src/FOL/IFOL_lemmas.ML
changeset 21539 c5cf9243ad62
parent 21538 678299eac351
child 21540 f3faed8276e6
--- a/src/FOL/IFOL_lemmas.ML	Sun Nov 26 23:09:25 2006 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,451 +0,0 @@
-(*  Title:      FOL/IFOL_lemmas.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1992  University of Cambridge
-
-Tactics and lemmas for theory IFOL (intuitionistic first-order logic).
-*)
-
-(* ML bindings *)
-
-val refl = thm "refl";
-val subst = thm "subst";
-val conjI = thm "conjI";
-val conjunct1 = thm "conjunct1";
-val conjunct2 = thm "conjunct2";
-val disjI1 = thm "disjI1";
-val disjI2 = thm "disjI2";
-val disjE = thm "disjE";
-val impI = thm "impI";
-val mp = thm "mp";
-val FalseE = thm "FalseE";
-val True_def = thm "True_def";
-val not_def = thm "not_def";
-val iff_def = thm "iff_def";
-val ex1_def = thm "ex1_def";
-val allI = thm "allI";
-val spec = thm "spec";
-val exI = thm "exI";
-val exE = thm "exE";
-val eq_reflection = thm "eq_reflection";
-val iff_reflection = thm "iff_reflection";
-
-structure IFOL =
-struct
-  val thy = the_context ();
-  val refl = refl;
-  val subst = subst;
-  val conjI = conjI;
-  val conjunct1 = conjunct1;
-  val conjunct2 = conjunct2;
-  val disjI1 = disjI1;
-  val disjI2 = disjI2;
-  val disjE = disjE;
-  val impI = impI;
-  val mp = mp;
-  val FalseE = FalseE;
-  val True_def = True_def;
-  val not_def = not_def;
-  val iff_def = iff_def;
-  val ex1_def = ex1_def;
-  val allI = allI;
-  val spec = spec;
-  val exI = exI;
-  val exE = exE;
-  val eq_reflection = eq_reflection;
-  val iff_reflection = iff_reflection;
-end;
-
-
-Goalw [True_def]  "True";
-by (REPEAT (ares_tac [impI] 1)) ;
-qed "TrueI";
-
-(*** Sequent-style elimination rules for & --> and ALL ***)
-
-val major::prems = Goal 
-    "[| P&Q; [| P; Q |] ==> R |] ==> R";
-by (resolve_tac prems 1);
-by (rtac (major RS conjunct1) 1);
-by (rtac (major RS conjunct2) 1);
-qed "conjE";
-
-val major::prems = Goal 
-    "[| P-->Q;  P;  Q ==> R |] ==> R";
-by (resolve_tac prems 1);
-by (rtac (major RS mp) 1);
-by (resolve_tac prems 1);
-qed "impE";
-
-val major::prems = Goal 
-    "[| ALL x. P(x); P(x) ==> R |] ==> R";
-by (resolve_tac prems 1);
-by (rtac (major RS spec) 1);
-qed "allE";
-
-(*Duplicates the quantifier; for use with eresolve_tac*)
-val major::prems = Goal 
-    "[| ALL x. P(x);  [| P(x); ALL x. P(x) |] ==> R \
-\    |] ==> R";
-by (resolve_tac prems 1);
-by (rtac (major RS spec) 1);
-by (rtac major 1);
-qed "all_dupE";
-
-
-(*** Negation rules, which translate between ~P and P-->False ***)
-
-val prems = Goalw [not_def]  "(P ==> False) ==> ~P";
-by (REPEAT (ares_tac (prems@[impI]) 1)) ;
-qed "notI";
-
-Goalw [not_def]  "[| ~P;  P |] ==> R";
-by (etac (mp RS FalseE) 1);
-by (assume_tac 1);
-qed "notE";
-
-Goal "[| P; ~P |] ==> R";
-by (etac notE 1);
-by (assume_tac 1);
-qed "rev_notE";
-
-(*This is useful with the special implication rules for each kind of P. *)
-val prems = Goal 
-    "[| ~P;  (P-->False) ==> Q |] ==> Q";
-by (REPEAT (ares_tac (prems@[impI,notE]) 1)) ;
-qed "not_to_imp";
-
-(* For substitution into an assumption P, reduce Q to P-->Q, substitute into
-   this implication, then apply impI to move P back into the assumptions.
