1.1 --- a/src/Doc/Logics/document/HOL.tex Tue Oct 13 09:21:14 2015 +0200
1.2 +++ b/src/Doc/Logics/document/HOL.tex Tue Oct 13 09:21:15 2015 +0200
1.3 @@ -1013,22 +1013,22 @@
1.4 $[\alpha\,set, \alpha\To\beta\,set]\To(\alpha\times\beta)set$ &
1.5 & general sum of sets
1.6 \end{constants}
1.7 -%\tdx{fst_def} fst p == @a. ? b. p = (a,b)
1.8 -%\tdx{snd_def} snd p == @b. ? a. p = (a,b)
1.9 -%\tdx{split_def} split c p == c (fst p) (snd p)
1.10 +%\tdx{fst_def} fst p == @a. ? b. p = (a,b)
1.11 +%\tdx{snd_def} snd p == @b. ? a. p = (a,b)
1.12 +%\tdx{split_def} case_prod c p == c (fst p) (snd p)
1.13 \begin{ttbox}\makeatletter
1.14 \tdx{Sigma_def} Sigma A B == UN x:A. UN y:B x. {\ttlbrace}(x,y){\ttrbrace}
1.15
1.16 -\tdx{Pair_eq} ((a,b) = (a',b')) = (a=a' & b=b')
1.17 +\tdx{prod.inject} ((a,b) = (a',b')) = (a=a' & b=b')
1.18 \tdx{Pair_inject} [| (a, b) = (a',b'); [| a=a'; b=b' |] ==> R |] ==> R
1.19 -\tdx{PairE} [| !!x y. p = (x,y) ==> Q |] ==> Q
1.20 +\tdx{prod.exhaust} [| !!x y. p = (x,y) ==> Q |] ==> Q
1.21
1.22 \tdx{fst_conv} fst (a,b) = a
1.23 \tdx{snd_conv} snd (a,b) = b
1.24 \tdx{surjective_pairing} p = (fst p,snd p)
1.25
1.26 -\tdx{split} split c (a,b) = c a b
1.27 -\tdx{split_split} R(split c p) = (! x y. p = (x,y) --> R(c x y))
1.28 +\tdx{split} case_prod c (a,b) = c a b
1.29 +\tdx{prod.split} R(case_prod c p) = (! x y. p = (x,y) --> R(c x y))
1.30
1.31 \tdx{SigmaI} [| a:A; b:B a |] ==> (a,b) : Sigma A B
1.32
1.33 @@ -1059,8 +1059,8 @@
1.34 \begin{eqnarray*}
1.35 \hbox{\tt\%($x$,$y$,$z$).\ $t$}
1.36 & \leadsto & \hbox{\tt\%($x$,($y$,$z$)).\ $t$} \\
1.37 - & \leadsto & \hbox{\tt split(\%$x$.\%($y$,$z$).\ $t$)}\\
1.38 - & \leadsto & \hbox{\tt split(\%$x$.\ split(\%$y$ $z$.\ $t$))}
1.39 + & \leadsto & \hbox{\tt case_prod(\%$x$.\%($y$,$z$).\ $t$)}\\
1.40 + & \leadsto & \hbox{\tt case_prod(\%$x$.\ case_prod(\%$y$ $z$.\ $t$))}
1.41 \end{eqnarray*}
1.42 The reverse translation is performed upon printing.
1.43 \begin{warn}