src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy
changeset 56993 e5366291d6aa
parent 56949 d1a937cbf858
child 56994 8d5e5ec1cac3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy	Mon May 19 12:04:45 2014 +0200
@@ -0,0 +1,2039 @@
+(*  Title:      HOL/Probability/Nonnegative_Lebesgue_Integration.thy
+    Author:     Johannes Hölzl, TU München
+    Author:     Armin Heller, TU München
+*)
+
+header {* Lebesgue Integration for Nonnegative Functions *}
+
+theory Nonnegative_Lebesgue_Integration
+  imports Measure_Space Borel_Space
+begin
+
+lemma indicator_less_ereal[simp]:
+  "indicator A x \<le> (indicator B x::ereal) \<longleftrightarrow> (x \<in> A \<longrightarrow> x \<in> B)"
+  by (simp add: indicator_def not_le)
+
+section "Simple function"
+
+text {*
+
+Our simple functions are not restricted to positive real numbers. Instead
+they are just functions with a finite range and are measurable when singleton
+sets are measurable.
+
+*}
+
+definition "simple_function M g \<longleftrightarrow>
+    finite (g ` space M) \<and>
+    (\<forall>x \<in> g ` space M. g -` {x} \<inter> space M \<in> sets M)"
+
+lemma simple_functionD:
+  assumes "simple_function M g"
+  shows "finite (g ` space M)" and "g -` X \<inter> space M \<in> sets M"
+proof -
+  show "finite (g ` space M)"
+    using assms unfolding simple_function_def by auto
+  have "g -` X \<inter> space M = g -` (X \<inter> g`space M) \<inter> space M" by auto
+  also have "\<dots> = (\<Union>x\<in>X \<inter> g`space M. g-`{x} \<inter> space M)" by auto
+  finally show "g -` X \<inter> space M \<in> sets M" using assms
+    by (auto simp del: UN_simps simp: simple_function_def)
+qed
+
+lemma measurable_simple_function[measurable_dest]:
+  "simple_function M f \<Longrightarrow> f \<in> measurable M (count_space UNIV)"
+  unfolding simple_function_def measurable_def
+proof safe
+  fix A assume "finite (f ` space M)" "\<forall>x\<in>f ` space M. f -` {x} \<inter> space M \<in> sets M"
+  then have "(\<Union>x\<in>f ` space M. if x \<in> A then f -` {x} \<inter> space M else {}) \<in> sets M"
+    by (intro sets.finite_UN) auto
+  also have "(\<Union>x\<in>f ` space M. if x \<in> A then f -` {x} \<inter> space M else {}) = f -` A \<inter> space M"
+    by (auto split: split_if_asm)
+  finally show "f -` A \<inter> space M \<in> sets M" .
+qed simp
+
+lemma borel_measurable_simple_function:
+  "simple_function M f \<Longrightarrow> f \<in> borel_measurable M"
+  by (auto dest!: measurable_simple_function simp: measurable_def)
+
+lemma simple_function_measurable2[intro]:
+  assumes "simple_function M f" "simple_function M g"
+  shows "f -` A \<inter> g -` B \<inter> space M \<in> sets M"
+proof -
+  have "f -` A \<inter> g -` B \<inter> space M = (f -` A \<inter> space M) \<inter> (g -` B \<inter> space M)"
+    by auto
+  then show ?thesis using assms[THEN simple_functionD(2)] by auto
+qed
+
+lemma simple_function_indicator_representation:
+  fixes f ::"'a \<Rightarrow> ereal"
+  assumes f: "simple_function M f" and x: "x \<in> space M"
+  shows "f x = (\<Sum>y \<in> f ` space M. y * indicator (f -` {y} \<inter> space M) x)"
+  (is "?l = ?r")
+proof -
+  have "?r = (\<Sum>y \<in> f ` space M.
+    (if y = f x then y * indicator (f -` {y} \<inter> space M) x else 0))"
+    by (auto intro!: setsum_cong2)
+  also have "... =  f x *  indicator (f -` {f x} \<inter> space M) x"
+    using assms by (auto dest: simple_functionD simp: setsum_delta)
+  also have "... = f x" using x by (auto simp: indicator_def)
+  finally show ?thesis by auto
+qed
+
+lemma simple_function_notspace:
+  "simple_function M (\<lambda>x. h x * indicator (- space M) x::ereal)" (is "simple_function M ?h")
+proof -
+  have "?h ` space M \<subseteq> {0}" unfolding indicator_def by auto
+  hence [simp, intro]: "finite (?h ` space M)" by (auto intro: finite_subset)
+  have "?h -` {0} \<inter> space M = space M" by auto
+  thus ?thesis unfolding simple_function_def by auto
+qed
+
+lemma simple_function_cong:
+  assumes "\<And>t. t \<in> space M \<Longrightarrow> f t = g t"
+  shows "simple_function M f \<longleftrightarrow> simple_function M g"
+proof -
+  have "f ` space M = g ` space M"
+    "\<And>x. f -` {x} \<inter> space M = g -` {x} \<inter> space M"
+    using assms by (auto intro!: image_eqI)
+  thus ?thesis unfolding simple_function_def using assms by simp
+qed
+
+lemma simple_function_cong_algebra:
+  assumes "sets N = sets M" "space N = space M"
+  shows "simple_function M f \<longleftrightarrow> simple_function N f"
+  unfolding simple_function_def assms ..
+
+lemma simple_function_borel_measurable:
+  fixes f :: "'a \<Rightarrow> 'x::{t2_space}"
+  assumes "f \<in> borel_measurable M" and "finite (f ` space M)"
+  shows "simple_function M f"
+  using assms unfolding simple_function_def
+  by (auto intro: borel_measurable_vimage)
+
+lemma simple_function_eq_measurable:
+  fixes f :: "'a \<Rightarrow> ereal"
+  shows "simple_function M f \<longleftrightarrow> finite (f`space M) \<and> f \<in> measurable M (count_space UNIV)"
+  using simple_function_borel_measurable[of f] measurable_simple_function[of M f]
+  by (fastforce simp: simple_function_def)
+
+lemma simple_function_const[intro, simp]:
+  "simple_function M (\<lambda>x. c)"
+  by (auto intro: finite_subset simp: simple_function_def)
+lemma simple_function_compose[intro, simp]:
+  assumes "simple_function M f"
+  shows "simple_function M (g \<circ> f)"
+  unfolding simple_function_def
+proof safe
+  show "finite ((g \<circ> f) ` space M)"
+    using assms unfolding simple_function_def by (auto simp: image_comp [symmetric])
+next
+  fix x assume "x \<in> space M"
+  let ?G = "g -` {g (f x)} \<inter> (f`space M)"
+  have *: "(g \<circ> f) -` {(g \<circ> f) x} \<inter> space M =
+    (\<Union>x\<in>?G. f -` {x} \<inter> space M)" by auto
+  show "(g \<circ> f) -` {(g \<circ> f) x} \<inter> space M \<in> sets M"
+    using assms unfolding simple_function_def *
+    by (rule_tac sets.finite_UN) auto
+qed
+
+lemma simple_function_indicator[intro, simp]:
+  assumes "A \<in> sets M"
+  shows "simple_function M (indicator A)"
+proof -
+  have "indicator A ` space M \<subseteq> {0, 1}" (is "?S \<subseteq> _")
+    by (auto simp: indicator_def)
+  hence "finite ?S" by (rule finite_subset) simp
+  moreover have "- A \<inter> space M = space M - A" by auto
+  ultimately show ?thesis unfolding simple_function_def
+    using assms by (auto simp: indicator_def [abs_def])
+qed
+
+lemma simple_function_Pair[intro, simp]:
+  assumes "simple_function M f"
+  assumes "simple_function M g"
+  shows "simple_function M (\<lambda>x. (f x, g x))" (is "simple_function M ?p")
+  unfolding simple_function_def
+proof safe
+  show "finite (?p ` space M)"
+    using assms unfolding simple_function_def
+    by (rule_tac finite_subset[of _ "f`space M \<times> g`space M"]) auto
+next
+  fix x assume "x \<in> space M"
+  have "(\<lambda>x. (f x, g x)) -` {(f x, g x)} \<inter> space M =
+      (f -` {f x} \<inter> space M) \<inter> (g -` {g x} \<inter> space M)"
+    by auto
+  with `x \<in> space M` show "(\<lambda>x. (f x, g x)) -` {(f x, g x)} \<inter> space M \<in> sets M"
+    using assms unfolding simple_function_def by auto
+qed
+
+lemma simple_function_compose1:
+  assumes "simple_function M f"
+  shows "simple_function M (\<lambda>x. g (f x))"
+  using simple_function_compose[OF assms, of g]
+  by (simp add: comp_def)
+
+lemma simple_function_compose2:
+  assumes "simple_function M f" and "simple_function M g"
+  shows "simple_function M (\<lambda>x. h (f x) (g x))"
+proof -
+  have "simple_function M ((\<lambda>(x, y). h x y) \<circ> (\<lambda>x. (f x, g x)))"
+    using assms by auto
+  thus ?thesis by (simp_all add: comp_def)
+qed
+
+lemmas simple_function_add[intro, simp] = simple_function_compose2[where h="op +"]
+  and simple_function_diff[intro, simp] = simple_function_compose2[where h="op -"]
+  and simple_function_uminus[intro, simp] = simple_function_compose[where g="uminus"]
+  and simple_function_mult[intro, simp] = simple_function_compose2[where h="op *"]
+  and simple_function_div[intro, simp] = simple_function_compose2[where h="op /"]
+  and simple_function_inverse[intro, simp] = simple_function_compose[where g="inverse"]
+  and simple_function_max[intro, simp] = simple_function_compose2[where h=max]
+
+lemma simple_function_setsum[intro, simp]:
+  assumes "\<And>i. i \<in> P \<Longrightarrow> simple_function M (f i)"
+  shows "simple_function M (\<lambda>x. \<Sum>i\<in>P. f i x)"
+proof cases
+  assume "finite P" from this assms show ?thesis by induct auto
+qed auto
+
+lemma simple_function_ereal[intro, simp]: 
+  fixes f g :: "'a \<Rightarrow> real" assumes sf: "simple_function M f"
+  shows "simple_function M (\<lambda>x. ereal (f x))"
+  by (auto intro!: simple_function_compose1[OF sf])
+
+lemma simple_function_real_of_nat[intro, simp]: 
+  fixes f g :: "'a \<Rightarrow> nat" assumes sf: "simple_function M f"
+  shows "simple_function M (\<lambda>x. real (f x))"
+  by (auto intro!: simple_function_compose1[OF sf])
+
+lemma borel_measurable_implies_simple_function_sequence:
+  fixes u :: "'a \<Rightarrow> ereal"
+  assumes u: "u \<in> borel_measurable M"
+  shows "\<exists>f. incseq f \<and> (\<forall>i. \<infinity> \<notin> range (f i) \<and> simple_function M (f i)) \<and>
+             (\<forall>x. (SUP i. f i x) = max 0 (u x)) \<and> (\<forall>i x. 0 \<le> f i x)"
+proof -
+  def f \<equiv> "\<lambda>x i. if real i \<le> u x then i * 2 ^ i else natfloor (real (u x) * 2 ^ i)"
+  { fix x j have "f x j \<le> j * 2 ^ j" unfolding f_def
+    proof (split split_if, intro conjI impI)
+      assume "\<not> real j \<le> u x"
+      then have "natfloor (real (u x) * 2 ^ j) \<le> natfloor (j * 2 ^ j)"
+         by (cases "u x") (auto intro!: natfloor_mono)
+      moreover have "real (natfloor (j * 2 ^ j)) \<le> j * 2^j"
+        by (intro real_natfloor_le) auto
+      ultimately show "natfloor (real (u x) * 2 ^ j) \<le> j * 2 ^ j"
+        unfolding real_of_nat_le_iff by auto
+    qed auto }
+  note f_upper = this
+
+  have real_f:
+    "\<And>i x. real (f x i) = (if real i \<le> u x then i * 2 ^ i else real (natfloor (real (u x) * 2 ^ i)))"
+    unfolding f_def by auto
+
+  let ?g = "\<lambda>j x. real (f x j) / 2^j :: ereal"
+  show ?thesis
+  proof (intro exI[of _ ?g] conjI allI ballI)
+    fix i
+    have "simple_function M (\<lambda>x. real (f x i))"
+    proof (intro simple_function_borel_measurable)
+      show "(\<lambda>x. real (f x i)) \<in> borel_measurable M"
+        using u by (auto simp: real_f)
+      have "(\<lambda>x. real (f x i))`space M \<subseteq> real`{..i*2^i}"
+        using f_upper[of _ i] by auto
+      then show "finite ((\<lambda>x. real (f x i))`space M)"
+        by (rule finite_subset) auto
+    qed
+    then show "simple_function M (?g i)"
+      by (auto intro: simple_function_ereal simple_function_div)
+  next
+    show "incseq ?g"
+    proof (intro incseq_ereal incseq_SucI le_funI)
+      fix x and i :: nat
+      have "f x i * 2 \<le> f x (Suc i)" unfolding f_def
+      proof ((split split_if)+, intro conjI impI)
+        assume "ereal (real i) \<le> u x" "\<not> ereal (real (Suc i)) \<le> u x"
+        then show "i * 2 ^ i * 2 \<le> natfloor (real (u x) * 2 ^ Suc i)"
+          by (cases "u x") (auto intro!: le_natfloor)
+      next
+        assume "\<not> ereal (real i) \<le> u x" "ereal (real (Suc i)) \<le> u x"
+        then show "natfloor (real (u x) * 2 ^ i) * 2 \<le> Suc i * 2 ^ Suc i"
+          by (cases "u x") auto
+      next
+        assume "\<not> ereal (real i) \<le> u x" "\<not> ereal (real (Suc i)) \<le> u x"
+        have "natfloor (real (u x) * 2 ^ i) * 2 = natfloor (real (u x) * 2 ^ i) * natfloor 2"
+          by simp
+        also have "\<dots> \<le> natfloor (real (u x) * 2 ^ i * 2)"
+        proof cases
+          assume "0 \<le> u x" then show ?thesis
+            by (intro le_mult_natfloor) 
+        next
+          assume "\<not> 0 \<le> u x" then show ?thesis
+            by (cases "u x") (auto simp: natfloor_neg mult_nonpos_nonneg)
+        qed
+        also have "\<dots> = natfloor (real (u x) * 2 ^ Suc i)"
+          by (simp add: ac_simps)
+        finally show "natfloor (real (u x) * 2 ^ i) * 2 \<le> natfloor (real (u x) * 2 ^ Suc i)" .
+      qed simp
+      then show "?g i x \<le> ?g (Suc i) x"
+        by (auto simp: field_simps)
+    qed
+  next
+    fix x show "(SUP i. ?g i x) = max 0 (u x)"
+    proof (rule SUP_eqI)
+      fix i show "?g i x \<le> max 0 (u x)" unfolding max_def f_def
+        by (cases "u x") (auto simp: field_simps real_natfloor_le natfloor_neg
+                                     mult_nonpos_nonneg)
+    next
+      fix y assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> ?g i x \<le> y"
+      have "\<And>i. 0 \<le> ?g i x" by auto
+      from order_trans[OF this *] have "0 \<le> y" by simp
+      show "max 0 (u x) \<le> y"
+      proof (cases y)
+        case (real r)
+        with * have *: "\<And>i. f x i \<le> r * 2^i" by (auto simp: divide_le_eq)
+        from reals_Archimedean2[of r] * have "u x \<noteq> \<infinity>" by (auto simp: f_def) (metis less_le_not_le)
+        then have "\<exists>p. max 0 (u x) = ereal p \<and> 0 \<le> p" by (cases "u x") (auto simp: max_def)
+        then guess p .. note ux = this
+        obtain m :: nat where m: "p < real m" using reals_Archimedean2 ..
