<forall>S'. finite S' \<and> S' supports X \<longrightarrow> X \<subseteq> S'"
+    proof (auto)
+      fix S'::"'x set" and x::"'x"
+      assume f: "finite S'"
+      and    s: "S' supports X"
+      and    e1: "x\<in>X"
+      show "x\<in>S'"
+      proof (rule ccontr)
+	assume e2: "x\<notin>S'"
+	have "\<exists>b. b\<notin>(X\<union>S')" by (force intro: ex_in_inf[OF at] simp only: fs f)
+	then obtain b where b1: "b\<notin>X" and b2: "b\<notin>S'" by (auto)
+	from s e2 b2 have c1: "[(x,b)]\<bullet>X=X" by (simp add: "op supports_def")
+	from e1 b1 have c2: "[(x,b)]\<bullet>X\<noteq>X" by (force simp add: perm_set_def at_calc[OF at])
+	show "False" using c1 c2 by simp
+      qed
+    qed
+  qed
+qed
+
+section {* Permutations acting on Functions *}
+(*==========================================*)
+
+lemma pt_fun_app_eq:
+  fixes f  :: "'a\<Rightarrow>'b"
+  and   x  :: "'a"
+  and   pi :: "'x prm"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "pi\<bullet>(f x) = (pi\<bullet>f)(pi\<bullet>x)"
+  by (simp add: perm_fun_def pt_rev_pi[OF pt, OF at])
+
+
+--"sometimes pt_fun_app_eq does to much; this lemma 'corrects it'"
+lemma pt_perm:
+  fixes x  :: "'a"
+  and   pi1 :: "'x prm"
+  and   pi2 :: "'x prm"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE ('x)"
+  shows "(pi1\<bullet>perm pi2)(pi1\<bullet>x) = pi1\<bullet>(pi2\<bullet>x)" 
+  by (simp add: pt_fun_app_eq[OF pt, OF at])
+
+
+lemma pt_fun_eq:
+  fixes f  :: "'a\<Rightarrow>'b"
+  and   pi :: "'x prm"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "(pi\<bullet>f = f) = (\<forall> x. pi\<bullet>(f x) = f (pi\<bullet>x))" (is "?LHS = ?RHS")
+proof
+  assume a: "?LHS"
+  show "?RHS"
+  proof
+    fix x
+    have "pi\<bullet>(f x) = (pi\<bullet>f)(pi\<bullet>x)" by (simp add: pt_fun_app_eq[OF pt, OF at])
+    also have "\<dots> = f (pi\<bullet>x)" using a by simp
+    finally show "pi\<bullet>(f x) = f (pi\<bullet>x)" by simp
+  qed
+next
+  assume b: "?RHS"
+  show "?LHS"
+  proof (rule ccontr)
+    assume "(pi\<bullet>f) \<noteq> f"
+    hence "\<exists>c. (pi\<bullet>f) c \<noteq> f c" by (simp add: expand_fun_eq)
+    then obtain c where b1: "(pi\<bullet>f) c \<noteq> f c" by force
+    from b have "pi\<bullet>(f ((rev pi)\<bullet>c)) = f (pi\<bullet>((rev pi)\<bullet>c))" by force
+    hence "(pi\<bullet>f)(pi\<bullet>((rev pi)\<bullet>c)) = f (pi\<bullet>((rev pi)\<bullet>c))" 
+      by (simp add: pt_fun_app_eq[OF pt, OF at])
+    hence "(pi\<bullet>f) c = f c" by (simp add: pt_pi_rev[OF pt, OF at])
+    with b1 show "False" by simp
+  qed
+qed
+
+-- "two helper lemmas for the equivariance of functions"
+lemma pt_swap_eq_aux:
+  fixes   y :: "'a"
+  and    pi :: "'x prm"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     a: "\<forall>(a::'x) (b::'x). [(a,b)]\<bullet>y = y"
+  shows "pi\<bullet>y = y"
+proof(induct pi)
+    case Nil show ?case by (simp add: pt1[OF pt])
+  next
+    case (Cons x xs)
+    have "\<exists>a b. x=(a,b)" by force
+    then obtain a b where p: "x=(a,b)" by force
+    assume i: "xs\<bullet>y = y"
+    have "x#xs = [x]@xs" by simp
+    hence "(x#xs)\<bullet>y = ([x]@xs)\<bullet>y" by simp
+    hence "(x#xs)\<bullet>y = [x]\<bullet>(xs\<bullet>y)" by (simp only: pt2[OF pt])
+    thus ?case using a i p by (force)
+  qed
+
+lemma pt_swap_eq:
+  fixes   y :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  shows "(\<forall>(a::'x) (b::'x). [(a,b)]\<bullet>y = y) = (\<forall>pi::'x prm. pi\<bullet>y = y)"
+  by (force intro: pt_swap_eq_aux[OF pt])
+
+lemma pt_eqvt_fun1a:
+  fixes f     :: "'a\<Rightarrow>'b"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('b) TYPE('x)"
+  and     at:  "at TYPE('x)"
+  and     a:   "((supp f)::'x set)={}"
+  shows "\<forall>(pi::'x prm). pi\<bullet>f = f" 
+proof (intro strip)
+  fix pi
+  have "\<forall>a b. a\<notin>((supp f)::'x set) \<and> b\<notin>((supp f)::'x set) \<longrightarrow> (([(a,b)]\<bullet>f) = f)" 
+    by (intro strip, fold fresh_def, 
+      simp add: pt_fresh_fresh[OF pt_fun_inst[OF pta, OF ptb, OF at],OF at])
+  with a have "\<forall>(a::'x) (b::'x). ([(a,b)]\<bullet>f) = f" by force
