src/HOL/Isar_Examples/Schroeder_Bernstein.thy
changeset 61938 e1205f814159
child 61939 3c8c390a8f0a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Isar_Examples/Schroeder_Bernstein.thy	Sun Dec 27 16:00:41 2015 +0100
@@ -0,0 +1,59 @@
+(*  Title:      HOL/Isar_Examples/Schroeder_Bernstein.thy
+    Author:     Makarius
+*)
+
+section \<open>Schröder-Bernstein Theorem\<close>
+
+theory Schroeder_Bernstein
+imports Main
+begin
+
+text \<open>
+  See also:
+  \<^item> @{file "~~/src/HOL/ex/Set_Theory.thy"}
+  \<^item> @{url "http://planetmath.org/proofofschroederbernsteintheoremusingtarskiknastertheorem"}
+  \<^item> Springer LNCS 828 (cover page)
+\<close>
+
+theorem Schroeder_Bernstein:
+  fixes f :: "'a \<Rightarrow> 'b"
+    and g :: "'b \<Rightarrow> 'a"
+  assumes "inj f" and "inj g"
+  shows "\<exists>h :: 'a \<Rightarrow> 'b. inj h \<and> surj h"
+proof
+  def A \<equiv> "lfp (\<lambda>X. - (g ` (- (f ` X))))"
+  def g' \<equiv> "inv g"
+  let ?h = "\<lambda>z. if z \<in> A then f z else g' z"
+
+  have "A = - (g ` (- (f ` A)))"
+    unfolding A_def by (rule lfp_unfold) (blast intro: monoI)
+  then have A_compl: "- A = g ` (- (f ` A))" by blast
+  then have *: "g' ` (- A) = - (f ` A)"
+    using g'_def \<open>inj g\<close> by auto
+
+  show "inj ?h \<and> surj ?h"
+  proof
+    from * show "surj ?h" by auto
+    have "inj_on f A"
+      using \<open>inj f\<close> by (rule subset_inj_on) blast
+    moreover
+    have "inj_on g' (- A)"
+      unfolding g'_def
+    proof (rule inj_on_inv_into)
+      have "g ` (- (f ` A)) \<subseteq> range g" by blast
+      then show "- A \<subseteq> range g" by (simp only: A_compl)
+    qed
+    moreover
+    have False if eq: "f a = g' b" and a: "a \<in> A" and b: "b \<in> - A" for a b
+    proof -
+      from a have fa: "f a \<in> f ` A" by (rule imageI)
+      from b have "g' b \<in> g' ` (- A)" by (rule imageI)
+      with * have "g' b \<in> - (f ` A)" by simp
+      with eq fa show False by simp
+    qed
+    ultimately show "inj ?h"
+      unfolding inj_on_def by (metis ComplI)
+  qed
+qed
+
+end