+        have "p \<le> r"
+        proof (rule ccontr)
+          assume "\<not> p \<le> r"
+          with LIMSEQ_inverse_realpow_zero[unfolded LIMSEQ_iff, rule_format, of 2 "p - r"]
+          obtain N where "\<forall>n\<ge>N. r * 2^n < p * 2^n - 1" by (auto simp: field_simps)
+          then have "r * 2^max N m < p * 2^max N m - 1" by simp
+          moreover
+          have "real (natfloor (p * 2 ^ max N m)) \<le> r * 2 ^ max N m"
+            using *[of "max N m"] m unfolding real_f using ux
+            by (cases "0 \<le> u x") (simp_all add: max_def split: split_if_asm)
+          then have "p * 2 ^ max N m - 1 < r * 2 ^ max N m"
+            by (metis real_natfloor_gt_diff_one less_le_trans)
+          ultimately show False by auto
+        qed
+        then show "max 0 (u x) \<le> y" using real ux by simp
+      qed (insert `0 \<le> y`, auto)
+    qed
+  qed auto
+qed
+
+lemma borel_measurable_implies_simple_function_sequence':
+  fixes u :: "'a \<Rightarrow> ereal"
+  assumes u: "u \<in> borel_measurable M"
+  obtains f where "\<And>i. simple_function M (f i)" "incseq f" "\<And>i. \<infinity> \<notin> range (f i)"
+    "\<And>x. (SUP i. f i x) = max 0 (u x)" "\<And>i x. 0 \<le> f i x"
+  using borel_measurable_implies_simple_function_sequence[OF u] by auto
+
+lemma simple_function_induct[consumes 1, case_names cong set mult add, induct set: simple_function]:
+  fixes u :: "'a \<Rightarrow> ereal"
+  assumes u: "simple_function M u"
+  assumes cong: "\<And>f g. simple_function M f \<Longrightarrow> simple_function M g \<Longrightarrow> (AE x in M. f x = g x) \<Longrightarrow> P f \<Longrightarrow> P g"
+  assumes set: "\<And>A. A \<in> sets M \<Longrightarrow> P (indicator A)"
+  assumes mult: "\<And>u c. P u \<Longrightarrow> P (\<lambda>x. c * u x)"
+  assumes add: "\<And>u v. P u \<Longrightarrow> P v \<Longrightarrow> P (\<lambda>x. v x + u x)"
+  shows "P u"
+proof (rule cong)
+  from AE_space show "AE x in M. (\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x) = u x"
+  proof eventually_elim
+    fix x assume x: "x \<in> space M"
+    from simple_function_indicator_representation[OF u x]
+    show "(\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x) = u x" ..
+  qed
+next
+  from u have "finite (u ` space M)"
+    unfolding simple_function_def by auto
+  then show "P (\<lambda>x. \<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x)"
+  proof induct
+    case empty show ?case
+      using set[of "{}"] by (simp add: indicator_def[abs_def])
+  qed (auto intro!: add mult set simple_functionD u)
+next
+  show "simple_function M (\<lambda>x. (\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x))"
+    apply (subst simple_function_cong)
+    apply (rule simple_function_indicator_representation[symmetric])
+    apply (auto intro: u)
+    done
+qed fact
+
+lemma simple_function_induct_nn[consumes 2, case_names cong set mult add]:
+  fixes u :: "'a \<Rightarrow> ereal"
+  assumes u: "simple_function M u" and nn: "\<And>x. 0 \<le> u x"
+  assumes cong: "\<And>f g. simple_function M f \<Longrightarrow> simple_function M g \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> f x = g x) \<Longrightarrow> P f \<Longrightarrow> P g"
+  assumes set: "\<And>A. A \<in> sets M \<Longrightarrow> P (indicator A)"
+  assumes mult: "\<And>u c. 0 \<le> c \<Longrightarrow> simple_function M u \<Longrightarrow> (\<And>x. 0 \<le> u x) \<Longrightarrow> P u \<Longrightarrow> P (\<lambda>x. c * u x)"
+  assumes add: "\<And>u v. simple_function M u \<Longrightarrow> (\<And>x. 0 \<le> u x) \<Longrightarrow> P u \<Longrightarrow> simple_function M v \<Longrightarrow> (\<And>x. 0 \<le> v x) \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x = 0 \<or> v x = 0) \<Longrightarrow> P v \<Longrightarrow> P (\<lambda>x. v x + u x)"
+  shows "P u"
+proof -
+  show ?thesis
+  proof (rule cong)
+    fix x assume x: "x \<in> space M"
+    from simple_function_indicator_representation[OF u x]
+    show "(\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x) = u x" ..
+  next
+    show "simple_function M (\<lambda>x. (\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x))"
+      apply (subst simple_function_cong)
+      apply (rule simple_function_indicator_representation[symmetric])
+      apply (auto intro: u)
+      done
+  next
+    
+    from u nn have "finite (u ` space M)" "\<And>x. x \<in> u ` space M \<Longrightarrow> 0 \<le> x"
+      unfolding simple_function_def by auto
+    then show "P (\<lambda>x. \<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x)"
+    proof induct
+      case empty show ?case
+        using set[of "{}"] by (simp add: indicator_def[abs_def])
+    next
+      case (insert x S)
+      { fix z have "(\<Sum>y\<in>S. y * indicator (u -` {y} \<inter> space M) z) = 0 \<or>
+          x * indicator (u -` {x} \<inter> space M) z = 0"
+          using insert by (subst setsum_ereal_0) (auto simp: indicator_def) }
+      note disj = this
+      from insert show ?case
+        by (auto intro!: add mult set simple_functionD u setsum_nonneg simple_function_setsum disj)
+    qed
+  qed fact
+qed
+
+lemma borel_measurable_induct[consumes 2, case_names cong set mult add seq, induct set: borel_measurable]:
+  fixes u :: "'a \<Rightarrow> ereal"
+  assumes u: "u \<in> borel_measurable M" "\<And>x. 0 \<le> u x"
+  assumes cong: "\<And>f g. f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> f x = g x) \<Longrightarrow> P g \<Longrightarrow> P f"
+  assumes set: "\<And>A. A \<in> sets M \<Longrightarrow> P (indicator A)"
+  assumes mult': "\<And>u c. 0 \<le> c \<Longrightarrow> c < \<infinity> \<Longrightarrow> u \<in> borel_measurable M \<Longrightarrow> (\<And>x. 0 \<le> u x) \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x < \<infinity>) \<Longrightarrow> P u \<Longrightarrow> P (\<lambda>x. c * u x)"
+  assumes add: "\<And>u v. u \<in> borel_measurable M \<Longrightarrow> (\<And>x. 0 \<le> u x) \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x < \<infinity>) \<Longrightarrow> P u \<Longrightarrow> v \<in> borel_measurable M \<Longrightarrow> (\<And>x. 0 \<le> v x) \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> v x < \<infinity>) \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x = 0 \<or> v x = 0) \<Longrightarrow> P v \<Longrightarrow> P (\<lambda>x. v x + u x)"
+  assumes seq: "\<And>U. (\<And>i. U i \<in> borel_measurable M) \<Longrightarrow> (\<And>i x. 0 \<le> U i x) \<Longrightarrow> (\<And>i x. x \<in> space M \<Longrightarrow> U i x < \<infinity>) \<Longrightarrow>  (\<And>i. P (U i)) \<Longrightarrow> incseq U \<Longrightarrow> u = (SUP i. U i) \<Longrightarrow> P (SUP i. U i)"
+  shows "P u"
+  using u
+proof (induct rule: borel_measurable_implies_simple_function_sequence')
+  fix U assume U: "\<And>i. simple_function M (U i)" "incseq U" "\<And>i. \<infinity> \<notin> range (U i)" and
+    sup: "\<And>x. (SUP i. U i x) = max 0 (u x)" and nn: "\<And>i x. 0 \<le> U i x"
+  have u_eq: "u = (SUP i. U i)"
+    using nn u sup by (auto simp: max_def)
+
+  have not_inf: "\<And>x i. x \<in> space M \<Longrightarrow> U i x < \<infinity>"
+    using U by (auto simp: image_iff eq_commute)
+  
+  from U have "\<And>i. U i \<in> borel_measurable M"
+    by (simp add: borel_measurable_simple_function)
+
+  show "P u"
+    unfolding u_eq
+  proof (rule seq)
+    fix i show "P (U i)"
+      using `simple_function M (U i)` nn[of i] not_inf[of _ i]
+    proof (induct rule: simple_function_induct_nn)
+      case (mult u c)
+      show ?case
+      proof cases
+        assume "c = 0 \<or> space M = {} \<or> (\<forall>x\<in>space M. u x = 0)"
+        with mult(2) show ?thesis
+          by (intro cong[of "\<lambda>x. c * u x" "indicator {}"] set)
+             (auto dest!: borel_measurable_simple_function)
+      next
+        assume "\<not> (c = 0 \<or> space M = {} \<or> (\<forall>x\<in>space M. u x = 0))"
+        with mult obtain x where u_fin: "\<And>x. x \<in> space M \<Longrightarrow> u x < \<infinity>"
+          and x: "x \<in> space M" "u x \<noteq> 0" "c \<noteq> 0"
+          by auto
+        with mult have "P u"
+          by auto
+        from x mult(5)[OF `x \<in> space M`] mult(1) mult(3)[of x] have "c < \<infinity>"
+          by auto
+        with u_fin mult
+        show ?thesis
+          by (intro mult') (auto dest!: borel_measurable_simple_function)
+      qed
+    qed (auto intro: cong intro!: set add dest!: borel_measurable_simple_function)
+  qed fact+
+qed
+
+lemma simple_function_If_set:
+  assumes sf: "simple_function M f" "simple_function M g" and A: "A \<inter> space M \<in> sets M"
+  shows "simple_function M (\<lambda>x. if x \<in> A then f x else g x)" (is "simple_function M ?IF")
+proof -
+  def F \<equiv> "\<lambda>x. f -` {x} \<inter> space M" and G \<equiv> "\<lambda>x. g -` {x} \<inter> space M"
+  show ?thesis unfolding simple_function_def
+  proof safe
+    have "?IF ` space M \<subseteq> f ` space M \<union> g ` space M" by auto
+    from finite_subset[OF this] assms
+    show "finite (?IF ` space M)" unfolding simple_function_def by auto
+  next
+    fix x assume "x \<in> space M"
+    then have *: "?IF -` {?IF x} \<inter> space M = (if x \<in> A
+      then ((F (f x) \<inter> (A \<inter> space M)) \<union> (G (f x) - (G (f x) \<inter> (A \<inter> space M))))
+      else ((F (g x) \<inter> (A \<inter> space M)) \<union> (G (g x) - (G (g x) \<inter> (A \<inter> space M)))))"
+      using sets.sets_into_space[OF A] by (auto split: split_if_asm simp: G_def F_def)
+    have [intro]: "\<And>x. F x \<in> sets M" "\<And>x. G x \<in> sets M"
+      unfolding F_def G_def using sf[THEN simple_functionD(2)] by auto
+    show "?IF -` {?IF x} \<inter> space M \<in> sets M" unfolding * using A by auto
+  qed
+qed
+
+lemma simple_function_If:
+  assumes sf: "simple_function M f" "simple_function M g" and P: "{x\<in>space M. P x} \<in> sets M"
+  shows "simple_function M (\<lambda>x. if P x then f x else g x)"
+proof -
+  have "{x\<in>space M. P x} = {x. P x} \<inter> space M" by auto
+  with simple_function_If_set[OF sf, of "{x. P x}"] P show ?thesis by simp
+qed
+
+lemma simple_function_subalgebra:
+  assumes "simple_function N f"
+  and N_subalgebra: "sets N \<subseteq> sets M" "space N = space M"
+  shows "simple_function M f"
+  using assms unfolding simple_function_def by auto
+
+lemma simple_function_comp:
+  assumes T: "T \<in> measurable M M'"
+    and f: "simple_function M' f"
+  shows "simple_function M (\<lambda>x. f (T x))"
+proof (intro simple_function_def[THEN iffD2] conjI ballI)
+  have "(\<lambda>x. f (T x)) ` space M \<subseteq> f ` space M'"
+    using T unfolding measurable_def by auto
+  then show "finite ((\<lambda>x. f (T x)) ` space M)"
+    using f unfolding simple_function_def by (auto intro: finite_subset)
+  fix i assume i: "i \<in> (\<lambda>x. f (T x)) ` space M"
+  then have "i \<in> f ` space M'"
+    using T unfolding measurable_def by auto
+  then have "f -` {i} \<inter> space M' \<in> sets M'"
+    using f unfolding simple_function_def by auto
+  then have "T -` (f -` {i} \<inter> space M') \<inter> space M \<in> sets M"
+    using T unfolding measurable_def by auto
+  also have "T -` (f -` {i} \<inter> space M') \<inter> space M = (\<lambda>x. f (T x)) -` {i} \<inter> space M"
+    using T unfolding measurable_def by auto
+  finally show "(\<lambda>x. f (T x)) -` {i} \<inter> space M \<in> sets M" .
+qed
+
+section "Simple integral"
+
+definition simple_integral :: "'a measure \<Rightarrow> ('a \<Rightarrow> ereal) \<Rightarrow> ereal" ("integral\<^sup>S") where
+  "integral\<^sup>S M f = (\<Sum>x \<in> f ` space M. x * emeasure M (f -` {x} \<inter> space M))"
+
+syntax
+  "_simple_integral" :: "pttrn \<Rightarrow> ereal \<Rightarrow> 'a measure \<Rightarrow> ereal" ("\<integral>\<^sup>S _. _ \<partial>_" [60,61] 110)
+
+translations
+  "\<integral>\<^sup>S x. f \<partial>M" == "CONST simple_integral M (%x. f)"
+
+lemma simple_integral_cong:
+  assumes "\<And>t. t \<in> space M \<Longrightarrow> f t = g t"
+  shows "integral\<^sup>S M f = integral\<^sup>S M g"
+proof -
+  have "f ` space M = g ` space M"
+    "\<And>x. f -` {x} \<inter> space M = g -` {x} \<inter> space M"
+    using assms by (auto intro!: image_eqI)
+  thus ?thesis unfolding simple_integral_def by simp
+qed
+
+lemma simple_integral_const[simp]:
+  "(\<integral>\<^sup>Sx. c \<partial>M) = c * (emeasure M) (space M)"
+proof (cases "space M = {}")
+  case True thus ?thesis unfolding simple_integral_def by simp
+next
+  case False hence "(\<lambda>x. c) ` space M = {c}" by auto
+  thus ?thesis unfolding simple_integral_def by simp
+qed
+
+lemma simple_function_partition:
+  assumes f: "simple_function M f" and g: "simple_function M g"
+  assumes sub: "\<And>x y. x \<in> space M \<Longrightarrow> y \<in> space M \<Longrightarrow> g x = g y \<Longrightarrow> f x = f y"
+  assumes v: "\<And>x. x \<in> space M \<Longrightarrow> f x = v (g x)"
+  shows "integral\<^sup>S M f = (\<Sum>y\<in>g ` space M. v y * emeasure M {x\<in>space M. g x = y})"
+    (is "_ = ?r")
+proof -
+  from f g have [simp]: "finite (f`space M)" "finite (g`space M)"
+    by (auto simp: simple_function_def)
+  from f g have [measurable]: "f \<in> measurable M (count_space UNIV)" "g \<in> measurable M (count_space UNIV)"
+    by (auto intro: measurable_simple_function)
+
+  { fix y assume "y \<in> space M"
+    then have "f ` space M \<inter> {i. \<exists>x\<in>space M. i = f x \<and> g y = g x} = {v (g y)}"
+      by (auto cong: sub simp: v[symmetric]) }
+  note eq = this
+
+  have "integral\<^sup>S M f =
+    (\<Sum>y\<in>f`space M. y * (\<Sum>z\<in>g`space M. 
+      if \<exists>x\<in>space M. y = f x \<and> z = g x then emeasure M {x\<in>space M. g x = z} else 0))"
+    unfolding simple_integral_def
+  proof (safe intro!: setsum_cong ereal_left_mult_cong)
+    fix y assume y: "y \<in> space M" "f y \<noteq> 0"
+    have [simp]: "g ` space M \<inter> {z. \<exists>x\<in>space M. f y = f x \<and> z = g x} = 
+        {z. \<exists>x\<in>space M. f y = f x \<and> z = g x}"
+      by auto
+    have eq:"(\<Union>i\<in>{z. \<exists>x\<in>space M. f y = f x \<and> z = g x}. {x \<in> space M. g x = i}) =
+        f -` {f y} \<inter> space M"
+      by (auto simp: eq_commute cong: sub rev_conj_cong)
+    have "finite (g`space M)" by simp
+    then have "finite {z. \<exists>x\<in>space M. f y = f x \<and> z = g x}"
+      by (rule rev_finite_subset) auto
+    then show "emeasure M (f -` {f y} \<inter> space M) =
+      (\<Sum>z\<in>g ` space M. if \<exists>x\<in>space M. f y = f x \<and> z = g x then emeasure M {x \<in> space M. g x = z} else 0)"
+      apply (simp add: setsum_cases)
+      apply (subst setsum_emeasure)
+      apply (auto simp: disjoint_family_on_def eq)
+      done
+  qed
+  also have "\<dots> = (\<Sum>y\<in>f`space M. (\<Sum>z\<in>g`space M. 