+  hence "\<forall>(pi::'x prm). pi\<bullet>f = f" 
+    by (simp add: pt_swap_eq[OF pt_fun_inst[OF pta, OF ptb, OF at]])
+  thus "(pi::'x prm)\<bullet>f = f" by simp
+qed
+
+lemma pt_eqvt_fun1b:
+  fixes f     :: "'a\<Rightarrow>'b"
+  assumes a: "\<forall>(pi::'x prm). pi\<bullet>f = f"
+  shows "((supp f)::'x set)={}"
+using a by (simp add: supp_def)
+
+lemma pt_eqvt_fun1:
+  fixes f     :: "'a\<Rightarrow>'b"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('b) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "(((supp f)::'x set)={}) = (\<forall>(pi::'x prm). pi\<bullet>f = f)" (is "?LHS = ?RHS")
+by (rule iffI, simp add: pt_eqvt_fun1a[OF pta, OF ptb, OF at], simp add: pt_eqvt_fun1b)
+
+lemma pt_eqvt_fun2a:
+  fixes f     :: "'a\<Rightarrow>'b"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('b) TYPE('x)"
+  and     at: "at TYPE('x)"
+  assumes a: "((supp f)::'x set)={}"
+  shows "\<forall>(pi::'x prm) (x::'a). pi\<bullet>(f x) = f(pi\<bullet>x)" 
+proof (intro strip)
+  fix pi x
+  from a have b: "\<forall>(pi::'x prm). pi\<bullet>f = f" by (simp add: pt_eqvt_fun1[OF pta, OF ptb, OF at]) 
+  have "(pi::'x prm)\<bullet>(f x) = (pi\<bullet>f)(pi\<bullet>x)" by (simp add: pt_fun_app_eq[OF pta, OF at]) 
+  with b show "(pi::'x prm)\<bullet>(f x) = f (pi\<bullet>x)" by force 
+qed
+
+lemma pt_eqvt_fun2b:
+  fixes f     :: "'a\<Rightarrow>'b"
+  assumes pt1: "pt TYPE('a) TYPE('x)"
+  and     pt2: "pt TYPE('b) TYPE('x)"
+  and     at: "at TYPE('x)"
+  assumes a: "\<forall>(pi::'x prm) (x::'a). pi\<bullet>(f x) = f(pi\<bullet>x)"
+  shows "((supp f)::'x set)={}"
+proof -
+  from a have "\<forall>(pi::'x prm). pi\<bullet>f = f" by (simp add: pt_fun_eq[OF pt1, OF at, symmetric])
+  thus ?thesis by (simp add: supp_def)
+qed
+
+lemma pt_eqvt_fun2:
+  fixes f     :: "'a\<Rightarrow>'b"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('b) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "(((supp f)::'x set)={}) = (\<forall>(pi::'x prm) (x::'a). pi\<bullet>(f x) = f(pi\<bullet>x))" 
+by (rule iffI, 
+    simp add: pt_eqvt_fun2a[OF pta, OF ptb, OF at], 
+    simp add: pt_eqvt_fun2b[OF pta, OF ptb, OF at])
+
+lemma pt_supp_fun_subset:
+  fixes f :: "'a\<Rightarrow>'b"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('b) TYPE('x)"
+  and     at: "at TYPE('x)" 
+  and     f1: "finite ((supp f)::'x set)"
+  and     f2: "finite ((supp x)::'x set)"
+  shows "supp (f x) \<subseteq> (((supp f)\<union>(supp x))::'x set)"
+proof -
+  have s1: "((supp f)\<union>((supp x)::'x set)) supports (f x)"
+  proof (simp add: "op supports_def", fold fresh_def, auto)
+    fix a::"'x" and b::"'x"
+    assume "a\<sharp>f" and "b\<sharp>f"
+    hence a1: "[(a,b)]\<bullet>f = f" 
+      by (rule pt_fresh_fresh[OF pt_fun_inst[OF pta, OF ptb, OF at], OF at])
+    assume "a\<sharp>x" and "b\<sharp>x"
+    hence a2: "[(a,b)]\<bullet>x = x" by (rule pt_fresh_fresh[OF pta, OF at])
+    from a1 a2 show "[(a,b)]\<bullet>(f x) = (f x)" by (simp add: pt_fun_app_eq[OF pta, OF at])
+  qed
+  from f1 f2 have "finite ((supp f)\<union>((supp x)::'x set))" by force
+  with s1 show ?thesis by (rule supp_is_subset)
+qed
+      
+lemma pt_empty_supp_fun_subset:
+  fixes f :: "'a\<Rightarrow>'b"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('b) TYPE('x)"
+  and     at:  "at TYPE('x)" 
+  and     e:   "(supp f)=({}::'x set)"
+  shows "supp (f x) \<subseteq> ((supp x)::'x set)"
+proof (unfold supp_def, auto)
+  fix a::"'x"
+  assume a1: "finite {b. [(a, b)]\<bullet>x \<noteq> x}"
+  assume "infinite {b. [(a, b)]\<bullet>(f x) \<noteq> f x}"
+  hence a2: "infinite {b. f ([(a, b)]\<bullet>x) \<noteq> f x}" using e
+    by (simp add: pt_eqvt_fun2[OF pta, OF ptb, OF at])
+  have a3: "{b. f ([(a,b)]\<bullet>x) \<noteq> f x}\<subseteq>{b. [(a,b)]\<bullet>x \<noteq> x}" by force
+  from a1 a2 a3 show False by (force dest: finite_subset)
+qed
+
+section {* Andy's freshness lemma *}
+(*================================*)
+
+lemma freshness_lemma:
+  fixes h :: "'x\<Rightarrow>'a"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     at:  "at TYPE('x)" 