-   To specify P use something like
-      eres_inst_tac [ ("P","ALL y. ?S(x,y)") ] rev_mp 1   *)
-Goal "[| P;  P --> Q |] ==> Q";
-by (etac mp 1);
-by (assume_tac 1);
-qed "rev_mp";
-
-(*Contrapositive of an inference rule*)
-val [major,minor]= Goal "[| ~Q;  P==>Q |] ==> ~P";
-by (rtac (major RS notE RS notI) 1);
-by (etac minor 1) ;
-qed "contrapos";
-
-
-(*** Modus Ponens Tactics ***)
-
-(*Finds P-->Q and P in the assumptions, replaces implication by Q *)
-fun mp_tac i = eresolve_tac [notE,impE] i  THEN  assume_tac i;
-
-(*Like mp_tac but instantiates no variables*)
-fun eq_mp_tac i = eresolve_tac [notE,impE] i  THEN  eq_assume_tac i;
-
-
-(*** If-and-only-if ***)
-
-val prems = Goalw [iff_def] 
-   "[| P ==> Q;  Q ==> P |] ==> P<->Q";
-by (REPEAT (ares_tac (prems@[conjI, impI]) 1)) ;
-qed "iffI";
-
-
-(*Observe use of rewrite_rule to unfold "<->" in meta-assumptions (prems) *)
-val prems = Goalw [iff_def] 
-    "[| P <-> Q;  [| P-->Q; Q-->P |] ==> R |] ==> R";
-by (rtac conjE 1);
-by (REPEAT (ares_tac prems 1)) ;
-qed "iffE";
-
-(* Destruct rules for <-> similar to Modus Ponens *)
-
-Goalw [iff_def]  "[| P <-> Q;  P |] ==> Q";
-by (etac (conjunct1 RS mp) 1);
-by (assume_tac 1);
-qed "iffD1";
-
-val prems = Goalw [iff_def]  "[| P <-> Q;  Q |] ==> P";
-by (etac (conjunct2 RS mp) 1);
-by (assume_tac 1);
-qed "iffD2";
-
-Goal "[| P; P <-> Q |] ==> Q";
-by (etac iffD1 1);
-by (assume_tac 1);
-qed "rev_iffD1";
-
-Goal "[| Q; P <-> Q |] ==> P";
-by (etac iffD2 1);
-by (assume_tac 1);
-qed "rev_iffD2";
-
-Goal "P <-> P";
-by (REPEAT (ares_tac [iffI] 1)) ;
-qed "iff_refl";
-
-Goal "Q <-> P ==> P <-> Q";
-by (etac iffE 1);
-by (rtac iffI 1);
-by (REPEAT (eresolve_tac [asm_rl,mp] 1)) ;
-qed "iff_sym";
-
-Goal "[| P <-> Q;  Q<-> R |] ==> P <-> R";
-by (rtac iffI 1);
-by (REPEAT (eresolve_tac [asm_rl,iffE] 1 ORELSE mp_tac 1)) ;
-qed "iff_trans";
-
-
-(*** Unique existence.  NOTE THAT the following 2 quantifications
-   EX!x such that [EX!y such that P(x,y)]     (sequential)
-   EX!x,y such that P(x,y)                    (simultaneous)
- do NOT mean the same thing.  The parser treats EX!x y.P(x,y) as sequential.