+      if \<exists>x\<in>space M. y = f x \<and> z = g x then y * emeasure M {x\<in>space M. g x = z} else 0))"
+    by (auto intro!: setsum_cong simp: setsum_ereal_right_distrib emeasure_nonneg)
+  also have "\<dots> = ?r"
+    by (subst setsum_commute)
+       (auto intro!: setsum_cong simp: setsum_cases scaleR_setsum_right[symmetric] eq)
+  finally show "integral\<^sup>S M f = ?r" .
+qed
+
+lemma simple_integral_add[simp]:
+  assumes f: "simple_function M f" and "\<And>x. 0 \<le> f x" and g: "simple_function M g" and "\<And>x. 0 \<le> g x"
+  shows "(\<integral>\<^sup>Sx. f x + g x \<partial>M) = integral\<^sup>S M f + integral\<^sup>S M g"
+proof -
+  have "(\<integral>\<^sup>Sx. f x + g x \<partial>M) =
+    (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. (fst y + snd y) * emeasure M {x\<in>space M. (f x, g x) = y})"
+    by (intro simple_function_partition) (auto intro: f g)
+  also have "\<dots> = (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. fst y * emeasure M {x\<in>space M. (f x, g x) = y}) +
+    (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. snd y * emeasure M {x\<in>space M. (f x, g x) = y})"
+    using assms(2,4) by (auto intro!: setsum_cong ereal_left_distrib simp: setsum_addf[symmetric])
+  also have "(\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. fst y * emeasure M {x\<in>space M. (f x, g x) = y}) = (\<integral>\<^sup>Sx. f x \<partial>M)"
+    by (intro simple_function_partition[symmetric]) (auto intro: f g)
+  also have "(\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. snd y * emeasure M {x\<in>space M. (f x, g x) = y}) = (\<integral>\<^sup>Sx. g x \<partial>M)"
+    by (intro simple_function_partition[symmetric]) (auto intro: f g)
+  finally show ?thesis .
+qed
+
+lemma simple_integral_setsum[simp]:
+  assumes "\<And>i x. i \<in> P \<Longrightarrow> 0 \<le> f i x"
+  assumes "\<And>i. i \<in> P \<Longrightarrow> simple_function M (f i)"
+  shows "(\<integral>\<^sup>Sx. (\<Sum>i\<in>P. f i x) \<partial>M) = (\<Sum>i\<in>P. integral\<^sup>S M (f i))"
+proof cases
+  assume "finite P"
+  from this assms show ?thesis
+    by induct (auto simp: simple_function_setsum simple_integral_add setsum_nonneg)
+qed auto
+
+lemma simple_integral_mult[simp]:
+  assumes f: "simple_function M f" "\<And>x. 0 \<le> f x"
+  shows "(\<integral>\<^sup>Sx. c * f x \<partial>M) = c * integral\<^sup>S M f"
+proof -
+  have "(\<integral>\<^sup>Sx. c * f x \<partial>M) = (\<Sum>y\<in>f ` space M. (c * y) * emeasure M {x\<in>space M. f x = y})"
+    using f by (intro simple_function_partition) auto
+  also have "\<dots> = c * integral\<^sup>S M f"
+    using f unfolding simple_integral_def
+    by (subst setsum_ereal_right_distrib) (auto simp: emeasure_nonneg mult_assoc Int_def conj_commute)
+  finally show ?thesis .
+qed
+
+lemma simple_integral_mono_AE:
+  assumes f[measurable]: "simple_function M f" and g[measurable]: "simple_function M g"
+  and mono: "AE x in M. f x \<le> g x"
+  shows "integral\<^sup>S M f \<le> integral\<^sup>S M g"
+proof -
+  let ?\<mu> = "\<lambda>P. emeasure M {x\<in>space M. P x}"
+  have "integral\<^sup>S M f = (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. fst y * ?\<mu> (\<lambda>x. (f x, g x) = y))"
+    using f g by (intro simple_function_partition) auto
+  also have "\<dots> \<le> (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. snd y * ?\<mu> (\<lambda>x. (f x, g x) = y))"
+  proof (clarsimp intro!: setsum_mono)
+    fix x assume "x \<in> space M"
+    let ?M = "?\<mu> (\<lambda>y. f y = f x \<and> g y = g x)"
+    show "f x * ?M \<le> g x * ?M"
+    proof cases
+      assume "?M \<noteq> 0"
+      then have "0 < ?M"
+        by (simp add: less_le emeasure_nonneg)
+      also have "\<dots> \<le> ?\<mu> (\<lambda>y. f x \<le> g x)"
+        using mono by (intro emeasure_mono_AE) auto
+      finally have "\<not> \<not> f x \<le> g x"
+        by (intro notI) auto
+      then show ?thesis
+        by (intro ereal_mult_right_mono) auto
+    qed simp
+  qed
+  also have "\<dots> = integral\<^sup>S M g"
+    using f g by (intro simple_function_partition[symmetric]) auto
+  finally show ?thesis .
+qed
+
+lemma simple_integral_mono:
+  assumes "simple_function M f" and "simple_function M g"
+  and mono: "\<And> x. x \<in> space M \<Longrightarrow> f x \<le> g x"
+  shows "integral\<^sup>S M f \<le> integral\<^sup>S M g"
+  using assms by (intro simple_integral_mono_AE) auto
+
+lemma simple_integral_cong_AE:
+  assumes "simple_function M f" and "simple_function M g"
+  and "AE x in M. f x = g x"
+  shows "integral\<^sup>S M f = integral\<^sup>S M g"
+  using assms by (auto simp: eq_iff intro!: simple_integral_mono_AE)
+
+lemma simple_integral_cong':
+  assumes sf: "simple_function M f" "simple_function M g"
+  and mea: "(emeasure M) {x\<in>space M. f x \<noteq> g x} = 0"
+  shows "integral\<^sup>S M f = integral\<^sup>S M g"
+proof (intro simple_integral_cong_AE sf AE_I)
+  show "(emeasure M) {x\<in>space M. f x \<noteq> g x} = 0" by fact
+  show "{x \<in> space M. f x \<noteq> g x} \<in> sets M"
+    using sf[THEN borel_measurable_simple_function] by auto
+qed simp
+
+lemma simple_integral_indicator:
+  assumes A: "A \<in> sets M"
+  assumes f: "simple_function M f"
+  shows "(\<integral>\<^sup>Sx. f x * indicator A x \<partial>M) =
+    (\<Sum>x \<in> f ` space M. x * emeasure M (f -` {x} \<inter> space M \<inter> A))"
+proof -
+  have eq: "(\<lambda>x. (f x, indicator A x)) ` space M \<inter> {x. snd x = 1} = (\<lambda>x. (f x, 1::ereal))`A"
+    using A[THEN sets.sets_into_space] by (auto simp: indicator_def image_iff split: split_if_asm)
+  have eq2: "\<And>x. f x \<notin> f ` A \<Longrightarrow> f -` {f x} \<inter> space M \<inter> A = {}"
+    by (auto simp: image_iff)
+
+  have "(\<integral>\<^sup>Sx. f x * indicator A x \<partial>M) =
+    (\<Sum>y\<in>(\<lambda>x. (f x, indicator A x))`space M. (fst y * snd y) * emeasure M {x\<in>space M. (f x, indicator A x) = y})"
+    using assms by (intro simple_function_partition) auto
+  also have "\<dots> = (\<Sum>y\<in>(\<lambda>x. (f x, indicator A x::ereal))`space M.
+    if snd y = 1 then fst y * emeasure M (f -` {fst y} \<inter> space M \<inter> A) else 0)"
+    by (auto simp: indicator_def split: split_if_asm intro!: arg_cong2[where f="op *"] arg_cong2[where f=emeasure] setsum_cong)
+  also have "\<dots> = (\<Sum>y\<in>(\<lambda>x. (f x, 1::ereal))`A. fst y * emeasure M (f -` {fst y} \<inter> space M \<inter> A))"
+    using assms by (subst setsum_cases) (auto intro!: simple_functionD(1) simp: eq)
+  also have "\<dots> = (\<Sum>y\<in>fst`(\<lambda>x. (f x, 1::ereal))`A. y * emeasure M (f -` {y} \<inter> space M \<inter> A))"
+    by (subst setsum_reindex[where f=fst]) (auto simp: inj_on_def)
+  also have "\<dots> = (\<Sum>x \<in> f ` space M. x * emeasure M (f -` {x} \<inter> space M \<inter> A))"
+    using A[THEN sets.sets_into_space]
+    by (intro setsum_mono_zero_cong_left simple_functionD f) (auto simp: image_comp comp_def eq2)
+  finally show ?thesis .
+qed
+
+lemma simple_integral_indicator_only[simp]:
+  assumes "A \<in> sets M"
+  shows "integral\<^sup>S M (indicator A) = emeasure M A"
+  using simple_integral_indicator[OF assms, of "\<lambda>x. 1"] sets.sets_into_space[OF assms]
+  by (simp_all add: image_constant_conv Int_absorb1 split: split_if_asm)
+
+lemma simple_integral_null_set:
+  assumes "simple_function M u" "\<And>x. 0 \<le> u x" and "N \<in> null_sets M"
+  shows "(\<integral>\<^sup>Sx. u x * indicator N x \<partial>M) = 0"
+proof -
+  have "AE x in M. indicator N x = (0 :: ereal)"
+    using `N \<in> null_sets M` by (auto simp: indicator_def intro!: AE_I[of _ _ N])
+  then have "(\<integral>\<^sup>Sx. u x * indicator N x \<partial>M) = (\<integral>\<^sup>Sx. 0 \<partial>M)"
+    using assms apply (intro simple_integral_cong_AE) by auto
+  then show ?thesis by simp
+qed
+
+lemma simple_integral_cong_AE_mult_indicator:
+  assumes sf: "simple_function M f" and eq: "AE x in M. x \<in> S" and "S \<in> sets M"
+  shows "integral\<^sup>S M f = (\<integral>\<^sup>Sx. f x * indicator S x \<partial>M)"
+  using assms by (intro simple_integral_cong_AE) auto
+
+lemma simple_integral_cmult_indicator:
+  assumes A: "A \<in> sets M"
+  shows "(\<integral>\<^sup>Sx. c * indicator A x \<partial>M) = c * emeasure M A"
+  using simple_integral_mult[OF simple_function_indicator[OF A]]
+  unfolding simple_integral_indicator_only[OF A] by simp
+
+lemma simple_integral_positive:
+  assumes f: "simple_function M f" and ae: "AE x in M. 0 \<le> f x"
+  shows "0 \<le> integral\<^sup>S M f"
+proof -
+  have "integral\<^sup>S M (\<lambda>x. 0) \<le> integral\<^sup>S M f"
+    using simple_integral_mono_AE[OF _ f ae] by auto
+  then show ?thesis by simp
+qed
+
+section "Continuous positive integration"
+
+definition positive_integral :: "'a measure \<Rightarrow> ('a \<Rightarrow> ereal) \<Rightarrow> ereal" ("integral\<^sup>P") where
+  "integral\<^sup>P M f = (SUP g : {g. simple_function M g \<and> g \<le> max 0 \<circ> f}. integral\<^sup>S M g)"
+
+syntax
+  "_positive_integral" :: "pttrn \<Rightarrow> ereal \<Rightarrow> 'a measure \<Rightarrow> ereal" ("\<integral>\<^sup>+ _. _ \<partial>_" [60,61] 110)
+
+translations
+  "\<integral>\<^sup>+ x. f \<partial>M" == "CONST positive_integral M (%x. f)"
+
+lemma positive_integral_positive:
+  "0 \<le> integral\<^sup>P M f"
+  by (auto intro!: SUP_upper2[of "\<lambda>x. 0"] simp: positive_integral_def le_fun_def)
+
+lemma positive_integral_not_MInfty[simp]: "integral\<^sup>P M f \<noteq> -\<infinity>"
+  using positive_integral_positive[of M f] by auto
+
+lemma positive_integral_def_finite:
+  "integral\<^sup>P M f = (SUP g : {g. simple_function M g \<and> g \<le> max 0 \<circ> f \<and> range g \<subseteq> {0 ..< \<infinity>}}. integral\<^sup>S M g)"
+    (is "_ = SUPREMUM ?A ?f")
+  unfolding positive_integral_def
+proof (safe intro!: antisym SUP_least)
+  fix g assume g: "simple_function M g" "g \<le> max 0 \<circ> f"
+  let ?G = "{x \<in> space M. \<not> g x \<noteq> \<infinity>}"
+  note gM = g(1)[THEN borel_measurable_simple_function]
+  have \<mu>_G_pos: "0 \<le> (emeasure M) ?G" using gM by auto
+  let ?g = "\<lambda>y x. if g x = \<infinity> then y else max 0 (g x)"
+  from g gM have g_in_A: "\<And>y. 0 \<le> y \<Longrightarrow> y \<noteq> \<infinity> \<Longrightarrow> ?g y \<in> ?A"
+    apply (safe intro!: simple_function_max simple_function_If)
+    apply (force simp: max_def le_fun_def split: split_if_asm)+
+    done
+  show "integral\<^sup>S M g \<le> SUPREMUM ?A ?f"
+  proof cases
+    have g0: "?g 0 \<in> ?A" by (intro g_in_A) auto
+    assume "(emeasure M) ?G = 0"
+    with gM have "AE x in M. x \<notin> ?G"
+      by (auto simp add: AE_iff_null intro!: null_setsI)
+    with gM g show ?thesis
+      by (intro SUP_upper2[OF g0] simple_integral_mono_AE)
+         (auto simp: max_def intro!: simple_function_If)
+  next
+    assume \<mu>_G: "(emeasure M) ?G \<noteq> 0"
+    have "SUPREMUM ?A (integral\<^sup>S M) = \<infinity>"
+    proof (intro SUP_PInfty)
+      fix n :: nat
+      let ?y = "ereal (real n) / (if (emeasure M) ?G = \<infinity> then 1 else (emeasure M) ?G)"
+      have "0 \<le> ?y" "?y \<noteq> \<infinity>" using \<mu>_G \<mu>_G_pos by (auto simp: ereal_divide_eq)
+      then have "?g ?y \<in> ?A" by (rule g_in_A)
+      have "real n \<le> ?y * (emeasure M) ?G"
+        using \<mu>_G \<mu>_G_pos by (cases "(emeasure M) ?G") (auto simp: field_simps)
+      also have "\<dots> = (\<integral>\<^sup>Sx. ?y * indicator ?G x \<partial>M)"
+        using `0 \<le> ?y` `?g ?y \<in> ?A` gM
+        by (subst simple_integral_cmult_indicator) auto
+      also have "\<dots> \<le> integral\<^sup>S M (?g ?y)" using `?g ?y \<in> ?A` gM
+        by (intro simple_integral_mono) auto
+      finally show "\<exists>i\<in>?A. real n \<le> integral\<^sup>S M i"
+        using `?g ?y \<in> ?A` by blast
+    qed
+    then show ?thesis by simp
+  qed
+qed (auto intro: SUP_upper)
+
+lemma positive_integral_mono_AE:
+  assumes ae: "AE x in M. u x \<le> v x" shows "integral\<^sup>P M u \<le> integral\<^sup>P M v"
+  unfolding positive_integral_def
+proof (safe intro!: SUP_mono)
+  fix n assume n: "simple_function M n" "n \<le> max 0 \<circ> u"
+  from ae[THEN AE_E] guess N . note N = this
+  then have ae_N: "AE x in M. x \<notin> N" by (auto intro: AE_not_in)
+  let ?n = "\<lambda>x. n x * indicator (space M - N) x"
+  have "AE x in M. n x \<le> ?n x" "simple_function M ?n"
+    using n N ae_N by auto
+  moreover
+  { fix x have "?n x \<le> max 0 (v x)"
+    proof cases
+      assume x: "x \<in> space M - N"
+      with N have "u x \<le> v x" by auto
+      with n(2)[THEN le_funD, of x] x show ?thesis
+        by (auto simp: max_def split: split_if_asm)
+    qed simp }
+  then have "?n \<le> max 0 \<circ> v" by (auto simp: le_funI)