+  and     f1:  "finite ((supp h)::'x set)"
+  and     a: "\<exists>a::'x. (a\<sharp>h \<and> a\<sharp>(h a))"
+  shows  "\<exists>fr::'a. \<forall>a::'x. a\<sharp>h \<longrightarrow> (h a) = fr"
+proof -
+  have ptb: "pt TYPE('x) TYPE('x)" by (simp add: at_pt_inst[OF at]) 
+  have ptc: "pt TYPE('x\<Rightarrow>'a) TYPE('x)" by (simp add: pt_fun_inst[OF ptb, OF pta, OF at]) 
+  from a obtain a0 where a1: "a0\<sharp>h" and a2: "a0\<sharp>(h a0)" by force
+  show ?thesis
+  proof
+    let ?fr = "h (a0::'x)"
+    show "\<forall>(a::'x). (a\<sharp>h \<longrightarrow> ((h a) = ?fr))" 
+    proof (intro strip)
+      fix a
+      assume a3: "(a::'x)\<sharp>h"
+      show "h (a::'x) = h a0"
+      proof (cases "a=a0")
+	case True thus "h (a::'x) = h a0" by simp
+      next
+	case False 
+	assume "a\<noteq>a0"
+	hence c1: "a\<notin>((supp a0)::'x set)" by  (simp add: fresh_def[symmetric] at_fresh[OF at])
+	have c2: "a\<notin>((supp h)::'x set)" using a3 by (simp add: fresh_def)
+	from c1 c2 have c3: "a\<notin>((supp h)\<union>((supp a0)::'x set))" by force
+	have f2: "finite ((supp a0)::'x set)" by (simp add: at_supp[OF at])
+	from f1 f2 have "((supp (h a0))::'x set)\<subseteq>((supp h)\<union>(supp a0))"
+	  by (simp add: pt_supp_fun_subset[OF ptb, OF pta, OF at])
+	hence "a\<notin>((supp (h a0))::'x set)" using c3 by force
+	hence "a\<sharp>(h a0)" by (simp add: fresh_def) 
+	with a2 have d1: "[(a0,a)]\<bullet>(h a0) = (h a0)" by (rule pt_fresh_fresh[OF pta, OF at])
+	from a1 a3 have d2: "[(a0,a)]\<bullet>h = h" by (rule pt_fresh_fresh[OF ptc, OF at])
+	from d1 have "h a0 = [(a0,a)]\<bullet>(h a0)" by simp
+	also have "\<dots>= ([(a0,a)]\<bullet>h)([(a0,a)]\<bullet>a0)" by (simp add: pt_fun_app_eq[OF ptb, OF at])
+	also have "\<dots> = h ([(a0,a)]\<bullet>a0)" using d2 by simp
+	also have "\<dots> = h a" by (simp add: at_calc[OF at])
+	finally show "h a = h a0" by simp
+      qed
+    qed
+  qed
+qed
+	    
+lemma freshness_lemma_unique:
+  fixes h :: "'x\<Rightarrow>'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)" 
+  and     f1: "finite ((supp h)::'x set)"
+  and     a: "\<exists>(a::'x). (a\<sharp>h \<and> a\<sharp>(h a))"
+  shows  "\<exists>!(fr::'a). \<forall>(a::'x). a\<sharp>h \<longrightarrow> (h a) = fr"
+proof
+  from pt at f1 a show "\<exists>fr::'a. \<forall>a::'x. a\<sharp>h \<longrightarrow> h a = fr" by (simp add: freshness_lemma)
+next
+  fix fr1 fr2
+  assume b1: "\<forall>a::'x. a\<sharp>h \<longrightarrow> h a = fr1"
+  assume b2: "\<forall>a::'x. a\<sharp>h \<longrightarrow> h a = fr2"
+  from a obtain a where "(a::'x)\<sharp>h" by force 
+  with b1 b2 have "h a = fr1 \<and> h a = fr2" by force
+  thus "fr1 = fr2" by force
+qed
+
+-- "packaging the freshness lemma into a function"
+constdefs
+  fresh_fun :: "('x\<Rightarrow>'a)\<Rightarrow>'a"
+  "fresh_fun (h) \<equiv> THE fr. (\<forall>(a::'x). a\<sharp>h \<longrightarrow> (h a) = fr)"
+
+lemma fresh_fun_app:
+  fixes h :: "'x\<Rightarrow>'a"
+  and   a :: "'x"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)" 
+  and     f1: "finite ((supp h)::'x set)"
+  and     a: "\<exists>(a::'x). (a\<sharp>h \<and> a\<sharp>(h a))"
+  and     b: "a\<sharp>h"
+  shows "(fresh_fun h) = (h a)"
+proof (unfold fresh_fun_def, rule the_equality)
+  show "\<forall>(a'::'x). a'\<sharp>h \<longrightarrow> h a' = h a"
+  proof (intro strip)
+    fix a'::"'x"
+    assume c: "a'\<sharp>h"
+    from pt at f1 a have "\<exists>(fr::'a). \<forall>(a::'x). a\<sharp>h \<longrightarrow> (h a) = fr" by (rule freshness_lemma)
+    with b c show "h a' = h a" by force
+  qed
+next
+  fix fr::"'a"
+  assume "\<forall>a. a\<sharp>h \<longrightarrow> h a = fr"
+  with b show "fr = h a" by force
+qed
+
+
+lemma fresh_fun_supports:
+  fixes h :: "'x\<Rightarrow>'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)" 
+  and     f1: "finite ((supp h)::'x set)"
+  and     a: "\<exists>(a::'x). (a\<sharp>h \<and> a\<sharp>(h a))"
+  shows "((supp h)::'x set) supports (fresh_fun h)"
+  apply(simp add: "op supports_def")
+  apply(fold fresh_def)
+  apply(auto)