-***)
-
-val prems = Goalw [ex1_def] 
-    "[| P(a);  !!x. P(x) ==> x=a |] ==> EX! x. P(x)";
-by (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ;
-qed "ex1I";
-
-(*Sometimes easier to use: the premises have no shared variables.  Safe!*)
-val [ex,eq] = Goal
-    "[| EX x. P(x);  !!x y. [| P(x); P(y) |] ==> x=y |] ==> EX! x. P(x)";
-by (rtac (ex RS exE) 1);
-by (REPEAT (ares_tac [ex1I,eq] 1)) ;
-qed "ex_ex1I";
-
-val prems = Goalw [ex1_def] 
-    "[| EX! x. P(x);  !!x. [| P(x);  ALL y. P(y) --> y=x |] ==> R |] ==> R";
-by (cut_facts_tac prems 1);
-by (REPEAT (eresolve_tac [exE,conjE] 1 ORELSE ares_tac prems 1)) ;
-qed "ex1E";
-
-
-(*** <-> congruence rules for simplification ***)
-
-(*Use iffE on a premise.  For conj_cong, imp_cong, all_cong, ex_cong*)
-fun iff_tac prems i =
-    resolve_tac (prems RL [iffE]) i THEN
-    REPEAT1 (eresolve_tac [asm_rl,mp] i);
-
-val prems = Goal 
-    "[| P <-> P';  P' ==> Q <-> Q' |] ==> (P&Q) <-> (P'&Q')";
-by (cut_facts_tac prems 1);
-by (REPEAT  (ares_tac [iffI,conjI] 1
-     ORELSE  eresolve_tac [iffE,conjE,mp] 1 
-     ORELSE  iff_tac prems 1)) ;
-qed "conj_cong";
-
-(*Reversed congruence rule!   Used in ZF/Order*)
-val prems = Goal 
-    "[| P <-> P';  P' ==> Q <-> Q' |] ==> (Q&P) <-> (Q'&P')";
-by (cut_facts_tac prems 1);
-by (REPEAT  (ares_tac [iffI,conjI] 1
-     ORELSE  eresolve_tac [iffE,conjE,mp] 1 ORELSE  iff_tac prems 1)) ;
-qed "conj_cong2";
-
-val prems = Goal 
-    "[| P <-> P';  Q <-> Q' |] ==> (P|Q) <-> (P'|Q')";
-by (cut_facts_tac prems 1);
-by (REPEAT  (eresolve_tac [iffE,disjE,disjI1,disjI2] 1
-             ORELSE  ares_tac [iffI] 1 ORELSE  mp_tac 1)) ;
-qed "disj_cong";
-
-val prems = Goal 
-    "[| P <-> P';  P' ==> Q <-> Q' |] ==> (P-->Q) <-> (P'-->Q')";
-by (cut_facts_tac prems 1);
-by (REPEAT   (ares_tac [iffI,impI] 1
-      ORELSE  etac iffE 1 ORELSE  mp_tac 1 ORELSE iff_tac prems 1)) ;
-qed "imp_cong";
-
-val prems = Goal 
-    "[| P <-> P';  Q <-> Q' |] ==> (P<->Q) <-> (P'<->Q')";
-by (cut_facts_tac prems 1);
-by (REPEAT   (etac iffE 1 ORELSE  ares_tac [iffI] 1 ORELSE  mp_tac 1)) ;
-qed "iff_cong";
-
-val prems = Goal 
-    "P <-> P' ==> ~P <-> ~P'";
-by (cut_facts_tac prems 1);
-by (REPEAT   (ares_tac [iffI,notI] 1