+  moreover have "integral\<^sup>S M n \<le> integral\<^sup>S M ?n"
+    using ae_N N n by (auto intro!: simple_integral_mono_AE)
+  ultimately show "\<exists>m\<in>{g. simple_function M g \<and> g \<le> max 0 \<circ> v}. integral\<^sup>S M n \<le> integral\<^sup>S M m"
+    by force
+qed
+
+lemma positive_integral_mono:
+  "(\<And>x. x \<in> space M \<Longrightarrow> u x \<le> v x) \<Longrightarrow> integral\<^sup>P M u \<le> integral\<^sup>P M v"
+  by (auto intro: positive_integral_mono_AE)
+
+lemma positive_integral_cong_AE:
+  "AE x in M. u x = v x \<Longrightarrow> integral\<^sup>P M u = integral\<^sup>P M v"
+  by (auto simp: eq_iff intro!: positive_integral_mono_AE)
+
+lemma positive_integral_cong:
+  "(\<And>x. x \<in> space M \<Longrightarrow> u x = v x) \<Longrightarrow> integral\<^sup>P M u = integral\<^sup>P M v"
+  by (auto intro: positive_integral_cong_AE)
+
+lemma positive_integral_cong_strong:
+  "M = N \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x = v x) \<Longrightarrow> integral\<^sup>P M u = integral\<^sup>P N v"
+  by (auto intro: positive_integral_cong)
+
+lemma positive_integral_eq_simple_integral:
+  assumes f: "simple_function M f" "\<And>x. 0 \<le> f x" shows "integral\<^sup>P M f = integral\<^sup>S M f"
+proof -
+  let ?f = "\<lambda>x. f x * indicator (space M) x"
+  have f': "simple_function M ?f" using f by auto
+  with f(2) have [simp]: "max 0 \<circ> ?f = ?f"
+    by (auto simp: fun_eq_iff max_def split: split_indicator)
+  have "integral\<^sup>P M ?f \<le> integral\<^sup>S M ?f" using f'
+    by (force intro!: SUP_least simple_integral_mono simp: le_fun_def positive_integral_def)
+  moreover have "integral\<^sup>S M ?f \<le> integral\<^sup>P M ?f"
+    unfolding positive_integral_def
+    using f' by (auto intro!: SUP_upper)
+  ultimately show ?thesis
+    by (simp cong: positive_integral_cong simple_integral_cong)
+qed
+
+lemma positive_integral_eq_simple_integral_AE:
+  assumes f: "simple_function M f" "AE x in M. 0 \<le> f x" shows "integral\<^sup>P M f = integral\<^sup>S M f"
+proof -
+  have "AE x in M. f x = max 0 (f x)" using f by (auto split: split_max)
+  with f have "integral\<^sup>P M f = integral\<^sup>S M (\<lambda>x. max 0 (f x))"
+    by (simp cong: positive_integral_cong_AE simple_integral_cong_AE
+             add: positive_integral_eq_simple_integral)
+  with assms show ?thesis
+    by (auto intro!: simple_integral_cong_AE split: split_max)
+qed
+
+lemma positive_integral_SUP_approx:
+  assumes f: "incseq f" "\<And>i. f i \<in> borel_measurable M" "\<And>i x. 0 \<le> f i x"
+  and u: "simple_function M u" "u \<le> (SUP i. f i)" "u`space M \<subseteq> {0..<\<infinity>}"
+  shows "integral\<^sup>S M u \<le> (SUP i. integral\<^sup>P M (f i))" (is "_ \<le> ?S")
+proof (rule ereal_le_mult_one_interval)
+  have "0 \<le> (SUP i. integral\<^sup>P M (f i))"
+    using f(3) by (auto intro!: SUP_upper2 positive_integral_positive)
+  then show "(SUP i. integral\<^sup>P M (f i)) \<noteq> -\<infinity>" by auto
+  have u_range: "\<And>x. x \<in> space M \<Longrightarrow> 0 \<le> u x \<and> u x \<noteq> \<infinity>"
+    using u(3) by auto
+  fix a :: ereal assume "0 < a" "a < 1"
+  hence "a \<noteq> 0" by auto
+  let ?B = "\<lambda>i. {x \<in> space M. a * u x \<le> f i x}"
+  have B: "\<And>i. ?B i \<in> sets M"
+    using f `simple_function M u`[THEN borel_measurable_simple_function] by auto
+
+  let ?uB = "\<lambda>i x. u x * indicator (?B i) x"
+
+  { fix i have "?B i \<subseteq> ?B (Suc i)"
+    proof safe
+      fix i x assume "a * u x \<le> f i x"
+      also have "\<dots> \<le> f (Suc i) x"
+        using `incseq f`[THEN incseq_SucD] unfolding le_fun_def by auto
+      finally show "a * u x \<le> f (Suc i) x" .
+    qed }
+  note B_mono = this
+
+  note B_u = sets.Int[OF u(1)[THEN simple_functionD(2)] B]
+
+  let ?B' = "\<lambda>i n. (u -` {i} \<inter> space M) \<inter> ?B n"
+  have measure_conv: "\<And>i. (emeasure M) (u -` {i} \<inter> space M) = (SUP n. (emeasure M) (?B' i n))"
+  proof -
+    fix i
+    have 1: "range (?B' i) \<subseteq> sets M" using B_u by auto
+    have 2: "incseq (?B' i)" using B_mono by (auto intro!: incseq_SucI)
+    have "(\<Union>n. ?B' i n) = u -` {i} \<inter> space M"
+    proof safe
+      fix x i assume x: "x \<in> space M"
+      show "x \<in> (\<Union>i. ?B' (u x) i)"
+      proof cases
+        assume "u x = 0" thus ?thesis using `x \<in> space M` f(3) by simp
+      next
+        assume "u x \<noteq> 0"
+        with `a < 1` u_range[OF `x \<in> space M`]
+        have "a * u x < 1 * u x"
+          by (intro ereal_mult_strict_right_mono) (auto simp: image_iff)
+        also have "\<dots> \<le> (SUP i. f i x)" using u(2) by (auto simp: le_fun_def)
+        finally obtain i where "a * u x < f i x" unfolding SUP_def
+          by (auto simp add: less_SUP_iff)
+        hence "a * u x \<le> f i x" by auto
+        thus ?thesis using `x \<in> space M` by auto
+      qed
+    qed
+    then show "?thesis i" using SUP_emeasure_incseq[OF 1 2] by simp
+  qed
+
+  have "integral\<^sup>S M u = (SUP i. integral\<^sup>S M (?uB i))"
+    unfolding simple_integral_indicator[OF B `simple_function M u`]
+  proof (subst SUP_ereal_setsum, safe)
+    fix x n assume "x \<in> space M"
+    with u_range show "incseq (\<lambda>i. u x * (emeasure M) (?B' (u x) i))" "\<And>i. 0 \<le> u x * (emeasure M) (?B' (u x) i)"
+      using B_mono B_u by (auto intro!: emeasure_mono ereal_mult_left_mono incseq_SucI simp: ereal_zero_le_0_iff)
+  next
+    show "integral\<^sup>S M u = (\<Sum>i\<in>u ` space M. SUP n. i * (emeasure M) (?B' i n))"
+      using measure_conv u_range B_u unfolding simple_integral_def
+      by (auto intro!: setsum_cong SUP_ereal_cmult [symmetric])
+  qed
+  moreover
+  have "a * (SUP i. integral\<^sup>S M (?uB i)) \<le> ?S"
+    apply (subst SUP_ereal_cmult [symmetric])
+  proof (safe intro!: SUP_mono bexI)
+    fix i
+    have "a * integral\<^sup>S M (?uB i) = (\<integral>\<^sup>Sx. a * ?uB i x \<partial>M)"
+      using B `simple_function M u` u_range
+      by (subst simple_integral_mult) (auto split: split_indicator)
+    also have "\<dots> \<le> integral\<^sup>P M (f i)"
+    proof -
+      have *: "simple_function M (\<lambda>x. a * ?uB i x)" using B `0 < a` u(1) by auto
+      show ?thesis using f(3) * u_range `0 < a`
+        by (subst positive_integral_eq_simple_integral[symmetric])
+           (auto intro!: positive_integral_mono split: split_indicator)
+    qed
+    finally show "a * integral\<^sup>S M (?uB i) \<le> integral\<^sup>P M (f i)"
+      by auto
+  next
+    fix i show "0 \<le> \<integral>\<^sup>S x. ?uB i x \<partial>M" using B `0 < a` u(1) u_range
+      by (intro simple_integral_positive) (auto split: split_indicator)
+  qed (insert `0 < a`, auto)
+  ultimately show "a * integral\<^sup>S M u \<le> ?S" by simp
+qed
+
+lemma incseq_positive_integral:
+  assumes "incseq f" shows "incseq (\<lambda>i. integral\<^sup>P M (f i))"
+proof -
+  have "\<And>i x. f i x \<le> f (Suc i) x"
+    using assms by (auto dest!: incseq_SucD simp: le_fun_def)
+  then show ?thesis
+    by (auto intro!: incseq_SucI positive_integral_mono)
+qed
+
+text {* Beppo-Levi monotone convergence theorem *}
+lemma positive_integral_monotone_convergence_SUP:
+  assumes f: "incseq f" "\<And>i. f i \<in> borel_measurable M" "\<And>i x. 0 \<le> f i x"
+  shows "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) = (SUP i. integral\<^sup>P M (f i))"
+proof (rule antisym)
+  show "(SUP j. integral\<^sup>P M (f j)) \<le> (\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M)"
+    by (auto intro!: SUP_least SUP_upper positive_integral_mono)
+next
+  show "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) \<le> (SUP j. integral\<^sup>P M (f j))"
+    unfolding positive_integral_def_finite[of _ "\<lambda>x. SUP i. f i x"]
+  proof (safe intro!: SUP_least)
+    fix g assume g: "simple_function M g"
+      and *: "g \<le> max 0 \<circ> (\<lambda>x. SUP i. f i x)" "range g \<subseteq> {0..<\<infinity>}"
+    then have "\<And>x. 0 \<le> (SUP i. f i x)" and g': "g`space M \<subseteq> {0..<\<infinity>}"
+      using f by (auto intro!: SUP_upper2)
+    with * show "integral\<^sup>S M g \<le> (SUP j. integral\<^sup>P M (f j))"
+      by (intro  positive_integral_SUP_approx[OF f g _ g'])
+         (auto simp: le_fun_def max_def)
+  qed
+qed
+
+lemma positive_integral_monotone_convergence_SUP_AE:
+  assumes f: "\<And>i. AE x in M. f i x \<le> f (Suc i) x \<and> 0 \<le> f i x" "\<And>i. f i \<in> borel_measurable M"
+  shows "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) = (SUP i. integral\<^sup>P M (f i))"
+proof -
+  from f have "AE x in M. \<forall>i. f i x \<le> f (Suc i) x \<and> 0 \<le> f i x"
+    by (simp add: AE_all_countable)
+  from this[THEN AE_E] guess N . note N = this
+  let ?f = "\<lambda>i x. if x \<in> space M - N then f i x else 0"
+  have f_eq: "AE x in M. \<forall>i. ?f i x = f i x" using N by (auto intro!: AE_I[of _ _ N])
+  then have "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) = (\<integral>\<^sup>+ x. (SUP i. ?f i x) \<partial>M)"
+    by (auto intro!: positive_integral_cong_AE)
+  also have "\<dots> = (SUP i. (\<integral>\<^sup>+ x. ?f i x \<partial>M))"
+  proof (rule positive_integral_monotone_convergence_SUP)
+    show "incseq ?f" using N(1) by (force intro!: incseq_SucI le_funI)
+    { fix i show "(\<lambda>x. if x \<in> space M - N then f i x else 0) \<in> borel_measurable M"
+        using f N(3) by (intro measurable_If_set) auto
+      fix x show "0 \<le> ?f i x"
+        using N(1) by auto }
+  qed
+  also have "\<dots> = (SUP i. (\<integral>\<^sup>+ x. f i x \<partial>M))"
+    using f_eq by (force intro!: arg_cong[where f="SUPREMUM UNIV"] positive_integral_cong_AE ext)
+  finally show ?thesis .
+qed
+
+lemma positive_integral_monotone_convergence_SUP_AE_incseq:
+  assumes f: "incseq f" "\<And>i. AE x in M. 0 \<le> f i x" and borel: "\<And>i. f i \<in> borel_measurable M"
+  shows "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) = (SUP i. integral\<^sup>P M (f i))"
+  using f[unfolded incseq_Suc_iff le_fun_def]
+  by (intro positive_integral_monotone_convergence_SUP_AE[OF _ borel])
+     auto
+
+lemma positive_integral_monotone_convergence_simple:
+  assumes f: "incseq f" "\<And>i x. 0 \<le> f i x" "\<And>i. simple_function M (f i)"
+  shows "(SUP i. integral\<^sup>S M (f i)) = (\<integral>\<^sup>+x. (SUP i. f i x) \<partial>M)"
+  using assms unfolding positive_integral_monotone_convergence_SUP[OF f(1)
+    f(3)[THEN borel_measurable_simple_function] f(2)]
+  by (auto intro!: positive_integral_eq_simple_integral[symmetric] arg_cong[where f="SUPREMUM UNIV"] ext)
+
+lemma positive_integral_max_0:
+  "(\<integral>\<^sup>+x. max 0 (f x) \<partial>M) = integral\<^sup>P M f"
+  by (simp add: le_fun_def positive_integral_def)
+
+lemma positive_integral_cong_pos:
+  assumes "\<And>x. x \<in> space M \<Longrightarrow> f x \<le> 0 \<and> g x \<le> 0 \<or> f x = g x"
+  shows "integral\<^sup>P M f = integral\<^sup>P M g"
+proof -
+  have "integral\<^sup>P M (\<lambda>x. max 0 (f x)) = integral\<^sup>P M (\<lambda>x. max 0 (g x))"
+  proof (intro positive_integral_cong)
+    fix x assume "x \<in> space M"
+    from assms[OF this] show "max 0 (f x) = max 0 (g x)"
+      by (auto split: split_max)
+  qed
+  then show ?thesis by (simp add: positive_integral_max_0)
+qed
+
+lemma SUP_simple_integral_sequences:
+  assumes f: "incseq f" "\<And>i x. 0 \<le> f i x" "\<And>i. simple_function M (f i)"
+  and g: "incseq g" "\<And>i x. 0 \<le> g i x" "\<And>i. simple_function M (g i)"
+  and eq: "AE x in M. (SUP i. f i x) = (SUP i. g i x)"
+  shows "(SUP i. integral\<^sup>S M (f i)) = (SUP i. integral\<^sup>S M (g i))"
+    (is "SUPREMUM _ ?F = SUPREMUM _ ?G")
+proof -
+  have "(SUP i. integral\<^sup>S M (f i)) = (\<integral>\<^sup>+x. (SUP i. f i x) \<partial>M)"
+    using f by (rule positive_integral_monotone_convergence_simple)
+  also have "\<dots> = (\<integral>\<^sup>+x. (SUP i. g i x) \<partial>M)"
+    unfolding eq[THEN positive_integral_cong_AE] ..
+  also have "\<dots> = (SUP i. ?G i)"
+    using g by (rule positive_integral_monotone_convergence_simple[symmetric])
+  finally show ?thesis by simp
+qed
+
+lemma positive_integral_const[simp]:
+  "0 \<le> c \<Longrightarrow> (\<integral>\<^sup>+ x. c \<partial>M) = c * (emeasure M) (space M)"
+  by (subst positive_integral_eq_simple_integral) auto
+
+lemma positive_integral_linear:
+  assumes f: "f \<in> borel_measurable M" "\<And>x. 0 \<le> f x" and "0 \<le> a"
+  and g: "g \<in> borel_measurable M" "\<And>x. 0 \<le> g x"
+  shows "(\<integral>\<^sup>+ x. a * f x + g x \<partial>M) = a * integral\<^sup>P M f + integral\<^sup>P M g"
+    (is "integral\<^sup>P M ?L = _")
+proof -
+  from borel_measurable_implies_simple_function_sequence'[OF f(1)] guess u .