+  apply(subgoal_tac "\<exists>(a''::'x). a''\<sharp>(h,a,b)")(*A*)
+  apply(erule exE)
+  apply(simp add: fresh_prod)
+  apply(auto)
+  apply(rotate_tac 2)
+  apply(drule fresh_fun_app[OF pt, OF at, OF f1, OF a])
+  apply(simp add: at_fresh[OF at])
+  apply(simp add: pt_fun_app_eq[OF at_pt_inst[OF at], OF at])
+  apply(auto simp add: at_calc[OF at])
+  apply(subgoal_tac "[(a, b)]\<bullet>h = h")(*B*)
+  apply(simp)
+  (*B*)
+  apply(rule pt_fresh_fresh[OF pt_fun_inst[OF at_pt_inst[OF at], OF pt], OF at, OF at])
+  apply(assumption)+
+  (*A*)
+  apply(rule at_exists_fresh[OF at])
+  apply(simp add: supp_prod)
+  apply(simp add: f1 at_supp[OF at])
+  done
+
+lemma fresh_fun_equiv:
+  fixes h :: "'x\<Rightarrow>'a"
+  and   pi:: "'x prm"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     at:  "at TYPE('x)" 
+  and     f1:  "finite ((supp h)::'x set)"
+  and     a1: "\<exists>(a::'x). (a\<sharp>h \<and> a\<sharp>(h a))"
+  shows "pi\<bullet>(fresh_fun h) = fresh_fun(pi\<bullet>h)" (is "?LHS = ?RHS")
+proof -
+  have ptb: "pt TYPE('x) TYPE('x)" by (simp add: at_pt_inst[OF at]) 
+  have ptc: "pt TYPE('x\<Rightarrow>'a) TYPE('x)" by (simp add: pt_fun_inst[OF ptb, OF pta, OF at]) 
+  have f2: "finite ((supp (pi\<bullet>h))::'x set)"
+  proof -
+    from f1 have "finite (pi\<bullet>((supp h)::'x set))" by (simp add: pt_set_finite_ineq[OF ptb, OF at])
+    thus ?thesis by (simp add: pt_perm_supp[OF ptc, OF at])
+  qed
+  from a1 obtain a' where c0: "a'\<sharp>h \<and> a'\<sharp>(h a')" by force
+  hence c1: "a'\<sharp>h" and c2: "a'\<sharp>(h a')" by simp_all
+  have c3: "(pi\<bullet>a')\<sharp>(pi\<bullet>h)" using c1 by (simp add: pt_fresh_bij[OF ptc, OF at])
+  have c4: "(pi\<bullet>a')\<sharp>(pi\<bullet>h) (pi\<bullet>a')"
+  proof -
+    from c2 have "(pi\<bullet>a')\<sharp>(pi\<bullet>(h a'))" by (simp add: pt_fresh_bij[OF pta, OF at])
+    thus ?thesis by (simp add: pt_fun_app_eq[OF ptb, OF at])
+  qed
+  have a2: "\<exists>(a::'x). (a\<sharp>(pi\<bullet>h) \<and> a\<sharp>((pi\<bullet>h) a))" using c3 c4 by force
+  have d1: "?LHS = pi\<bullet>(h a')" using c1 a1 by (simp add: fresh_fun_app[OF pta, OF at, OF f1])
+  have d2: "?RHS = (pi\<bullet>h) (pi\<bullet>a')" using c3 a2 by (simp add: fresh_fun_app[OF pta, OF at, OF f2])
+  show ?thesis using d1 d2 by (simp add: pt_fun_app_eq[OF ptb, OF at])
+qed
+  
+section {* disjointness properties *}
+(*=================================*)
+lemma dj_perm_forget:
+  fixes pi::"'y prm"
+  and   x ::"'x"
+  assumes dj: "disjoint TYPE('x) TYPE('y)"
+  shows "pi\<bullet>x=x"
+  using dj by (simp add: disjoint_def)
+
+lemma dj_perm_perm_forget:
+  fixes pi1::"'x prm"
+  and   pi2::"'y prm"
+  assumes dj: "disjoint TYPE('x) TYPE('y)"
+  shows "pi2\<bullet>pi1=pi1"
+  using dj by (induct pi1, auto simp add: disjoint_def)
+
+lemma dj_cp:
+  fixes pi1::"'x prm"
+  and   pi2::"'y prm"
+  and   x  ::"'a"
+  assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)"
+  and     dj: "disjoint TYPE('y) TYPE('x)"
+  shows "pi1\<bullet>(pi2\<bullet>x) = (pi2)\<bullet>(pi1\<bullet>x)"
+  by (simp add: cp1[OF cp] dj_perm_perm_forget[OF dj])
+
+lemma dj_supp:
+  fixes a::"'x"
+  assumes dj: "disjoint TYPE('x) TYPE('y)"
+  shows "(supp a) = ({}::'y set)"
+apply(simp add: supp_def dj_perm_forget[OF dj])
+done
+
+
+section {* composition instances *}
+(* ============================= *)
+
+lemma cp_list_inst:
+  assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
+  shows "cp TYPE ('a list) TYPE('x) TYPE('y)"
+using c1
+apply(simp add: cp_def)
+apply(auto)
+apply(induct_tac x)
+apply(auto)
+done
+
+lemma cp_set_inst:
+  assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
+  shows "cp TYPE ('a set) TYPE('x) TYPE('y)"
+using c1
+apply(simp add: cp_def)
+apply(auto)
+apply(auto simp add: perm_set_def)
+apply(rule_tac x="pi2\<bullet>aa" in exI)
+apply(auto)
+done
+
+lemma cp_option_inst:
+  assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
+  shows "cp TYPE ('a option) TYPE('x) TYPE('y)"
+using c1
+apply(simp add: cp_def)
+apply(auto)
+apply(case_tac x)
+apply(auto)
+done
+
+lemma cp_noption_inst:
+  assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
+  shows "cp TYPE ('a nOption) TYPE('x) TYPE('y)"
+using c1
+apply(simp add: cp_def)
+apply(auto)
+apply(case_tac x)
+apply(auto)
+done
+
+lemma cp_unit_inst:
+  shows "cp TYPE (unit) TYPE('x) TYPE('y)"
+apply(simp add: cp_def)
+done
+
+lemma cp_bool_inst:
+  shows "cp TYPE (bool) TYPE('x) TYPE('y)"
+apply(simp add: cp_def)
+apply(rule allI)+
+apply(induct_tac x)
+apply(simp_all)
+done
+
+lemma cp_prod_inst:
+  assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
+  and     c2: "cp TYPE ('b) TYPE('x) TYPE('y)"
+  shows "cp TYPE ('a\<times>'b) TYPE('x) TYPE('y)"
+using c1 c2
+apply(simp add: cp_def)
+done
+
+lemma cp_fun_inst:
+  assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
+  and     c2: "cp TYPE ('b) TYPE('x) TYPE('y)"
+  and     pt: "pt TYPE ('y) TYPE('x)"
+  and     at: "at TYPE ('x)"
+  shows "cp TYPE ('a\<Rightarrow>'b) TYPE('x) TYPE('y)"
+using c1 c2
+apply(auto simp add: cp_def perm_fun_def expand_fun_eq)
+apply(simp add: perm_rev[symmetric])
+apply(simp add: pt_rev_pi[OF pt_list_inst[OF pt_prod_inst[OF pt, OF pt]], OF at])
+done
+
+
+section {* Abstraction function *}
+(*==============================*)
+
+lemma pt_abs_fun_inst:
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "pt TYPE('x\<Rightarrow>('a nOption)) TYPE('x)"
+  by (rule pt_fun_inst[OF at_pt_inst[OF at],OF pt_noption_inst[OF pt],OF at])
+
+constdefs
+  abs_fun :: "'x\<Rightarrow>'a\<Rightarrow>('x\<Rightarrow>('a nOption))" ("[_]._" [100,100] 100)
+  "[a].x \<equiv> (\<lambda>b. (if b=a then nSome(x) else (if b\<sharp>x then nSome([(a,b)]\<bullet>x) else nNone)))"
+
+lemma abs_fun_if: 
+  fixes pi :: "'x prm"
+  and   x  :: "'a"
+  and   y  :: "'a"
+  and   c  :: "bool"
+  shows "pi\<bullet>(if c then x else y) = (if c then (pi\<bullet>x) else (pi\<bullet>y))"   
+  by force
+
+lemma abs_fun_pi_ineq:
+  fixes a  :: "'y"
+  and   x  :: "'a"
+  and   pi :: "'x prm"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('y) TYPE('x)"
+  and     at:  "at TYPE('x)"
+  and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
+  shows "pi\<bullet>([a].x) = [(pi\<bullet>a)].(pi\<bullet>x)"
+  apply(simp add: abs_fun_def perm_fun_def abs_fun_if)
+  apply(simp only: expand_fun_eq)
+  apply(rule allI)
+  apply(subgoal_tac "(((rev pi)\<bullet>(xa::'y)) = (a::'y)) = (xa = pi\<bullet>a)")(*A*)
+  apply(subgoal_tac "(((rev pi)\<bullet>xa)\<sharp>x) = (xa\<sharp>(pi\<bullet>x))")(*B*)
+  apply(subgoal_tac "pi\<bullet>([(a,(rev pi)\<bullet>xa)]\<bullet>x) = [(pi\<bullet>a,xa)]\<bullet>(pi\<bullet>x)")(*C*)
+  apply(simp)
+(*C*)
+  apply(simp add: cp1[OF cp])
+  apply(simp add: pt_pi_rev[OF ptb, OF at])
+(*B*)
+  apply(simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp])
+(*A*)
+  apply(rule iffI)
+  apply(rule pt_bij2[OF ptb, OF at, THEN sym])
+  apply(simp)
+  apply(rule pt_bij2[OF ptb, OF at])
+  apply(simp)
+done
+
+lemma abs_fun_pi:
+  fixes a  :: "'x"
+  and   x  :: "'a"
+  and   pi :: "'x prm"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "pi\<bullet>([a].x) = [(pi\<bullet>a)].(pi\<bullet>x)"
+apply(rule abs_fun_pi_ineq)
+apply(rule pt)
+apply(rule at_pt_inst)
+apply(rule at)+
+apply(rule cp_pt_inst)
+apply(rule pt)
+apply(rule at)
+done
+
+lemma abs_fun_eq1: 
+  fixes x  :: "'a"
+  and   y  :: "'a"
+  and   a  :: "'x"
+  shows "([a].x = [a].y) = (x = y)"
+apply(auto simp add: abs_fun_def)
+apply(auto simp add: expand_fun_eq)
+apply(drule_tac x="a" in spec)
+apply(simp)
+done
+
+lemma abs_fun_eq2:
+  fixes x  :: "'a"
+  and   y  :: "'a"
+  and   a  :: "'x"
+  and   b  :: "'x"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+      and at: "at TYPE('x)"
+      and a1: "a\<noteq>b" 
+      and a2: "[a].x = [b].y" 
+  shows "x=[(a,b)]\<bullet>y\<and>a\<sharp>y"
+proof -
+  from a2 have a3: 
+         "\<forall>c::'x. (if c=a then nSome(x) else (if c\<sharp>x then nSome([(a,c)]\<bullet>x) else nNone))
+                = (if c=b then nSome(y) else (if c\<sharp>y then nSome([(b,c)]\<bullet>y) else nNone))"
+         (is "\<forall>c::'x. ?P c = ?Q c")
+    by (force simp add: abs_fun_def expand_fun_eq)
