| changeset 57512 | cc97b347b301 |
| parent 55656 | eb07b0acbebc |
| child 58614 | 7338eb25226c |
--- a/src/HOL/Isar_Examples/Fibonacci.thy Fri Jul 04 20:07:08 2014 +0200 +++ b/src/HOL/Isar_Examples/Fibonacci.thy Fri Jul 04 20:18:47 2014 +0200 @@ -92,7 +92,7 @@ proof - assume "0 < n" then have "gcd (n * k + m) n = gcd n (m mod n)" - by (simp add: gcd_non_0_nat add_commute) + by (simp add: gcd_non_0_nat add.commute) also from `0 < n` have "\<dots> = gcd m n" by (simp add: gcd_non_0_nat) finally show ?thesis .