+  note u = positive_integral_monotone_convergence_simple[OF this(2,5,1)] this
+  from borel_measurable_implies_simple_function_sequence'[OF g(1)] guess v .
+  note v = positive_integral_monotone_convergence_simple[OF this(2,5,1)] this
+  let ?L' = "\<lambda>i x. a * u i x + v i x"
+
+  have "?L \<in> borel_measurable M" using assms by auto
+  from borel_measurable_implies_simple_function_sequence'[OF this] guess l .
+  note l = positive_integral_monotone_convergence_simple[OF this(2,5,1)] this
+
+  have inc: "incseq (\<lambda>i. a * integral\<^sup>S M (u i))" "incseq (\<lambda>i. integral\<^sup>S M (v i))"
+    using u v `0 \<le> a`
+    by (auto simp: incseq_Suc_iff le_fun_def
+             intro!: add_mono ereal_mult_left_mono simple_integral_mono)
+  have pos: "\<And>i. 0 \<le> integral\<^sup>S M (u i)" "\<And>i. 0 \<le> integral\<^sup>S M (v i)" "\<And>i. 0 \<le> a * integral\<^sup>S M (u i)"
+    using u v `0 \<le> a` by (auto simp: simple_integral_positive)
+  { fix i from pos[of i] have "a * integral\<^sup>S M (u i) \<noteq> -\<infinity>" "integral\<^sup>S M (v i) \<noteq> -\<infinity>"
+      by (auto split: split_if_asm) }
+  note not_MInf = this
+
+  have l': "(SUP i. integral\<^sup>S M (l i)) = (SUP i. integral\<^sup>S M (?L' i))"
+  proof (rule SUP_simple_integral_sequences[OF l(3,6,2)])
+    show "incseq ?L'" "\<And>i x. 0 \<le> ?L' i x" "\<And>i. simple_function M (?L' i)"
+      using u v  `0 \<le> a` unfolding incseq_Suc_iff le_fun_def
+      by (auto intro!: add_mono ereal_mult_left_mono)
+    { fix x
+      { fix i have "a * u i x \<noteq> -\<infinity>" "v i x \<noteq> -\<infinity>" "u i x \<noteq> -\<infinity>" using `0 \<le> a` u(6)[of i x] v(6)[of i x]
+          by auto }
+      then have "(SUP i. a * u i x + v i x) = a * (SUP i. u i x) + (SUP i. v i x)"
+        using `0 \<le> a` u(3) v(3) u(6)[of _ x] v(6)[of _ x]
+        by (subst SUP_ereal_cmult [symmetric, OF u(6) `0 \<le> a`])
+           (auto intro!: SUP_ereal_add
+                 simp: incseq_Suc_iff le_fun_def add_mono ereal_mult_left_mono) }
+    then show "AE x in M. (SUP i. l i x) = (SUP i. ?L' i x)"
+      unfolding l(5) using `0 \<le> a` u(5) v(5) l(5) f(2) g(2)
+      by (intro AE_I2) (auto split: split_max)
+  qed
+  also have "\<dots> = (SUP i. a * integral\<^sup>S M (u i) + integral\<^sup>S M (v i))"
+    using u(2, 6) v(2, 6) `0 \<le> a` by (auto intro!: arg_cong[where f="SUPREMUM UNIV"] ext)
+  finally have "(\<integral>\<^sup>+ x. max 0 (a * f x + g x) \<partial>M) = a * (\<integral>\<^sup>+x. max 0 (f x) \<partial>M) + (\<integral>\<^sup>+x. max 0 (g x) \<partial>M)"
+    unfolding l(5)[symmetric] u(5)[symmetric] v(5)[symmetric]
+    unfolding l(1)[symmetric] u(1)[symmetric] v(1)[symmetric]
+    apply (subst SUP_ereal_cmult [symmetric, OF pos(1) `0 \<le> a`])
+    apply (subst SUP_ereal_add [symmetric, OF inc not_MInf]) .
+  then show ?thesis by (simp add: positive_integral_max_0)
+qed
+
+lemma positive_integral_cmult:
+  assumes f: "f \<in> borel_measurable M" "0 \<le> c"
+  shows "(\<integral>\<^sup>+ x. c * f x \<partial>M) = c * integral\<^sup>P M f"
+proof -
+  have [simp]: "\<And>x. c * max 0 (f x) = max 0 (c * f x)" using `0 \<le> c`
+    by (auto split: split_max simp: ereal_zero_le_0_iff)
+  have "(\<integral>\<^sup>+ x. c * f x \<partial>M) = (\<integral>\<^sup>+ x. c * max 0 (f x) \<partial>M)"
+    by (simp add: positive_integral_max_0)
+  then show ?thesis
+    using positive_integral_linear[OF _ _ `0 \<le> c`, of "\<lambda>x. max 0 (f x)" _ "\<lambda>x. 0"] f
+    by (auto simp: positive_integral_max_0)
+qed
+
+lemma positive_integral_multc:
+  assumes "f \<in> borel_measurable M" "0 \<le> c"
+  shows "(\<integral>\<^sup>+ x. f x * c \<partial>M) = integral\<^sup>P M f * c"
+  unfolding mult_commute[of _ c] positive_integral_cmult[OF assms] by simp
+
+lemma positive_integral_indicator[simp]:
+  "A \<in> sets M \<Longrightarrow> (\<integral>\<^sup>+ x. indicator A x\<partial>M) = (emeasure M) A"
+  by (subst positive_integral_eq_simple_integral)
+     (auto simp: simple_integral_indicator)
+
+lemma positive_integral_cmult_indicator:
+  "0 \<le> c \<Longrightarrow> A \<in> sets M \<Longrightarrow> (\<integral>\<^sup>+ x. c * indicator A x \<partial>M) = c * (emeasure M) A"
+  by (subst positive_integral_eq_simple_integral)
+     (auto simp: simple_function_indicator simple_integral_indicator)
+
+lemma positive_integral_indicator':
+  assumes [measurable]: "A \<inter> space M \<in> sets M"
+  shows "(\<integral>\<^sup>+ x. indicator A x \<partial>M) = emeasure M (A \<inter> space M)"
+proof -
+  have "(\<integral>\<^sup>+ x. indicator A x \<partial>M) = (\<integral>\<^sup>+ x. indicator (A \<inter> space M) x \<partial>M)"
+    by (intro positive_integral_cong) (simp split: split_indicator)
+  also have "\<dots> = emeasure M (A \<inter> space M)"
+    by simp
+  finally show ?thesis .
+qed
+
+lemma positive_integral_add:
+  assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x"
+  and g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x"
+  shows "(\<integral>\<^sup>+ x. f x + g x \<partial>M) = integral\<^sup>P M f + integral\<^sup>P M g"
+proof -
+  have ae: "AE x in M. max 0 (f x) + max 0 (g x) = max 0 (f x + g x)"
+    using assms by (auto split: split_max)
+  have "(\<integral>\<^sup>+ x. f x + g x \<partial>M) = (\<integral>\<^sup>+ x. max 0 (f x + g x) \<partial>M)"
+    by (simp add: positive_integral_max_0)
+  also have "\<dots> = (\<integral>\<^sup>+ x. max 0 (f x) + max 0 (g x) \<partial>M)"
+    unfolding ae[THEN positive_integral_cong_AE] ..
+  also have "\<dots> = (\<integral>\<^sup>+ x. max 0 (f x) \<partial>M) + (\<integral>\<^sup>+ x. max 0 (g x) \<partial>M)"
+    using positive_integral_linear[of "\<lambda>x. max 0 (f x)" _ 1 "\<lambda>x. max 0 (g x)"] f g
+    by auto
+  finally show ?thesis
+    by (simp add: positive_integral_max_0)
+qed
+
+lemma positive_integral_setsum:
+  assumes "\<And>i. i\<in>P \<Longrightarrow> f i \<in> borel_measurable M" "\<And>i. i\<in>P \<Longrightarrow> AE x in M. 0 \<le> f i x"
+  shows "(\<integral>\<^sup>+ x. (\<Sum>i\<in>P. f i x) \<partial>M) = (\<Sum>i\<in>P. integral\<^sup>P M (f i))"
+proof cases
+  assume f: "finite P"
+  from assms have "AE x in M. \<forall>i\<in>P. 0 \<le> f i x" unfolding AE_finite_all[OF f] by auto
+  from f this assms(1) show ?thesis
+  proof induct
+    case (insert i P)
+    then have "f i \<in> borel_measurable M" "AE x in M. 0 \<le> f i x"
+      "(\<lambda>x. \<Sum>i\<in>P. f i x) \<in> borel_measurable M" "AE x in M. 0 \<le> (\<Sum>i\<in>P. f i x)"
+      by (auto intro!: setsum_nonneg)
+    from positive_integral_add[OF this]
+    show ?case using insert by auto
+  qed simp
+qed simp
+
+lemma positive_integral_Markov_inequality:
+  assumes u: "u \<in> borel_measurable M" "AE x in M. 0 \<le> u x" and "A \<in> sets M" and c: "0 \<le> c"
+  shows "(emeasure M) ({x\<in>space M. 1 \<le> c * u x} \<inter> A) \<le> c * (\<integral>\<^sup>+ x. u x * indicator A x \<partial>M)"
+    (is "(emeasure M) ?A \<le> _ * ?PI")
+proof -
+  have "?A \<in> sets M"
+    using `A \<in> sets M` u by auto
+  hence "(emeasure M) ?A = (\<integral>\<^sup>+ x. indicator ?A x \<partial>M)"
+    using positive_integral_indicator by simp
+  also have "\<dots> \<le> (\<integral>\<^sup>+ x. c * (u x * indicator A x) \<partial>M)" using u c
+    by (auto intro!: positive_integral_mono_AE
+      simp: indicator_def ereal_zero_le_0_iff)
+  also have "\<dots> = c * (\<integral>\<^sup>+ x. u x * indicator A x \<partial>M)"
+    using assms
+    by (auto intro!: positive_integral_cmult simp: ereal_zero_le_0_iff)
+  finally show ?thesis .
+qed
+
+lemma positive_integral_noteq_infinite:
+  assumes g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x"
+  and "integral\<^sup>P M g \<noteq> \<infinity>"
+  shows "AE x in M. g x \<noteq> \<infinity>"
+proof (rule ccontr)
+  assume c: "\<not> (AE x in M. g x \<noteq> \<infinity>)"
+  have "(emeasure M) {x\<in>space M. g x = \<infinity>} \<noteq> 0"
+    using c g by (auto simp add: AE_iff_null)
+  moreover have "0 \<le> (emeasure M) {x\<in>space M. g x = \<infinity>}" using g by (auto intro: measurable_sets)
+  ultimately have "0 < (emeasure M) {x\<in>space M. g x = \<infinity>}" by auto
+  then have "\<infinity> = \<infinity> * (emeasure M) {x\<in>space M. g x = \<infinity>}" by auto
+  also have "\<dots> \<le> (\<integral>\<^sup>+x. \<infinity> * indicator {x\<in>space M. g x = \<infinity>} x \<partial>M)"
+    using g by (subst positive_integral_cmult_indicator) auto
+  also have "\<dots> \<le> integral\<^sup>P M g"
+    using assms by (auto intro!: positive_integral_mono_AE simp: indicator_def)
+  finally show False using `integral\<^sup>P M g \<noteq> \<infinity>` by auto
+qed
+
+lemma positive_integral_PInf:
+  assumes f: "f \<in> borel_measurable M"
+  and not_Inf: "integral\<^sup>P M f \<noteq> \<infinity>"
+  shows "(emeasure M) (f -` {\<infinity>} \<inter> space M) = 0"
+proof -
+  have "\<infinity> * (emeasure M) (f -` {\<infinity>} \<inter> space M) = (\<integral>\<^sup>+ x. \<infinity> * indicator (f -` {\<infinity>} \<inter> space M) x \<partial>M)"
+    using f by (subst positive_integral_cmult_indicator) (auto simp: measurable_sets)
+  also have "\<dots> \<le> integral\<^sup>P M (\<lambda>x. max 0 (f x))"
+    by (auto intro!: positive_integral_mono simp: indicator_def max_def)
+  finally have "\<infinity> * (emeasure M) (f -` {\<infinity>} \<inter> space M) \<le> integral\<^sup>P M f"
+    by (simp add: positive_integral_max_0)
+  moreover have "0 \<le> (emeasure M) (f -` {\<infinity>} \<inter> space M)"
+    by (rule emeasure_nonneg)
+  ultimately show ?thesis
+    using assms by (auto split: split_if_asm)
+qed
+
+lemma positive_integral_PInf_AE:
+  assumes "f \<in> borel_measurable M" "integral\<^sup>P M f \<noteq> \<infinity>" shows "AE x in M. f x \<noteq> \<infinity>"
+proof (rule AE_I)
+  show "(emeasure M) (f -` {\<infinity>} \<inter> space M) = 0"
+    by (rule positive_integral_PInf[OF assms])
+  show "f -` {\<infinity>} \<inter> space M \<in> sets M"
+    using assms by (auto intro: borel_measurable_vimage)
+qed auto
+
+lemma simple_integral_PInf:
+  assumes "simple_function M f" "\<And>x. 0 \<le> f x"
+  and "integral\<^sup>S M f \<noteq> \<infinity>"
+  shows "(emeasure M) (f -` {\<infinity>} \<inter> space M) = 0"
+proof (rule positive_integral_PInf)
+  show "f \<in> borel_measurable M" using assms by (auto intro: borel_measurable_simple_function)
+  show "integral\<^sup>P M f \<noteq> \<infinity>"
+    using assms by (simp add: positive_integral_eq_simple_integral)
+qed
+
+lemma positive_integral_diff:
+  assumes f: "f \<in> borel_measurable M"
+  and g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x"
+  and fin: "integral\<^sup>P M g \<noteq> \<infinity>"
+  and mono: "AE x in M. g x \<le> f x"
+  shows "(\<integral>\<^sup>+ x. f x - g x \<partial>M) = integral\<^sup>P M f - integral\<^sup>P M g"
+proof -
+  have diff: "(\<lambda>x. f x - g x) \<in> borel_measurable M" "AE x in M. 0 \<le> f x - g x"
+    using assms by (auto intro: ereal_diff_positive)
+  have pos_f: "AE x in M. 0 \<le> f x" using mono g by auto
+  { fix a b :: ereal assume "0 \<le> a" "a \<noteq> \<infinity>" "0 \<le> b" "a \<le> b" then have "b - a + a = b"
+      by (cases rule: ereal2_cases[of a b]) auto }
+  note * = this
+  then have "AE x in M. f x = f x - g x + g x"
+    using mono positive_integral_noteq_infinite[OF g fin] assms by auto
+  then have **: "integral\<^sup>P M f = (\<integral>\<^sup>+x. f x - g x \<partial>M) + integral\<^sup>P M g"
+    unfolding positive_integral_add[OF diff g, symmetric]
+    by (rule positive_integral_cong_AE)
+  show ?thesis unfolding **
+    using fin positive_integral_positive[of M g]
+    by (cases rule: ereal2_cases[of "\<integral>\<^sup>+ x. f x - g x \<partial>M" "integral\<^sup>P M g"]) auto
+qed
+
+lemma positive_integral_suminf:
+  assumes f: "\<And>i. f i \<in> borel_measurable M" "\<And>i. AE x in M. 0 \<le> f i x"
+  shows "(\<integral>\<^sup>+ x. (\<Sum>i. f i x) \<partial>M) = (\<Sum>i. integral\<^sup>P M (f i))"
+proof -
+  have all_pos: "AE x in M. \<forall>i. 0 \<le> f i x"
+    using assms by (auto simp: AE_all_countable)
+  have "(\<Sum>i. integral\<^sup>P M (f i)) = (SUP n. \<Sum>i<n. integral\<^sup>P M (f i))"
+    using positive_integral_positive by (rule suminf_ereal_eq_SUP)
+  also have "\<dots> = (SUP n. \<integral>\<^sup>+x. (\<Sum>i<n. f i x) \<partial>M)"
+    unfolding positive_integral_setsum[OF f] ..