+  from a3 have "?P a = ?Q a" by (blast)
+  hence a4: "nSome(x) = ?Q a" by simp
+  from a3 have "?P b = ?Q b" by (blast)
+  hence a5: "nSome(y) = ?P b" by simp
+  show ?thesis using a4 a5
+  proof (cases "a\<sharp>y")
+    assume a6: "a\<sharp>y"
+    hence a7: "x = [(b,a)]\<bullet>y" using a4 a1 by simp
+    have "[(a,b)]\<bullet>y = [(b,a)]\<bullet>y" by (rule pt3[OF pt], rule at_ds5[OF at])
+    thus ?thesis using a6 a7 by simp
+  next
+    assume "\<not>a\<sharp>y"
+    hence "nSome(x) = nNone" using a1 a4 by simp
+    hence False by force
+    thus ?thesis by force
+  qed
+qed
+
+lemma abs_fun_eq3: 
+  fixes x  :: "'a"
+  and   y  :: "'a"
+  and   a   :: "'x"
+  and   b   :: "'x"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+      and at: "at TYPE('x)"
+      and a1: "a\<noteq>b" 
+      and a2: "x=[(a,b)]\<bullet>y" 
+      and a3: "a\<sharp>y" 
+  shows "[a].x =[b].y"
+proof -
+  show ?thesis using a1 a2 a3
+    apply(auto simp add: abs_fun_def)
+    apply(simp only: expand_fun_eq)
+    apply(rule allI)
+    apply(case_tac "x=a")
+    apply(simp)
+    apply(rule pt3[OF pt], rule at_ds5[OF at])
+    apply(case_tac "x=b")
+    apply(simp add: pt_swap_bij[OF pt, OF at])
+    apply(simp add: at_calc[OF at] at_bij[OF at] pt_fresh_left[OF pt, OF at])
+    apply(simp only: if_False)
+    apply(simp add: at_calc[OF at] at_bij[OF at] pt_fresh_left[OF pt, OF at])
+    apply(rule impI)
+    apply(subgoal_tac "[(a,x)]\<bullet>([(a,b)]\<bullet>y) = [(b,x)]\<bullet>([(a,x)]\<bullet>y)")(*A*)
+    apply(simp)
+    apply(simp only:  pt_bij[OF pt, OF at])
+    apply(rule pt_fresh_fresh[OF pt, OF at])
+    apply(assumption)+
+    (*A*)
+    apply(simp only: pt2[OF pt, symmetric])
+    apply(rule pt3[OF pt])
+    apply(simp, rule at_ds6[OF at])
+    apply(force)
+    done
+  qed
+
+lemma abs_fun_eq: 
+  fixes x  :: "'a"
+  and   y  :: "'a"
+  and   a  :: "'x"
+  and   b  :: "'x"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+      and at: "at TYPE('x)"
+  shows "([a].x = [b].y) = ((a=b \<and> x=y)\<or>(a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y))"
+proof (rule iffI)
+  assume b: "[a].x = [b].y"
+  show "(a=b \<and> x=y)\<or>(a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y)"
+  proof (cases "a=b")
+    case True with b show ?thesis by (simp add: abs_fun_eq1)
+  next
+    case False with b show ?thesis by (simp add: abs_fun_eq2[OF pt, OF at])
+  qed
+next
+  assume "(a=b \<and> x=y)\<or>(a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y)"
+  thus "[a].x = [b].y"
+  proof
+    assume "a=b \<and> x=y" thus ?thesis by simp
+  next
+    assume "a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y" 
+    thus ?thesis by (simp add: abs_fun_eq3[OF pt, OF at])
+  qed
+qed
+
+-- "two helpers for the abst_supp_approx-lemma"
+lemma finite_minus:   
+  assumes a: "finite {b. P b}"
+  shows "finite {b. b \<noteq> x \<and> P b}" 
+  using a by (force simp add: Collect_conj_eq)
+
+lemma infinite_minus: 
+  assumes a: "infinite {b. P b}" 
+  shows "infinite {b. b \<noteq> x \<and> P b}"
+proof -
+  have "{b. b \<noteq> x \<and> P b}={b. P b}-{x}" by force
+  with a show ?thesis by force
+qed
+
+lemma abs_fun_supp_approx:
+  fixes x :: "'a"
+  and   a :: "'x"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "((supp ([a].x))::'x set) \<subseteq> (supp x)\<union>{a}"
+proof (unfold supp_def, auto simp only: abs_fun_pi[OF pt, OF at] at_calc[OF at] if_False)
+  fix c
+  assume a: "c\<noteq>a"
+  assume "finite {b::'x. [(c, b)]\<bullet>x \<noteq> x}"
+  hence f: "finite {b::'x. b\<noteq>a \<and> [(c, b)]\<bullet>x \<noteq> x}" by (rule finite_minus)
+  assume "infinite {b::'x. [(if (b=a) then c else a)].([(c,b)]\<bullet>x) \<noteq> ([a].x)}"
+  hence "infinite {b::'x. b\<noteq>a \<and> [(if (b=a) then c else a)].([(c,b)]\<bullet>x) \<noteq> ([a].x)}" 
+    by (rule infinite_minus)
+  hence i: "infinite {b::'x. b\<noteq>a \<and> [a].([(c,b)]\<bullet>x) \<noteq> ([a].x)}"
+  proof (auto split add: split_if_asm)
+    assume c1: "infinite {b::'x. b\<noteq>a \<and> (b=a \<or> b\<noteq>a \<and> [a].([(c,b)]\<bullet>x) \<noteq> ([a].x))}"