-      ORELSE  mp_tac 1 ORELSE  eresolve_tac [iffE,notE] 1)) ;
-qed "not_cong";
-
-val prems = Goal 
-    "(!!x. P(x) <-> Q(x)) ==> (ALL x. P(x)) <-> (ALL x. Q(x))";
-by (REPEAT   (ares_tac [iffI,allI] 1
-     ORELSE   mp_tac 1 ORELSE   etac allE 1 ORELSE iff_tac prems 1)) ;
-qed "all_cong";
-
-val prems = Goal 
-    "(!!x. P(x) <-> Q(x)) ==> (EX x. P(x)) <-> (EX x. Q(x))";
-by (REPEAT   (etac exE 1 ORELSE ares_tac [iffI,exI] 1
-     ORELSE   mp_tac 1 ORELSE   iff_tac prems 1)) ;
-qed "ex_cong";
-
-val prems = Goal 
-    "(!!x. P(x) <-> Q(x)) ==> (EX! x. P(x)) <-> (EX! x. Q(x))";
-by (REPEAT   (eresolve_tac [ex1E, spec RS mp] 1
-       ORELSE ares_tac [iffI,ex1I] 1 ORELSE   mp_tac 1
-       ORELSE   iff_tac prems 1)) ;
-qed "ex1_cong";
-
-(*** Equality rules ***)
-
-Goal "a=b ==> b=a";
-by (etac subst 1);
-by (rtac refl 1) ;
-qed "sym";
-
-Goal "[| a=b;  b=c |] ==> a=c";
-by (etac subst 1 THEN assume_tac 1) ;
-qed "trans";
-
-(** ~ b=a ==> ~ a=b **)
-bind_thm ("not_sym", hd (compose(sym,2,contrapos)));
-
-
-(* Two theorms for rewriting only one instance of a definition:
-   the first for definitions of formulae and the second for terms *)
-
-val prems = goal (the_context()) "(A == B) ==> A <-> B";
-by (rewrite_goals_tac prems);
-by (rtac iff_refl 1);
-qed "def_imp_iff";
-
-val prems = goal (the_context()) "(A == B) ==> A = B";
-by (rewrite_goals_tac prems);
-by (rtac refl 1);
-qed "meta_eq_to_obj_eq";
-
-(*substitution*)
-bind_thm ("ssubst", sym RS subst);
-
-(*A special case of ex1E that would otherwise need quantifier expansion*)
-val prems = Goal
-    "[| EX! x. P(x);  P(a);  P(b) |] ==> a=b";
-by (cut_facts_tac prems 1);
-by (etac ex1E 1);
-by (rtac trans 1);
-by (rtac sym 2);
-by (REPEAT (eresolve_tac [asm_rl, spec RS mp] 1)) ;
-qed "ex1_equalsE";
-
-(** Polymorphic congruence rules **)
-
-Goal "[| a=b |]  ==>  t(a)=t(b)";
-by (etac ssubst 1);
-by (rtac refl 1) ;
-qed "subst_context";
-
-Goal "[| a=b;  c=d |]  ==>  t(a,c)=t(b,d)";
-by (REPEAT (etac ssubst 1));
-by (rtac refl 1) ;
-qed "subst_context2";
-
-Goal "[| a=b;  c=d;  e=f |]  ==>  t(a,c,e)=t(b,d,f)";
-by (REPEAT (etac ssubst 1));
-by (rtac refl 1) ;
-qed "subst_context3";
-
-(*Useful with eresolve_tac for proving equalties from known equalities.