+  also have "\<dots> = \<integral>\<^sup>+x. (SUP n. \<Sum>i<n. f i x) \<partial>M" using f all_pos
+    by (intro positive_integral_monotone_convergence_SUP_AE[symmetric])
+       (elim AE_mp, auto simp: setsum_nonneg simp del: setsum_lessThan_Suc intro!: AE_I2 setsum_mono3)
+  also have "\<dots> = \<integral>\<^sup>+x. (\<Sum>i. f i x) \<partial>M" using all_pos
+    by (intro positive_integral_cong_AE) (auto simp: suminf_ereal_eq_SUP)
+  finally show ?thesis by simp
+qed
+
+lemma positive_integral_mult_bounded_inf:
+  assumes f: "f \<in> borel_measurable M" "(\<integral>\<^sup>+x. f x \<partial>M) < \<infinity>"
+    and c: "0 \<le> c" "c \<noteq> \<infinity>" and ae: "AE x in M. g x \<le> c * f x"
+  shows "(\<integral>\<^sup>+x. g x \<partial>M) < \<infinity>"
+proof -
+  have "(\<integral>\<^sup>+x. g x \<partial>M) \<le> (\<integral>\<^sup>+x. c * f x \<partial>M)"
+    by (intro positive_integral_mono_AE ae)
+  also have "(\<integral>\<^sup>+x. c * f x \<partial>M) < \<infinity>"
+    using c f by (subst positive_integral_cmult) auto
+  finally show ?thesis .
+qed
+
+text {* Fatou's lemma: convergence theorem on limes inferior *}
+
+lemma positive_integral_liminf:
+  fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> ereal"
+  assumes u: "\<And>i. u i \<in> borel_measurable M" "\<And>i. AE x in M. 0 \<le> u i x"
+  shows "(\<integral>\<^sup>+ x. liminf (\<lambda>n. u n x) \<partial>M) \<le> liminf (\<lambda>n. integral\<^sup>P M (u n))"
+proof -
+  have pos: "AE x in M. \<forall>i. 0 \<le> u i x" using u by (auto simp: AE_all_countable)
+  have "(\<integral>\<^sup>+ x. liminf (\<lambda>n. u n x) \<partial>M) =
+    (SUP n. \<integral>\<^sup>+ x. (INF i:{n..}. u i x) \<partial>M)"
+    unfolding liminf_SUP_INF using pos u
+    by (intro positive_integral_monotone_convergence_SUP_AE)
+       (elim AE_mp, auto intro!: AE_I2 intro: INF_greatest INF_superset_mono)
+  also have "\<dots> \<le> liminf (\<lambda>n. integral\<^sup>P M (u n))"
+    unfolding liminf_SUP_INF
+    by (auto intro!: SUP_mono exI INF_greatest positive_integral_mono INF_lower)
+  finally show ?thesis .
+qed
+
+lemma le_Limsup:
+  "F \<noteq> bot \<Longrightarrow> eventually (\<lambda>x. c \<le> g x) F \<Longrightarrow> c \<le> Limsup F g"
+  using Limsup_mono[of "\<lambda>_. c" g F] by (simp add: Limsup_const)
+
+lemma Limsup_le:
+  "F \<noteq> bot \<Longrightarrow> eventually (\<lambda>x. f x \<le> c) F \<Longrightarrow> Limsup F f \<le> c"
+  using Limsup_mono[of f "\<lambda>_. c" F] by (simp add: Limsup_const)
+
+lemma ereal_mono_minus_cancel:
+  fixes a b c :: ereal
+  shows "c - a \<le> c - b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c < \<infinity> \<Longrightarrow> b \<le> a"
+  by (cases a b c rule: ereal3_cases) auto
+
+lemma positive_integral_limsup:
+  fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> ereal"
+  assumes [measurable]: "\<And>i. u i \<in> borel_measurable M" "w \<in> borel_measurable M"
+  assumes bounds: "\<And>i. AE x in M. 0 \<le> u i x" "\<And>i. AE x in M. u i x \<le> w x" and w: "(\<integral>\<^sup>+x. w x \<partial>M) < \<infinity>"
+  shows "limsup (\<lambda>n. integral\<^sup>P M (u n)) \<le> (\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M)"
+proof -
+  have bnd: "AE x in M. \<forall>i. 0 \<le> u i x \<and> u i x \<le> w x"
+    using bounds by (auto simp: AE_all_countable)
+
+  from bounds[of 0] have w_nonneg: "AE x in M. 0 \<le> w x"
+    by auto
+
+  have "(\<integral>\<^sup>+x. w x \<partial>M) - (\<integral>\<^sup>+x. limsup (\<lambda>n. u n x) \<partial>M) = (\<integral>\<^sup>+x. w x - limsup (\<lambda>n. u n x) \<partial>M)"
+  proof (intro positive_integral_diff[symmetric])
+    show "AE x in M. 0 \<le> limsup (\<lambda>n. u n x)"
+      using bnd by (auto intro!: le_Limsup)
+    show "AE x in M. limsup (\<lambda>n. u n x) \<le> w x"
+      using bnd by (auto intro!: Limsup_le)
+    then have "(\<integral>\<^sup>+x. limsup (\<lambda>n. u n x) \<partial>M) < \<infinity>"
+      by (intro positive_integral_mult_bounded_inf[OF _ w, of 1]) auto
+    then show "(\<integral>\<^sup>+x. limsup (\<lambda>n. u n x) \<partial>M) \<noteq> \<infinity>"
+      by simp
+  qed auto
+  also have "\<dots> = (\<integral>\<^sup>+x. liminf (\<lambda>n. w x - u n x) \<partial>M)"
+    using w_nonneg
+    by (intro positive_integral_cong_AE, eventually_elim)
+       (auto intro!: liminf_ereal_cminus[symmetric])
+  also have "\<dots> \<le> liminf (\<lambda>n. \<integral>\<^sup>+x. w x - u n x \<partial>M)"
+  proof (rule positive_integral_liminf)
+    fix i show "AE x in M. 0 \<le> w x - u i x"
+      using bounds[of i] by eventually_elim (auto intro: ereal_diff_positive)
+  qed simp
+  also have "(\<lambda>n. \<integral>\<^sup>+x. w x - u n x \<partial>M) = (\<lambda>n. (\<integral>\<^sup>+x. w x \<partial>M) - (\<integral>\<^sup>+x. u n x \<partial>M))"
+  proof (intro ext positive_integral_diff)
+    fix i have "(\<integral>\<^sup>+x. u i x \<partial>M) < \<infinity>"
+      using bounds by (intro positive_integral_mult_bounded_inf[OF _ w, of 1]) auto
+    then show "(\<integral>\<^sup>+x. u i x \<partial>M) \<noteq> \<infinity>" by simp
+  qed (insert bounds, auto)
+  also have "liminf (\<lambda>n. (\<integral>\<^sup>+x. w x \<partial>M) - (\<integral>\<^sup>+x. u n x \<partial>M)) = (\<integral>\<^sup>+x. w x \<partial>M) - limsup (\<lambda>n. \<integral>\<^sup>+x. u n x \<partial>M)"
+    using w by (intro liminf_ereal_cminus) auto
+  finally show ?thesis
+    by (rule ereal_mono_minus_cancel) (intro w positive_integral_positive)+
+qed
+
+lemma positive_integral_dominated_convergence:
+  assumes [measurable]:
+       "\<And>i. u i \<in> borel_measurable M" "u' \<in> borel_measurable M" "w \<in> borel_measurable M"
+    and bound: "\<And>j. AE x in M. 0 \<le> u j x" "\<And>j. AE x in M. u j x \<le> w x"
+    and w: "(\<integral>\<^sup>+x. w x \<partial>M) < \<infinity>"
+    and u': "AE x in M. (\<lambda>i. u i x) ----> u' x"
+  shows "(\<lambda>i. (\<integral>\<^sup>+x. u i x \<partial>M)) ----> (\<integral>\<^sup>+x. u' x \<partial>M)"
+proof -
+  have "limsup (\<lambda>n. integral\<^sup>P M (u n)) \<le> (\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M)"
+    by (intro positive_integral_limsup[OF _ _ bound w]) auto
+  moreover have "(\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M) = (\<integral>\<^sup>+ x. u' x \<partial>M)"
+    using u' by (intro positive_integral_cong_AE, eventually_elim) (metis tendsto_iff_Liminf_eq_Limsup sequentially_bot)
+  moreover have "(\<integral>\<^sup>+ x. liminf (\<lambda>n. u n x) \<partial>M) = (\<integral>\<^sup>+ x. u' x \<partial>M)"
+    using u' by (intro positive_integral_cong_AE, eventually_elim) (metis tendsto_iff_Liminf_eq_Limsup sequentially_bot)
+  moreover have "(\<integral>\<^sup>+x. liminf (\<lambda>n. u n x) \<partial>M) \<le> liminf (\<lambda>n. integral\<^sup>P M (u n))"
+    by (intro positive_integral_liminf[OF _ bound(1)]) auto
+  moreover have "liminf (\<lambda>n. integral\<^sup>P M (u n)) \<le> limsup (\<lambda>n. integral\<^sup>P M (u n))"
+    by (intro Liminf_le_Limsup sequentially_bot)
+  ultimately show ?thesis
+    by (intro Liminf_eq_Limsup) auto
+qed
+
+lemma positive_integral_null_set:
+  assumes "N \<in> null_sets M" shows "(\<integral>\<^sup>+ x. u x * indicator N x \<partial>M) = 0"
+proof -
+  have "(\<integral>\<^sup>+ x. u x * indicator N x \<partial>M) = (\<integral>\<^sup>+ x. 0 \<partial>M)"
+  proof (intro positive_integral_cong_AE AE_I)
+    show "{x \<in> space M. u x * indicator N x \<noteq> 0} \<subseteq> N"
+      by (auto simp: indicator_def)
+    show "(emeasure M) N = 0" "N \<in> sets M"
+      using assms by auto
+  qed
+  then show ?thesis by simp
+qed
+
+lemma positive_integral_0_iff:
+  assumes u: "u \<in> borel_measurable M" and pos: "AE x in M. 0 \<le> u x"
+  shows "integral\<^sup>P M u = 0 \<longleftrightarrow> emeasure M {x\<in>space M. u x \<noteq> 0} = 0"
+    (is "_ \<longleftrightarrow> (emeasure M) ?A = 0")
+proof -
+  have u_eq: "(\<integral>\<^sup>+ x. u x * indicator ?A x \<partial>M) = integral\<^sup>P M u"
+    by (auto intro!: positive_integral_cong simp: indicator_def)
+  show ?thesis
+  proof
+    assume "(emeasure M) ?A = 0"
+    with positive_integral_null_set[of ?A M u] u
+    show "integral\<^sup>P M u = 0" by (simp add: u_eq null_sets_def)
+  next
+    { fix r :: ereal and n :: nat assume gt_1: "1 \<le> real n * r"
+      then have "0 < real n * r" by (cases r) (auto split: split_if_asm simp: one_ereal_def)
+      then have "0 \<le> r" by (auto simp add: ereal_zero_less_0_iff) }
+    note gt_1 = this
+    assume *: "integral\<^sup>P M u = 0"
+    let ?M = "\<lambda>n. {x \<in> space M. 1 \<le> real (n::nat) * u x}"
+    have "0 = (SUP n. (emeasure M) (?M n \<inter> ?A))"
+    proof -
+      { fix n :: nat
+        from positive_integral_Markov_inequality[OF u pos, of ?A "ereal (real n)"]
+        have "(emeasure M) (?M n \<inter> ?A) \<le> 0" unfolding u_eq * using u by simp
+        moreover have "0 \<le> (emeasure M) (?M n \<inter> ?A)" using u by auto
+        ultimately have "(emeasure M) (?M n \<inter> ?A) = 0" by auto }
+      thus ?thesis by simp
+    qed
+    also have "\<dots> = (emeasure M) (\<Union>n. ?M n \<inter> ?A)"
+    proof (safe intro!: SUP_emeasure_incseq)
+      fix n show "?M n \<inter> ?A \<in> sets M"
+        using u by (auto intro!: sets.Int)
+    next
+      show "incseq (\<lambda>n. {x \<in> space M. 1 \<le> real n * u x} \<inter> {x \<in> space M. u x \<noteq> 0})"
+      proof (safe intro!: incseq_SucI)
+        fix n :: nat and x
+        assume *: "1 \<le> real n * u x"
+        also from gt_1[OF *] have "real n * u x \<le> real (Suc n) * u x"
+          using `0 \<le> u x` by (auto intro!: ereal_mult_right_mono)
+        finally show "1 \<le> real (Suc n) * u x" by auto
+      qed
+    qed
+    also have "\<dots> = (emeasure M) {x\<in>space M. 0 < u x}"
+    proof (safe intro!: arg_cong[where f="(emeasure M)"] dest!: gt_1)
+      fix x assume "0 < u x" and [simp, intro]: "x \<in> space M"
+      show "x \<in> (\<Union>n. ?M n \<inter> ?A)"
+      proof (cases "u x")
+        case (real r) with `0 < u x` have "0 < r" by auto
+        obtain j :: nat where "1 / r \<le> real j" using real_arch_simple ..
+        hence "1 / r * r \<le> real j * r" unfolding mult_le_cancel_right using `0 < r` by auto
+        hence "1 \<le> real j * r" using real `0 < r` by auto
+        thus ?thesis using `0 < r` real by (auto simp: one_ereal_def)
+      qed (insert `0 < u x`, auto)
+    qed auto
+    finally have "(emeasure M) {x\<in>space M. 0 < u x} = 0" by simp
+    moreover
+    from pos have "AE x in M. \<not> (u x < 0)" by auto
+    then have "(emeasure M) {x\<in>space M. u x < 0} = 0"
+      using AE_iff_null[of M] u by auto
+    moreover have "(emeasure M) {x\<in>space M. u x \<noteq> 0} = (emeasure M) {x\<in>space M. u x < 0} + (emeasure M) {x\<in>space M. 0 < u x}"
+      using u by (subst plus_emeasure) (auto intro!: arg_cong[where f="emeasure M"])
+    ultimately show "(emeasure M) ?A = 0" by simp
+  qed
+qed
+
+lemma positive_integral_0_iff_AE:
+  assumes u: "u \<in> borel_measurable M"
+  shows "integral\<^sup>P M u = 0 \<longleftrightarrow> (AE x in M. u x \<le> 0)"
+proof -
+  have sets: "{x\<in>space M. max 0 (u x) \<noteq> 0} \<in> sets M"
+    using u by auto
+  from positive_integral_0_iff[of "\<lambda>x. max 0 (u x)"]
+  have "integral\<^sup>P M u = 0 \<longleftrightarrow> (AE x in M. max 0 (u x) = 0)"
+    unfolding positive_integral_max_0
+    using AE_iff_null[OF sets] u by auto
+  also have "\<dots> \<longleftrightarrow> (AE x in M. u x \<le> 0)" by (auto split: split_max)
+  finally show ?thesis .
