--- a/src/HOL/Proofs/Extraction/Greatest_Common_Divisor.thy Fri Jul 01 10:56:54 2016 +0200
+++ b/src/HOL/Proofs/Extraction/Greatest_Common_Divisor.thy Fri Jul 01 16:52:35 2016 +0200
@@ -10,8 +10,9 @@
begin
theorem greatest_common_divisor:
- "\<And>n::nat. Suc m < n \<Longrightarrow> \<exists>k n1 m1. k * n1 = n \<and> k * m1 = Suc m \<and>
- (\<forall>l l1 l2. l * l1 = n \<longrightarrow> l * l2 = Suc m \<longrightarrow> l \<le> k)"
+ "\<And>n::nat. Suc m < n \<Longrightarrow>
+ \<exists>k n1 m1. k * n1 = n \<and> k * m1 = Suc m \<and>
+ (\<forall>l l1 l2. l * l1 = n \<longrightarrow> l * l2 = Suc m \<longrightarrow> l \<le> k)"
proof (induct m rule: nat_wf_ind)
case (1 m n)
from division obtain r q where h1: "n = Suc m * q + r" and h2: "r \<le> m"
@@ -21,33 +22,28 @@
case 0
with h1 have "Suc m * q = n" by simp
moreover have "Suc m * 1 = Suc m" by simp
- moreover {
- fix l2 have "\<And>l l1. l * l1 = n \<Longrightarrow> l * l2 = Suc m \<Longrightarrow> l \<le> Suc m"
- by (cases l2) simp_all }
+ moreover have "l * l1 = n \<Longrightarrow> l * l2 = Suc m \<Longrightarrow> l \<le> Suc m" for l l1 l2
+ by (cases l2) simp_all
ultimately show ?thesis by iprover
next
case (Suc nat)
with h2 have h: "nat < m" by simp
moreover from h have "Suc nat < Suc m" by simp
ultimately have "\<exists>k m1 r1. k * m1 = Suc m \<and> k * r1 = Suc nat \<and>
- (\<forall>l l1 l2. l * l1 = Suc m \<longrightarrow> l * l2 = Suc nat \<longrightarrow> l \<le> k)"
+ (\<forall>l l1 l2. l * l1 = Suc m \<longrightarrow> l * l2 = Suc nat \<longrightarrow> l \<le> k)"
by (rule 1)
- then obtain k m1 r1 where
- h1': "k * m1 = Suc m"
+ then obtain k m1 r1 where h1': "k * m1 = Suc m"
and h2': "k * r1 = Suc nat"
and h3': "\<And>l l1 l2. l * l1 = Suc m \<Longrightarrow> l * l2 = Suc nat \<Longrightarrow> l \<le> k"
by iprover
have mn: "Suc m < n" by (rule 1)
- from h1 h1' h2' Suc have "k * (m1 * q + r1) = n"
+ from h1 h1' h2' Suc have "k * (m1 * q + r1) = n"
by (simp add: add_mult_distrib2 mult.assoc [symmetric])
- moreover have "\<And>l l1 l2. l * l1 = n \<Longrightarrow> l * l2 = Suc m \<Longrightarrow> l \<le> k"
+ moreover have "l \<le> k" if ll1n: "l * l1 = n" and ll2m: "l * l2 = Suc m" for l l1 l2
proof -
- fix l l1 l2
- assume ll1n: "l * l1 = n"
- assume ll2m: "l * l2 = Suc m"
- moreover have "l * (l1 - l2 * q) = Suc nat"
+ have "l * (l1 - l2 * q) = Suc nat"
by (simp add: diff_mult_distrib2 h1 Suc [symmetric] mn ll1n ll2m [symmetric])
- ultimately show "l \<le> k" by (rule h3')
+ with ll2m show "l \<le> k" by (rule h3')
qed
ultimately show ?thesis using h1' by iprover
qed
@@ -56,8 +52,8 @@
extract greatest_common_divisor
text \<open>
-The extracted program for computing the greatest common divisor is
-@{thm [display] greatest_common_divisor_def}
+ The extracted program for computing the greatest common divisor is
+ @{thm [display] greatest_common_divisor_def}
\<close>
instantiation nat :: default