-        a = b
-        |   |
-        c = d   *)
-Goal "[| a=b;  a=c;  b=d |] ==> c=d";
-by (rtac trans 1);
-by (rtac trans 1);
-by (rtac sym 1);
-by (REPEAT (assume_tac 1));
-qed "box_equals";
-
-(*Dual of box_equals: for proving equalities backwards*)
-Goal "[| a=c;  b=d;  c=d |] ==> a=b";
-by (rtac trans 1);
-by (rtac trans 1);
-by (REPEAT (assume_tac 1));
-by (etac sym 1);
-qed "simp_equals";
-
-(** Congruence rules for predicate letters **)
-
-Goal "a=a' ==> P(a) <-> P(a')";
-by (rtac iffI 1);
-by (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ;
-qed "pred1_cong";
-
-Goal "[| a=a';  b=b' |] ==> P(a,b) <-> P(a',b')";
-by (rtac iffI 1);
-by (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ;
-qed "pred2_cong";
-
-Goal "[| a=a';  b=b';  c=c' |] ==> P(a,b,c) <-> P(a',b',c')";
-by (rtac iffI 1);
-by (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ;
-qed "pred3_cong";
-
-(*special cases for free variables P, Q, R, S -- up to 3 arguments*)
-
-val pred_congs = 
-    List.concat (map (fn c => 
-               map (fn th => read_instantiate [("P",c)] th)
-                   [pred1_cong,pred2_cong,pred3_cong])
-               (explode"PQRS"));
-
-(*special case for the equality predicate!*)
-bind_thm ("eq_cong", read_instantiate [("P","op =")] pred2_cong);
-
-
-(*** Simplifications of assumed implications.
-     Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE
-     used with mp_tac (restricted to atomic formulae) is COMPLETE for 
-     intuitionistic propositional logic.  See
-   R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic
-    (preprint, University of St Andrews, 1991)  ***)
-
-val major::prems= Goal 
-    "[| (P&Q)-->S;  P-->(Q-->S) ==> R |] ==> R";
-by (REPEAT (ares_tac ([conjI, impI, major RS mp]@prems) 1)) ;
-qed "conj_impE";
-
-val major::prems= Goal 
-    "[| (P|Q)-->S;  [| P-->S; Q-->S |] ==> R |] ==> R";
-by (DEPTH_SOLVE (ares_tac ([disjI1, disjI2, impI, major RS mp]@prems) 1)) ;
-qed "disj_impE";
-
-(*Simplifies the implication.  Classical version is stronger. 
-  Still UNSAFE since Q must be provable -- backtracking needed.  *)
-val major::prems= Goal 
-    "[| (P-->Q)-->S;  [| P; Q-->S |] ==> Q;  S ==> R |] ==> R";
-by (REPEAT (ares_tac ([impI, major RS mp]@prems) 1)) ;
-qed "imp_impE";
-
-(*Simplifies the implication.  Classical version is stronger. 
-  Still UNSAFE since ~P must be provable -- backtracking needed.  *)
-val major::prems= Goal
-    "[| ~P --> S;  P ==> False;  S ==> R |] ==> R";
-by (REPEAT (ares_tac ([notI, impI, major RS mp]@prems) 1)) ;
-qed "not_impE";
-
-(*Simplifies the implication.   UNSAFE.  *)
-val major::prems= Goal 
-    "[| (P<->Q)-->S;  [| P; Q-->S |] ==> Q;  [| Q; P-->S |] ==> P;  \
-\       S ==> R |] ==> R";
-by (REPEAT (ares_tac ([iffI, impI, major RS mp]@prems) 1)) ;
-qed "iff_impE";
-
-(*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*)
-val major::prems= Goal 
-    "[| (ALL x. P(x))-->S;  !!x. P(x);  S ==> R |] ==> R";
-by (REPEAT (ares_tac ([allI, impI, major RS mp]@prems) 1)) ;
-qed "all_impE";
-
-(*Unsafe: (EX x.P(x))-->S  is equivalent to  ALL x.P(x)-->S.  *)
-val major::prems= Goal 
-    "[| (EX x. P(x))-->S;  P(x)-->S ==> R |] ==> R";
-by (REPEAT (ares_tac ([exI, impI, major RS mp]@prems) 1)) ;
-qed "ex_impE";
-
-(*** Courtesy of Krzysztof Grabczewski ***)
-
-val major::prems = Goal "[| P|Q;  P==>R;  Q==>S |] ==> R|S";
-by (rtac (major RS disjE) 1);
-by (REPEAT (eresolve_tac (prems RL [disjI1, disjI2]) 1));
-qed "disj_imp_disj";