+qed
+
+lemma AE_iff_positive_integral: 
+  "{x\<in>space M. P x} \<in> sets M \<Longrightarrow> (AE x in M. P x) \<longleftrightarrow> integral\<^sup>P M (indicator {x. \<not> P x}) = 0"
+  by (subst positive_integral_0_iff_AE) (auto simp: one_ereal_def zero_ereal_def
+    sets.sets_Collect_neg indicator_def[abs_def] measurable_If)
+
+lemma positive_integral_const_If:
+  "(\<integral>\<^sup>+x. a \<partial>M) = (if 0 \<le> a then a * (emeasure M) (space M) else 0)"
+  by (auto intro!: positive_integral_0_iff_AE[THEN iffD2])
+
+lemma positive_integral_subalgebra:
+  assumes f: "f \<in> borel_measurable N" "\<And>x. 0 \<le> f x"
+  and N: "sets N \<subseteq> sets M" "space N = space M" "\<And>A. A \<in> sets N \<Longrightarrow> emeasure N A = emeasure M A"
+  shows "integral\<^sup>P N f = integral\<^sup>P M f"
+proof -
+  have [simp]: "\<And>f :: 'a \<Rightarrow> ereal. f \<in> borel_measurable N \<Longrightarrow> f \<in> borel_measurable M"
+    using N by (auto simp: measurable_def)
+  have [simp]: "\<And>P. (AE x in N. P x) \<Longrightarrow> (AE x in M. P x)"
+    using N by (auto simp add: eventually_ae_filter null_sets_def)
+  have [simp]: "\<And>A. A \<in> sets N \<Longrightarrow> A \<in> sets M"
+    using N by auto
+  from f show ?thesis
+    apply induct
+    apply (simp_all add: positive_integral_add positive_integral_cmult positive_integral_monotone_convergence_SUP N)
+    apply (auto intro!: positive_integral_cong cong: positive_integral_cong simp: N(2)[symmetric])
+    done
+qed
+
+lemma positive_integral_nat_function:
+  fixes f :: "'a \<Rightarrow> nat"
+  assumes "f \<in> measurable M (count_space UNIV)"
+  shows "(\<integral>\<^sup>+x. ereal (of_nat (f x)) \<partial>M) = (\<Sum>t. emeasure M {x\<in>space M. t < f x})"
+proof -
+  def F \<equiv> "\<lambda>i. {x\<in>space M. i < f x}"
+  with assms have [measurable]: "\<And>i. F i \<in> sets M"
+    by auto
+
+  { fix x assume "x \<in> space M"
+    have "(\<lambda>i. if i < f x then 1 else 0) sums (of_nat (f x)::real)"
+      using sums_If_finite[of "\<lambda>i. i < f x" "\<lambda>_. 1::real"] by simp
+    then have "(\<lambda>i. ereal(if i < f x then 1 else 0)) sums (ereal(of_nat(f x)))"
+      unfolding sums_ereal .
+    moreover have "\<And>i. ereal (if i < f x then 1 else 0) = indicator (F i) x"
+      using `x \<in> space M` by (simp add: one_ereal_def F_def)
+    ultimately have "ereal(of_nat(f x)) = (\<Sum>i. indicator (F i) x)"
+      by (simp add: sums_iff) }
+  then have "(\<integral>\<^sup>+x. ereal (of_nat (f x)) \<partial>M) = (\<integral>\<^sup>+x. (\<Sum>i. indicator (F i) x) \<partial>M)"
+    by (simp cong: positive_integral_cong)
+  also have "\<dots> = (\<Sum>i. emeasure M (F i))"
+    by (simp add: positive_integral_suminf)
+  finally show ?thesis
+    by (simp add: F_def)
+qed
+
+section {* Distributions *}
+
+lemma positive_integral_distr':
+  assumes T: "T \<in> measurable M M'"
+  and f: "f \<in> borel_measurable (distr M M' T)" "\<And>x. 0 \<le> f x"
+  shows "integral\<^sup>P (distr M M' T) f = (\<integral>\<^sup>+ x. f (T x) \<partial>M)"
+  using f 
+proof induct
+  case (cong f g)
+  with T show ?case
+    apply (subst positive_integral_cong[of _ f g])
+    apply simp
+    apply (subst positive_integral_cong[of _ "\<lambda>x. f (T x)" "\<lambda>x. g (T x)"])
+    apply (simp add: measurable_def Pi_iff)
+    apply simp
+    done
+next
+  case (set A)
+  then have eq: "\<And>x. x \<in> space M \<Longrightarrow> indicator A (T x) = indicator (T -` A \<inter> space M) x"
+    by (auto simp: indicator_def)
+  from set T show ?case
+    by (subst positive_integral_cong[OF eq])
+       (auto simp add: emeasure_distr intro!: positive_integral_indicator[symmetric] measurable_sets)
+qed (simp_all add: measurable_compose[OF T] T positive_integral_cmult positive_integral_add
+                   positive_integral_monotone_convergence_SUP le_fun_def incseq_def)
+
+lemma positive_integral_distr:
+  "T \<in> measurable M M' \<Longrightarrow> f \<in> borel_measurable M' \<Longrightarrow> integral\<^sup>P (distr M M' T) f = (\<integral>\<^sup>+ x. f (T x) \<partial>M)"
+  by (subst (1 2) positive_integral_max_0[symmetric])
+     (simp add: positive_integral_distr')
+
+section {* Lebesgue integration on @{const count_space} *}
+
+lemma simple_function_count_space[simp]:
+  "simple_function (count_space A) f \<longleftrightarrow> finite (f ` A)"
+  unfolding simple_function_def by simp
+
+lemma positive_integral_count_space:
+  assumes A: "finite {a\<in>A. 0 < f a}"
+  shows "integral\<^sup>P (count_space A) f = (\<Sum>a|a\<in>A \<and> 0 < f a. f a)"
+proof -
+  have *: "(\<integral>\<^sup>+x. max 0 (f x) \<partial>count_space A) =
+    (\<integral>\<^sup>+ x. (\<Sum>a|a\<in>A \<and> 0 < f a. f a * indicator {a} x) \<partial>count_space A)"
+    by (auto intro!: positive_integral_cong
+             simp add: indicator_def if_distrib setsum_cases[OF A] max_def le_less)
+  also have "\<dots> = (\<Sum>a|a\<in>A \<and> 0 < f a. \<integral>\<^sup>+ x. f a * indicator {a} x \<partial>count_space A)"
+    by (subst positive_integral_setsum)
+       (simp_all add: AE_count_space ereal_zero_le_0_iff less_imp_le)
+  also have "\<dots> = (\<Sum>a|a\<in>A \<and> 0 < f a. f a)"
+    by (auto intro!: setsum_cong simp: positive_integral_cmult_indicator one_ereal_def[symmetric])
+  finally show ?thesis by (simp add: positive_integral_max_0)
+qed
+
+lemma positive_integral_count_space_finite:
+    "finite A \<Longrightarrow> (\<integral>\<^sup>+x. f x \<partial>count_space A) = (\<Sum>a\<in>A. max 0 (f a))"
+  by (subst positive_integral_max_0[symmetric])
+     (auto intro!: setsum_mono_zero_left simp: positive_integral_count_space less_le)
+
+lemma emeasure_UN_countable:
+  assumes sets: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> sets M" and I: "countable I" 
+  assumes disj: "disjoint_family_on X I"
+  shows "emeasure M (UNION I X) = (\<integral>\<^sup>+i. emeasure M (X i) \<partial>count_space I)"
+proof cases
+  assume "finite I" with sets disj show ?thesis
+    by (subst setsum_emeasure[symmetric])
+       (auto intro!: setsum_cong simp add: max_def subset_eq positive_integral_count_space_finite emeasure_nonneg)
+next
+  assume f: "\<not> finite I"
+  then have [intro]: "I \<noteq> {}" by auto
+  from from_nat_into_inj_infinite[OF I f] from_nat_into[OF this] disj
+  have disj2: "disjoint_family (\<lambda>i. X (from_nat_into I i))"
+    unfolding disjoint_family_on_def by metis
+
+  from f have "bij_betw (from_nat_into I) UNIV I"
+    using bij_betw_from_nat_into[OF I] by simp
+  then have "(\<Union>i\<in>I. X i) = (\<Union>i. (X \<circ> from_nat_into I) i)"
+    unfolding SUP_def image_comp [symmetric] by (simp add: bij_betw_def)
+  then have "emeasure M (UNION I X) = emeasure M (\<Union>i. X (from_nat_into I i))"
+    by simp
+  also have "\<dots> = (\<Sum>i. emeasure M (X (from_nat_into I i)))"
+    by (intro suminf_emeasure[symmetric] disj disj2) (auto intro!: sets from_nat_into[OF `I \<noteq> {}`])
+  also have "\<dots> = (\<Sum>n. \<integral>\<^sup>+i. emeasure M (X i) * indicator {from_nat_into I n} i \<partial>count_space I)"
+  proof (intro arg_cong[where f=suminf] ext)
+    fix i
+    have eq: "{a \<in> I. 0 < emeasure M (X a) * indicator {from_nat_into I i} a}
+     = (if 0 < emeasure M (X (from_nat_into I i)) then {from_nat_into I i} else {})"
+     using ereal_0_less_1
+     by (auto simp: ereal_zero_less_0_iff indicator_def from_nat_into `I \<noteq> {}` simp del: ereal_0_less_1)
+    have "(\<integral>\<^sup>+ ia. emeasure M (X ia) * indicator {from_nat_into I i} ia \<partial>count_space I) =
+      (if 0 < emeasure M (X (from_nat_into I i)) then emeasure M (X (from_nat_into I i)) else 0)"
+      by (subst positive_integral_count_space) (simp_all add: eq)
+    also have "\<dots> = emeasure M (X (from_nat_into I i))"
+      by (simp add: less_le emeasure_nonneg)
+    finally show "emeasure M (X (from_nat_into I i)) =
+         \<integral>\<^sup>+ ia. emeasure M (X ia) * indicator {from_nat_into I i} ia \<partial>count_space I" ..
+  qed
+  also have "\<dots> = (\<integral>\<^sup>+i. emeasure M (X i) \<partial>count_space I)"
+    apply (subst positive_integral_suminf[symmetric])
+    apply (auto simp: emeasure_nonneg intro!: positive_integral_cong)
+  proof -
+    fix x assume "x \<in> I"
+    then have "(\<Sum>i. emeasure M (X x) * indicator {from_nat_into I i} x) = (\<Sum>i\<in>{to_nat_on I x}. emeasure M (X x) * indicator {from_nat_into I i} x)"
+      by (intro suminf_finite) (auto simp: indicator_def I f)
+    also have "\<dots> = emeasure M (X x)"
+      by (simp add: I f `x\<in>I`)
+    finally show "(\<Sum>i. emeasure M (X x) * indicator {from_nat_into I i} x) = emeasure M (X x)" .
+  qed
+  finally show ?thesis .
+qed
+
+section {* Measures with Restricted Space *}
+
+lemma positive_integral_restrict_space:
+  assumes \<Omega>: "\<Omega> \<in> sets M" and f: "f \<in> borel_measurable M" "\<And>x. 0 \<le> f x" "\<And>x. x \<in> space M - \<Omega> \<Longrightarrow> f x = 0"
+  shows "positive_integral (restrict_space M \<Omega>) f = positive_integral M f"
+using f proof (induct rule: borel_measurable_induct)
+  case (cong f g) then show ?case
+    using positive_integral_cong[of M f g] positive_integral_cong[of "restrict_space M \<Omega>" f g]
+      sets.sets_into_space[OF `\<Omega> \<in> sets M`]
+    by (simp add: subset_eq space_restrict_space)
+next
+  case (set A)
+  then have "A \<subseteq> \<Omega>"
+    unfolding indicator_eq_0_iff by (auto dest: sets.sets_into_space)
+  with set `\<Omega> \<in> sets M` sets.sets_into_space[OF `\<Omega> \<in> sets M`] show ?case
+    by (subst positive_integral_indicator')
+       (auto simp add: sets_restrict_space_iff space_restrict_space
+                  emeasure_restrict_space Int_absorb2
+                dest: sets.sets_into_space)
+next
+  case (mult f c) then show ?case
+    by (cases "c = 0") (simp_all add: measurable_restrict_space1 \<Omega> positive_integral_cmult)
+next
+  case (add f g) then show ?case
+    by (simp add: measurable_restrict_space1 \<Omega> positive_integral_add ereal_add_nonneg_eq_0_iff)
+next
+  case (seq F) then show ?case
+    by (auto simp add: SUP_eq_iff measurable_restrict_space1 \<Omega> positive_integral_monotone_convergence_SUP)
+qed
+
+section {* Measure spaces with an associated density *}
+
+definition density :: "'a measure \<Rightarrow> ('a \<Rightarrow> ereal) \<Rightarrow> 'a measure" where
+  "density M f = measure_of (space M) (sets M) (\<lambda>A. \<integral>\<^sup>+ x. f x * indicator A x \<partial>M)"
+
+lemma 
+  shows sets_density[simp]: "sets (density M f) = sets M"
+    and space_density[simp]: "space (density M f) = space M"
+  by (auto simp: density_def)
+
+(* FIXME: add conversion to simplify space, sets and measurable *)
+lemma space_density_imp[measurable_dest]:
+  "\<And>x M f. x \<in> space (density M f) \<Longrightarrow> x \<in> space M" by auto
+
+lemma 
+  shows measurable_density_eq1[simp]: "g \<in> measurable (density Mg f) Mg' \<longleftrightarrow> g \<in> measurable Mg Mg'"
+    and measurable_density_eq2[simp]: "h \<in> measurable Mh (density Mh' f) \<longleftrightarrow> h \<in> measurable Mh Mh'"
+    and simple_function_density_eq[simp]: "simple_function (density Mu f) u \<longleftrightarrow> simple_function Mu u"
+  unfolding measurable_def simple_function_def by simp_all
+
+lemma density_cong: "f \<in> borel_measurable M \<Longrightarrow> f' \<in> borel_measurable M \<Longrightarrow>
+  (AE x in M. f x = f' x) \<Longrightarrow> density M f = density M f'"
+  unfolding density_def by (auto intro!: measure_of_eq positive_integral_cong_AE sets.space_closed)
+
+lemma density_max_0: "density M f = density M (\<lambda>x. max 0 (f x))"
+proof -
+  have "\<And>x A. max 0 (f x) * indicator A x = max 0 (f x * indicator A x)"
+    by (auto simp: indicator_def)
+  then show ?thesis
+    unfolding density_def by (simp add: positive_integral_max_0)
+qed
+
+lemma density_ereal_max_0: "density M (\<lambda>x. ereal (f x)) = density M (\<lambda>x. ereal (max 0 (f x)))"
+  by (subst density_max_0) (auto intro!: arg_cong[where f="density M"] split: split_max)
+
+lemma emeasure_density:
+  assumes f[measurable]: "f \<in> borel_measurable M" and A[measurable]: "A \<in> sets M"
+  shows "emeasure (density M f) A = (\<integral>\<^sup>+ x. f x * indicator A x \<partial>M)"
+    (is "_ = ?\<mu> A")
+  unfolding density_def
+proof (rule emeasure_measure_of_sigma)
+  show "sigma_algebra (space M) (sets M)" ..
+  show "positive (sets M) ?\<mu>"
+    using f by (auto simp: positive_def intro!: positive_integral_positive)
+  have \<mu>_eq: "?\<mu> = (\<lambda>A. \<integral>\<^sup>+ x. max 0 (f x) * indicator A x \<partial>M)" (is "?\<mu> = ?\<mu>'")
+    apply (subst positive_integral_max_0[symmetric])
+    apply (intro ext positive_integral_cong_AE AE_I2)
+    apply (auto simp: indicator_def)
+    done
+  show "countably_additive (sets M) ?\<mu>"
+    unfolding \<mu>_eq
+  proof (intro countably_additiveI)
+    fix A :: "nat \<Rightarrow> 'a set" assume "range A \<subseteq> sets M"
+    then have "\<And>i. A i \<in> sets M" by auto
+    then have *: "\<And>i. (\<lambda>x. max 0 (f x) * indicator (A i) x) \<in> borel_measurable M"
+      by (auto simp: set_eq_iff)
+    assume disj: "disjoint_family A"
+    have "(\<Sum>n. ?\<mu>' (A n)) = (\<integral>\<^sup>+ x. (\<Sum>n. max 0 (f x) * indicator (A n) x) \<partial>M)"
+      using f * by (simp add: positive_integral_suminf)
+    also have "\<dots> = (\<integral>\<^sup>+ x. max 0 (f x) * (\<Sum>n. indicator (A n) x) \<partial>M)" using f
+      by (auto intro!: suminf_cmult_ereal positive_integral_cong_AE)
+    also have "\<dots> = (\<integral>\<^sup>+ x. max 0 (f x) * indicator (\<Union>n. A n) x \<partial>M)"
+      unfolding suminf_indicator[OF disj] ..