+    assume c2: "finite {b::'x. b\<noteq>a \<and>  [a].([(c, b)]\<bullet>x) \<noteq> ([a].x)}"
+    have "{b::'x. b\<noteq>a \<and> (b=a \<or> b\<noteq>a \<and> [a].([(c,b)]\<bullet>x) \<noteq> ([a].x))} =
+          {b::'x. b\<noteq>a \<and> [a].([(c,b)]\<bullet>x) \<noteq> ([a].x)}" by force
+    with c1 c2 show False by simp
+  qed
+  from f i show False by (simp add: abs_fun_eq1) 
+qed
+
+lemma abs_fun_finite_supp:
+  fixes x :: "'a"
+  and   a :: "'x"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  and     f:  "finite ((supp x)::'x set)"
+  shows "finite ((supp ([a].x))::'x set)"
+proof -
+  from f have f1: "finite (((supp x)::'x set)\<union>{a})" by force
+  thus ?thesis using abs_fun_supp_approx[OF pt, OF at, of "a" "x"]
+   by (simp add: finite_subset)
+qed
+
+lemma fresh_abs_funI1:
+  fixes  x :: "'a"
+  and    a :: "'x"
+  and    b :: "'x"
+  assumes pt:  "pt TYPE('a) TYPE('x)"
+  and     at:   "at TYPE('x)"
+  and f:  "finite ((supp x)::'x set)"
+  and a1: "b\<sharp>x" 
+  and a2: "a\<noteq>b"
+  shows "b\<sharp>([a].x)"
+  proof -
+    have "\<exists>c::'x. c\<sharp>(b,a,x,[a].x)" 
+    proof (rule at_exists_fresh[OF at], auto simp add: supp_prod at_supp[OF at] f)
+      show "finite ((supp ([a].x))::'x set)" using f
+	by (simp add: abs_fun_finite_supp[OF pt, OF at])	
+    qed
+    then obtain c where fr1: "c\<noteq>b"
+                  and   fr2: "c\<noteq>a"
+                  and   fr3: "c\<sharp>x"
+                  and   fr4: "c\<sharp>([a].x)"
+                  by (force simp add: fresh_prod at_fresh[OF at])
+    have e: "[(c,b)]\<bullet>([a].x) = [a].([(c,b)]\<bullet>x)" using a2 fr1 fr2 
+      by (force simp add: abs_fun_pi[OF pt, OF at] at_calc[OF at])
+    from fr4 have "([(c,b)]\<bullet>c)\<sharp> ([(c,b)]\<bullet>([a].x))"
+      by (simp add: pt_fresh_bij[OF pt_abs_fun_inst[OF pt, OF at], OF at])
+    hence "b\<sharp>([a].([(c,b)]\<bullet>x))" using fr1 fr2 e  
+      by (simp add: at_calc[OF at])
+    thus ?thesis using a1 fr3 
+      by (simp add: pt_fresh_fresh[OF pt, OF at])
+qed
+
+lemma fresh_abs_funE:
+  fixes a :: "'x"
+  and   b :: "'x"
+  and   x :: "'a"
+  assumes pt:  "pt TYPE('a) TYPE('x)"
+  and     at:  "at TYPE('x)"
+  and     f:  "finite ((supp x)::'x set)"
+  and     a1: "b\<sharp>([a].x)" 
+  and     a2: "b\<noteq>a" 
+  shows "b\<sharp>x"
+proof -
+  have "\<exists>c::'x. c\<sharp>(b,a,x,[a].x)"
+  proof (rule at_exists_fresh[OF at], auto simp add: supp_prod at_supp[OF at] f)
+    show "finite ((supp ([a].x))::'x set)" using f
+      by (simp add: abs_fun_finite_supp[OF pt, OF at])	
+  qed
+  then obtain c where fr1: "b\<noteq>c"
+                and   fr2: "c\<noteq>a"
+                and   fr3: "c\<sharp>x"
+                and   fr4: "c\<sharp>([a].x)" by (force simp add: fresh_prod at_fresh[OF at])
+  have "[a].x = [(b,c)]\<bullet>([a].x)" using a1 fr4 
+    by (simp add: pt_fresh_fresh[OF pt_abs_fun_inst[OF pt, OF at], OF at])
+  hence "[a].x = [a].([(b,c)]\<bullet>x)" using fr2 a2 
+    by (force simp add: abs_fun_pi[OF pt, OF at] at_calc[OF at])
+  hence b: "([(b,c)]\<bullet>x) = x" by (simp add: abs_fun_eq1)
+  from fr3 have "([(b,c)]\<bullet>c)\<sharp>([(b,c)]\<bullet>x)" 
+    by (simp add: pt_fresh_bij[OF pt, OF at]) 
+  thus ?thesis using b fr1 by (simp add: at_calc[OF at])
+qed
+
+lemma fresh_abs_funI2:
+  fixes a :: "'x"
+  and   x :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  and     f: "finite ((supp x)::'x set)"
+  shows "a\<sharp>([a].x)"
+proof -
+  have "\<exists>c::'x. c\<sharp>(a,x)"
+    by  (rule at_exists_fresh[OF at], auto simp add: supp_prod at_supp[OF at] f) 
+  then obtain c where fr1: "a\<noteq>c" and fr1_sym: "c\<noteq>a" 
+                and   fr2: "c\<sharp>x" by (force simp add: fresh_prod at_fresh[OF at])
+  have "c\<sharp>([a].x)" using f fr1 fr2 by (simp add: fresh_abs_funI1[OF pt, OF at])
+  hence "([(c,a)]\<bullet>c)\<sharp>([(c,a)]\<bullet>([a].x))" using fr1  
+    by (simp only: pt_fresh_bij[OF pt_abs_fun_inst[OF pt, OF at], OF at])
+  hence a: "a\<sharp>([c].([(c,a)]\<bullet>x))" using fr1_sym 