+    finally show "(\<Sum>n. ?\<mu>' (A n)) = ?\<mu>' (\<Union>x. A x)" by simp
+  qed
+qed fact
+
+lemma null_sets_density_iff:
+  assumes f: "f \<in> borel_measurable M"
+  shows "A \<in> null_sets (density M f) \<longleftrightarrow> A \<in> sets M \<and> (AE x in M. x \<in> A \<longrightarrow> f x \<le> 0)"
+proof -
+  { assume "A \<in> sets M"
+    have eq: "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = (\<integral>\<^sup>+x. max 0 (f x) * indicator A x \<partial>M)"
+      apply (subst positive_integral_max_0[symmetric])
+      apply (intro positive_integral_cong)
+      apply (auto simp: indicator_def)
+      done
+    have "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = 0 \<longleftrightarrow> 
+      emeasure M {x \<in> space M. max 0 (f x) * indicator A x \<noteq> 0} = 0"
+      unfolding eq
+      using f `A \<in> sets M`
+      by (intro positive_integral_0_iff) auto
+    also have "\<dots> \<longleftrightarrow> (AE x in M. max 0 (f x) * indicator A x = 0)"
+      using f `A \<in> sets M`
+      by (intro AE_iff_measurable[OF _ refl, symmetric]) auto
+    also have "(AE x in M. max 0 (f x) * indicator A x = 0) \<longleftrightarrow> (AE x in M. x \<in> A \<longrightarrow> f x \<le> 0)"
+      by (auto simp add: indicator_def max_def split: split_if_asm)
+    finally have "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = 0 \<longleftrightarrow> (AE x in M. x \<in> A \<longrightarrow> f x \<le> 0)" . }
+  with f show ?thesis
+    by (simp add: null_sets_def emeasure_density cong: conj_cong)
+qed
+
+lemma AE_density:
+  assumes f: "f \<in> borel_measurable M"
+  shows "(AE x in density M f. P x) \<longleftrightarrow> (AE x in M. 0 < f x \<longrightarrow> P x)"
+proof
+  assume "AE x in density M f. P x"
+  with f obtain N where "{x \<in> space M. \<not> P x} \<subseteq> N" "N \<in> sets M" and ae: "AE x in M. x \<in> N \<longrightarrow> f x \<le> 0"
+    by (auto simp: eventually_ae_filter null_sets_density_iff)
+  then have "AE x in M. x \<notin> N \<longrightarrow> P x" by auto
+  with ae show "AE x in M. 0 < f x \<longrightarrow> P x"
+    by (rule eventually_elim2) auto
+next
+  fix N assume ae: "AE x in M. 0 < f x \<longrightarrow> P x"
+  then obtain N where "{x \<in> space M. \<not> (0 < f x \<longrightarrow> P x)} \<subseteq> N" "N \<in> null_sets M"
+    by (auto simp: eventually_ae_filter)
+  then have *: "{x \<in> space (density M f). \<not> P x} \<subseteq> N \<union> {x\<in>space M. \<not> 0 < f x}"
+    "N \<union> {x\<in>space M. \<not> 0 < f x} \<in> sets M" and ae2: "AE x in M. x \<notin> N"
+    using f by (auto simp: subset_eq intro!: sets.sets_Collect_neg AE_not_in)
+  show "AE x in density M f. P x"
+    using ae2
+    unfolding eventually_ae_filter[of _ "density M f"] Bex_def null_sets_density_iff[OF f]
+    by (intro exI[of _ "N \<union> {x\<in>space M. \<not> 0 < f x}"] conjI *)
+       (auto elim: eventually_elim2)
+qed
+
+lemma positive_integral_density':
+  assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x"
+  assumes g: "g \<in> borel_measurable M" "\<And>x. 0 \<le> g x"
+  shows "integral\<^sup>P (density M f) g = (\<integral>\<^sup>+ x. f x * g x \<partial>M)"
+using g proof induct
+  case (cong u v)
+  then show ?case
+    apply (subst positive_integral_cong[OF cong(3)])
+    apply (simp_all cong: positive_integral_cong)
+    done
+next
+  case (set A) then show ?case
+    by (simp add: emeasure_density f)
+next
+  case (mult u c)
+  moreover have "\<And>x. f x * (c * u x) = c * (f x * u x)" by (simp add: field_simps)
+  ultimately show ?case
+    using f by (simp add: positive_integral_cmult)
+next
+  case (add u v)
+  then have "\<And>x. f x * (v x + u x) = f x * v x + f x * u x"
+    by (simp add: ereal_right_distrib)
+  with add f show ?case
+    by (auto simp add: positive_integral_add ereal_zero_le_0_iff intro!: positive_integral_add[symmetric])
+next
+  case (seq U)
+  from f(2) have eq: "AE x in M. f x * (SUP i. U i x) = (SUP i. f x * U i x)"
+    by eventually_elim (simp add: SUP_ereal_cmult seq)
+  from seq f show ?case
+    apply (simp add: positive_integral_monotone_convergence_SUP)
+    apply (subst positive_integral_cong_AE[OF eq])
+    apply (subst positive_integral_monotone_convergence_SUP_AE)
+    apply (auto simp: incseq_def le_fun_def intro!: ereal_mult_left_mono)
+    done
+qed
+
+lemma positive_integral_density:
+  "f \<in> borel_measurable M \<Longrightarrow> AE x in M. 0 \<le> f x \<Longrightarrow> g' \<in> borel_measurable M \<Longrightarrow> 
+    integral\<^sup>P (density M f) g' = (\<integral>\<^sup>+ x. f x * g' x \<partial>M)"
+  by (subst (1 2) positive_integral_max_0[symmetric])
+     (auto intro!: positive_integral_cong_AE
+           simp: measurable_If max_def ereal_zero_le_0_iff positive_integral_density')
+
+lemma emeasure_restricted:
+  assumes S: "S \<in> sets M" and X: "X \<in> sets M"
+  shows "emeasure (density M (indicator S)) X = emeasure M (S \<inter> X)"
+proof -
+  have "emeasure (density M (indicator S)) X = (\<integral>\<^sup>+x. indicator S x * indicator X x \<partial>M)"
+    using S X by (simp add: emeasure_density)
+  also have "\<dots> = (\<integral>\<^sup>+x. indicator (S \<inter> X) x \<partial>M)"
+    by (auto intro!: positive_integral_cong simp: indicator_def)
+  also have "\<dots> = emeasure M (S \<inter> X)"
+    using S X by (simp add: sets.Int)
+  finally show ?thesis .
+qed
+
+lemma measure_restricted:
+  "S \<in> sets M \<Longrightarrow> X \<in> sets M \<Longrightarrow> measure (density M (indicator S)) X = measure M (S \<inter> X)"
+  by (simp add: emeasure_restricted measure_def)
+
+lemma (in finite_measure) finite_measure_restricted:
+  "S \<in> sets M \<Longrightarrow> finite_measure (density M (indicator S))"
+  by default (simp add: emeasure_restricted)
+
+lemma emeasure_density_const:
+  "A \<in> sets M \<Longrightarrow> 0 \<le> c \<Longrightarrow> emeasure (density M (\<lambda>_. c)) A = c * emeasure M A"
+  by (auto simp: positive_integral_cmult_indicator emeasure_density)
+
+lemma measure_density_const:
+  "A \<in> sets M \<Longrightarrow> 0 < c \<Longrightarrow> c \<noteq> \<infinity> \<Longrightarrow> measure (density M (\<lambda>_. c)) A = real c * measure M A"
+  by (auto simp: emeasure_density_const measure_def)
+
+lemma density_density_eq:
+   "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> AE x in M. 0 \<le> f x \<Longrightarrow>
+   density (density M f) g = density M (\<lambda>x. f x * g x)"
+  by (auto intro!: measure_eqI simp: emeasure_density positive_integral_density ac_simps)
+
+lemma distr_density_distr:
+  assumes T: "T \<in> measurable M M'" and T': "T' \<in> measurable M' M"
+    and inv: "\<forall>x\<in>space M. T' (T x) = x"
+  assumes f: "f \<in> borel_measurable M'"
+  shows "distr (density (distr M M' T) f) M T' = density M (f \<circ> T)" (is "?R = ?L")
+proof (rule measure_eqI)
+  fix A assume A: "A \<in> sets ?R"
+  { fix x assume "x \<in> space M"
+    with sets.sets_into_space[OF A]
+    have "indicator (T' -` A \<inter> space M') (T x) = (indicator A x :: ereal)"
+      using T inv by (auto simp: indicator_def measurable_space) }
+  with A T T' f show "emeasure ?R A = emeasure ?L A"
+    by (simp add: measurable_comp emeasure_density emeasure_distr
+                  positive_integral_distr measurable_sets cong: positive_integral_cong)
+qed simp
+
+lemma density_density_divide:
+  fixes f g :: "'a \<Rightarrow> real"
+  assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x"
+  assumes g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x"
+  assumes ac: "AE x in M. f x = 0 \<longrightarrow> g x = 0"
+  shows "density (density M f) (\<lambda>x. g x / f x) = density M g"
+proof -
+  have "density M g = density M (\<lambda>x. f x * (g x / f x))"
+    using f g ac by (auto intro!: density_cong measurable_If)
+  then show ?thesis
+    using f g by (subst density_density_eq) auto
+qed
+
+section {* Point measure *}
+
+definition point_measure :: "'a set \<Rightarrow> ('a \<Rightarrow> ereal) \<Rightarrow> 'a measure" where
+  "point_measure A f = density (count_space A) f"
+
+lemma
+  shows space_point_measure: "space (point_measure A f) = A"
+    and sets_point_measure: "sets (point_measure A f) = Pow A"
+  by (auto simp: point_measure_def)
+
+lemma measurable_point_measure_eq1[simp]:
+  "g \<in> measurable (point_measure A f) M \<longleftrightarrow> g \<in> A \<rightarrow> space M"
+  unfolding point_measure_def by simp
+
+lemma measurable_point_measure_eq2_finite[simp]:
+  "finite A \<Longrightarrow>
+   g \<in> measurable M (point_measure A f) \<longleftrightarrow>
+    (g \<in> space M \<rightarrow> A \<and> (\<forall>a\<in>A. g -` {a} \<inter> space M \<in> sets M))"
+  unfolding point_measure_def by (simp add: measurable_count_space_eq2)
+
+lemma simple_function_point_measure[simp]:
+  "simple_function (point_measure A f) g \<longleftrightarrow> finite (g ` A)"
+  by (simp add: point_measure_def)
+
+lemma emeasure_point_measure:
+  assumes A: "finite {a\<in>X. 0 < f a}" "X \<subseteq> A"
+  shows "emeasure (point_measure A f) X = (\<Sum>a|a\<in>X \<and> 0 < f a. f a)"
+proof -
+  have "{a. (a \<in> X \<longrightarrow> a \<in> A \<and> 0 < f a) \<and> a \<in> X} = {a\<in>X. 0 < f a}"
+    using `X \<subseteq> A` by auto
+  with A show ?thesis
+    by (simp add: emeasure_density positive_integral_count_space ereal_zero_le_0_iff
+                  point_measure_def indicator_def)
+qed
+
+lemma emeasure_point_measure_finite:
+  "finite A \<Longrightarrow> (\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i) \<Longrightarrow> X \<subseteq> A \<Longrightarrow> emeasure (point_measure A f) X = (\<Sum>a\<in>X. f a)"
+  by (subst emeasure_point_measure) (auto dest: finite_subset intro!: setsum_mono_zero_left simp: less_le)
+
+lemma emeasure_point_measure_finite2:
+  "X \<subseteq> A \<Longrightarrow> finite X \<Longrightarrow> (\<And>i. i \<in> X \<Longrightarrow> 0 \<le> f i) \<Longrightarrow> emeasure (point_measure A f) X = (\<Sum>a\<in>X. f a)"
+  by (subst emeasure_point_measure)
+     (auto dest: finite_subset intro!: setsum_mono_zero_left simp: less_le)
+
+lemma null_sets_point_measure_iff:
+  "X \<in> null_sets (point_measure A f) \<longleftrightarrow> X \<subseteq> A \<and> (\<forall>x\<in>X. f x \<le> 0)"
+ by (auto simp: AE_count_space null_sets_density_iff point_measure_def)
+
+lemma AE_point_measure:
+  "(AE x in point_measure A f. P x) \<longleftrightarrow> (\<forall>x\<in>A. 0 < f x \<longrightarrow> P x)"
+  unfolding point_measure_def
+  by (subst AE_density) (auto simp: AE_density AE_count_space point_measure_def)
+
+lemma positive_integral_point_measure:
+  "finite {a\<in>A. 0 < f a \<and> 0 < g a} \<Longrightarrow>
+    integral\<^sup>P (point_measure A f) g = (\<Sum>a|a\<in>A \<and> 0 < f a \<and> 0 < g a. f a * g a)"
+  unfolding point_measure_def
+  apply (subst density_max_0)
+  apply (subst positive_integral_density)
+  apply (simp_all add: AE_count_space positive_integral_density)
+  apply (subst positive_integral_count_space )
+  apply (auto intro!: setsum_cong simp: max_def ereal_zero_less_0_iff)
+  apply (rule finite_subset)
+  prefer 2
+  apply assumption
+  apply auto
+  done
+
+lemma positive_integral_point_measure_finite:
+  "finite A \<Longrightarrow> (\<And>a. a \<in> A \<Longrightarrow> 0 \<le> f a) \<Longrightarrow> (\<And>a. a \<in> A \<Longrightarrow> 0 \<le> g a) \<Longrightarrow>
+    integral\<^sup>P (point_measure A f) g = (\<Sum>a\<in>A. f a * g a)"
+  by (subst positive_integral_point_measure) (auto intro!: setsum_mono_zero_left simp: less_le)
+
+section {* Uniform measure *}
+
+definition "uniform_measure M A = density M (\<lambda>x. indicator A x / emeasure M A)"
+
+lemma
+  shows sets_uniform_measure[simp]: "sets (uniform_measure M A) = sets M"
+    and space_uniform_measure[simp]: "space (uniform_measure M A) = space M"
+  by (auto simp: uniform_measure_def)
+
+lemma emeasure_uniform_measure[simp]:
+  assumes A: "A \<in> sets M" and B: "B \<in> sets M"
+  shows "emeasure (uniform_measure M A) B = emeasure M (A \<inter> B) / emeasure M A"
+proof -
+  from A B have "emeasure (uniform_measure M A) B = (\<integral>\<^sup>+x. (1 / emeasure M A) * indicator (A \<inter> B) x \<partial>M)"
+    by (auto simp add: uniform_measure_def emeasure_density split: split_indicator
+             intro!: positive_integral_cong)
+  also have "\<dots> = emeasure M (A \<inter> B) / emeasure M A"
+    using A B
+    by (subst positive_integral_cmult_indicator) (simp_all add: sets.Int emeasure_nonneg)
+  finally show ?thesis .
+qed
+
+lemma measure_uniform_measure[simp]:
+  assumes A: "emeasure M A \<noteq> 0" "emeasure M A \<noteq> \<infinity>" and B: "B \<in> sets M"
+  shows "measure (uniform_measure M A) B = measure M (A \<inter> B) / measure M A"
+  using emeasure_uniform_measure[OF emeasure_neq_0_sets[OF A(1)] B] A
+  by (cases "emeasure M A" "emeasure M (A \<inter> B)" rule: ereal2_cases) (simp_all add: measure_def)
+
+section {* Uniform count measure *}
+
+definition "uniform_count_measure A = point_measure A (\<lambda>x. 1 / card A)"
+ 
+lemma 
+  shows space_uniform_count_measure: "space (uniform_count_measure A) = A"
+    and sets_uniform_count_measure: "sets (uniform_count_measure A) = Pow A"
+    unfolding uniform_count_measure_def by (auto simp: space_point_measure sets_point_measure)
+ 
+lemma emeasure_uniform_count_measure:
+  "finite A \<Longrightarrow> X \<subseteq> A \<Longrightarrow> emeasure (uniform_count_measure A) X = card X / card A"
+  by (simp add: real_eq_of_nat emeasure_point_measure_finite uniform_count_measure_def)
+ 
+lemma measure_uniform_count_measure:
+  "finite A \<Longrightarrow> X \<subseteq> A \<Longrightarrow> measure (uniform_count_measure A) X = card X / card A"
+  by (simp add: real_eq_of_nat emeasure_point_measure_finite uniform_count_measure_def measure_def)
+
+end