+    by (simp add: abs_fun_pi[OF pt, OF at] at_calc[OF at])
+  have "[c].([(c,a)]\<bullet>x) = ([a].x)" using fr1_sym fr2 
+    by (simp add: abs_fun_eq[OF pt, OF at])
+  thus ?thesis using a by simp
+qed
+
+lemma fresh_abs_fun_iff: 
+  fixes a :: "'x"
+  and   b :: "'x"
+  and   x :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  and     f: "finite ((supp x)::'x set)"
+  shows "(b\<sharp>([a].x)) = (b=a \<or> b\<sharp>x)" 
+  by (auto  dest: fresh_abs_funE[OF pt, OF at,OF f] 
+           intro: fresh_abs_funI1[OF pt, OF at,OF f] 
+                  fresh_abs_funI2[OF pt, OF at,OF f])
+
+lemma abs_fun_supp: 
+  fixes a :: "'x"
+  and   x :: "'a"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  and     f: "finite ((supp x)::'x set)"
+  shows "supp ([a].x) = (supp x)-{a}"
+ by (force simp add: supp_fresh_iff fresh_abs_fun_iff[OF pt, OF at, OF f])
+
+(* maybe needs to be stated by supp -supp *)
+
+lemma abs_fun_supp_ineq: 
+  fixes a :: "'y"
+  and   x :: "'a"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('y) TYPE('x)"
+  and     at:  "at TYPE('x)"
+  and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
+  and     dj:  "disjoint TYPE('y) TYPE('x)"
+  shows "((supp ([a].x))::'x set) = (supp x)"
+apply(auto simp add: supp_def)
+apply(auto simp add: abs_fun_pi_ineq[OF pta, OF ptb, OF at, OF cp])
+apply(auto simp add: dj_perm_forget[OF dj])
+apply(auto simp add: abs_fun_eq1) 
+done
+
+lemma fresh_abs_fun_iff_ineq: 
+  fixes a :: "'y"
+  and   b :: "'x"
+  and   x :: "'a"
+  assumes pta: "pt TYPE('a) TYPE('x)"
+  and     ptb: "pt TYPE('y) TYPE('x)"
+  and     at:  "at TYPE('x)"
+  and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
+  and     dj:  "disjoint TYPE('y) TYPE('x)"
+  shows "b\<sharp>([a].x) = b\<sharp>x" 
+  by (simp add: fresh_def abs_fun_supp_ineq[OF pta, OF ptb, OF at, OF cp, OF dj])
+
+section {* abstraction type for the datatype package (not really needed anymore) *}
+(*===============================================================================*)
+consts
+  "ABS_set" :: "('x\<Rightarrow>('a nOption)) set"
+inductive ABS_set
+  intros
+  ABS_in: "(abs_fun a x)\<in>ABS_set"
+
+typedef (ABS) ('x,'a) ABS = "ABS_set::('x\<Rightarrow>('a nOption)) set"
+proof 
+  fix x::"'a" and a::"'x"
+  show "(abs_fun a x)\<in> ABS_set" by (rule ABS_in)
+qed
+
+syntax ABS :: "type \<Rightarrow> type \<Rightarrow> type" ("\<guillemotleft>_\<guillemotright>_" [1000,1000] 1000)
+
+
+section {* Lemmas for Deciding Permutation Equations *}
+(*===================================================*)
+
+lemma perm_eq_app:
+  fixes f  :: "'a\<Rightarrow>'b"
+  and   x  :: "'a"
+  and   pi :: "'x prm"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "(pi\<bullet>(f x)=y) = ((pi\<bullet>f)(pi\<bullet>x)=y)"
+  by (simp add: pt_fun_app_eq[OF pt, OF at])
+
+lemma perm_eq_lam:
+  fixes f  :: "'a\<Rightarrow>'b"
+  and   x  :: "'a"
+  and   pi :: "'x prm"
+  shows "((pi\<bullet>(\<lambda>x. f x))=y) = ((\<lambda>x. (pi\<bullet>(f ((rev pi)\<bullet>x))))=y)"
+  by (simp add: perm_fun_def)
+
+
+
+(***************************************)
+(* setup for the individial atom-kinds *)
+(* and datatype                        *)
+use "nominal_package.ML"
+setup "NominalPackage.setup"
+
+(**********************************)
+(* setup for induction principles *)
+use "nominal_induct.ML";
+method_setup nominal_induct =
+  {* nominal_induct_method *}
+  {* nominal induction *}
+
+(*******************************)
+(* permutation equality tactic *)
+use "nominal_permeq.ML";
+method_setup perm_simp =
+  {* perm_eq_meth *}
+  {* tactic for deciding equalities involving permutations *}
+
+method_setup perm_simp_debug =
+  {* perm_eq_meth_debug *}
+  {* tactic for deciding equalities involving permutations including debuging facilities*}
+
+method_setup supports_simp =
+  {* supports_meth *}
+  {* tactic for deciding whether something supports semthing else *}
+
+method_setup supports_simp_debug =
+  {* supports_meth_debug *}
+  {* tactic for deciding equalities involving permutations including debuging facilities*}
+
+end
+
+